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Abstract. Distributed bandpass or band-reject filters gener-
ally become larger as the design center frequency decreases.
To achieve suitable filters with small dimensions even at cen-
ter frequencies below 2 GHz, ceramic resonators can be used.
These components essentially represent transmission lines
with a specified, potentially large permittivity, making them
physically short while maintaining a desired electrical length.
In this paper, Chebyshev-approximated band-reject filters us-
ing capacitors and transmission lines, the latter being rep-
resented by ceramic resonators, are investigated. Three fil-
ter prototypes are built and their performance is evaluated
by measurements. Reasonable bandstop filter properties are
found, which are the better the narrower the filter bandwidth
is.

1 Introduction

In various high frequency applications, the use of band-
stop filters is necessary to remove a certain frequency band
from a signal. In the corresponding filter design, one often
makes use of so-called Chebyshev filters. These exhibit an
adjustable ripple in the passband, where the sharpness of the
cut-off increases with larger ripple (Pozar, 2012). For a wide
range of applications, a suitable compromise between ripple
magnitude and cut-off sharpness can be found.

Chebyshev bandstop filters consisting of lumped capaci-
tors and inductances theoretically provide an ideal Cheby-
shev or equi-ripple frequency response. However, due to in-
creasing parasitic effects at high frequencies, the filter re-
sponse generally is degraded so that the response of a lumped
component filter may not be satisfactory anymore (Gurov
et al., 2019). To provide remedy, filters can be realized by us-

ing electromagnetically resonant elements. Since, however,
the size of a resonator generally depends on the wavelength
of the desired stopband center frequency, the resulting filter
dimensions may become too large for lower radio frequency
(RF) frequencies, e.g., below 2 GHz. For lower RF frequency
applications, there is, however, a need for bandstop filters
with small physical dimensions.

A bandstop filter design applying a hollow waveguide
structure was described in (Sorkherizi and Kishk, 2016),
where a reasonable Chebyshev response in the vicinity of the
stopband is recognizable.

Since hollow waveguide filters are potentially bulky, split-
ring resonators from circularly bent transmission lines (TLs)
on a substrate can, e.g., be used (Martin et al., 2003). The cor-
responding bandstop filters provide small weight and size,
however, the resulting frequency response is not of a com-
mon shape as a Chebyshev filter would be, and the upper
passband is degraded.

Another approach has been considered in (Schiffman and
Matthaei, 1964; Schiffman, 1965). It solely uses quarter-
wave sections of TLs and TL stubs with various character-
istic impedances, calculated by closed formulas. The method
yields a good approximation to a Chebyshev filter, whereas
the resulting characteristic impedances may no longer be fea-
sible for extreme values.

Coaxial ceramic resonators as proposed in this work pro-
vide a very small physical length because of their large per-
mittivity. The characteristic impedance is constant by con-
struction and can not be changed. In this work, a proce-
dure based on slope parameters is investigated to approxi-
mate Chebyshev bandstop filters using ceramic resonators.
Three prototypes are manufactured and their performance is
evaluated with regard to their specifications.
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In Sect. 2, lumped series and parallel resonant circuits are
introduced. Section 3 investigates how the used ceramic res-
onators are represented electrically. An overview of the com-
monly known design procedure of a Chebyshev bandstop fil-
ter is given in Sect. 4. The gathered findings are then used in
Sect. 5, where the filter is further transformed for the use of
ceramic resonators and lumped capacitors. All the assumed
approximations are summarized in Sect. 6. A full-wave sim-
ulation is carried out in Sect. 7 and three hardware prototypes
are built, measured and tuned in Sect. 8.

2 Lumped resonant circuits

Parallel resonant circuits of an inductor L and a capacitor C
(PLC) provide the resonance frequency

ωr =
1
√
LC

. (1)

Equation (1) also holds for a series resonant circuit from L

and C (SLC). The imaginary part of YPLC can be developed
into a Taylor series around ωr, yielding the linear approxima-
tion

={YPLC} ≈ 2C (ω−ωr) (2)

valid for small deviations from ωr.
In the following, losslessness is assumed in all considera-

tions, <{Z} = <{Y } ≡ 0.

3 Ceramic Resonators

The considered ceramic resonators represent coaxial trans-
verse electromagnetic (TEM) transmission lines with circular
inner and square outer conductor, with the space in between
filled by a ceramic material exhibiting a relatively large rel-
ative permittivity εr. Figure 1 shows one of the ceramic res-
onators used. The TLs are short-circuited by a galvanic con-
nection between the inner and outer conductor at one end. At
a specific frequency ωR, the resonator has an electrical length
of λR/4 and, correspondingly, a physical length l of

l =
λ0

4
√
εr
, (3)

where λR and λ0 are the wavelengths in free space and in
the dielectric, respectively. From Eq. (3), it can be seen that
a larger εr would lead to a physically shorter TL length.

The characteristic impedance ZT of a TL with circular
inner conductor and squared outer conductor can approxi-
mately be calculated by (Riblet, 1983)

ZT =
η0

2π
√
εr

ln
(
γS
a1

a2

)
, (4)

where η0 is the free-space impedance, a1 is the side length of
the squared outer conductor, a2 is the diameter of the inner

Figure 1. Photo of one of the used ceramic resonators.

conductor and γS is a factor representing the specific char-
acter of this cross section. The factor γS is considered to be
γS ≈ 1.079 (Frankel, 1942), which is expected to give good
results (Cohn, 1969). With the permittivity given as εr = 37
in our considerations, the characteristic impedance ZR of the
ceramic resonators is calculated by Eq. (4) to be

ZR ≈ 11.58�. (5)

The input impedance Zin of a short-circuited resonator with-
out losses is

Zin = jZR tan(βd), (6)

where β = ω/c is the propagation constant and d is the
resonator length. Equating the Taylor series expansion of
Eq. (6) around ω = ωR and Eq. (2) yields the element val-
ues {L,C}eq,PLC of the equivalent PLC approximating the
resonator input admittance near ωR,

Leq,PLC =
4ZR

πωR
,Ceq,PLC =

π

4ωRZR
. (7)

In Fig. 2, the input reactance Xin = ={Zin} of a short-
circuited resonator is qualitatively plotted over frequency
along with the reactance XPLC = ={ZPLC} of a PLC. Both
resonance frequencies are ωR and XPLC approximates Xin in
a certain frequency band.

4 Design of Lumped Element Chebyshev Filters

The design of Chebyshev bandstop filters is straightforward,
once the stopband edges ω1 and ω2, the maximum passband
ripple and the degree N of the filter are known, where N will
be assumed to be odd in the following such that the circuit is
symmetric. The geometric mean of the band edges yields the
center frequency of the stopband

ω0 =
√
ω1ω2, (8)
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Figure 2. Reactances Xin and XPLC over frequency.

and 1 is the relative bandwidth of the stopband according to

1=
ω2−ω1

ω0
. (9)

As, e.g., described in (Pozar, 2012), the element values of a
lowpass prototype filter of degreeN are calculated and scaled
to a desired reference impedanceZ0. A lowpass-to-bandstop-
transformation yields a Chebyshev filter consisting of alter-
nating SLCs and PLCs, each with the resonance frequency at
ω0.

The circuit is now converted into a circuit with SLCs only
by using admittance or J -inverters. These are two-ports with
the property that a terminating admittance appears inverted
and optionally scaled at the input port. The inverting property
is frequency independent in the ideal case.

With each PLC replaced by an SLC connected to ground
with one ideal admittance inverter on each side, the filter con-
sists of SLCs and J -inverters only, see Fig. 3. The frequency
response remains unchanged if the elements Li , Ci of the
ith replacement SLC relate to the elements L̃i , C̃i of the ith
original PLC according to

Li =
C̃i

J 2 ,Ci = L̃iJ
2, (10)

where J is measured in �−1.
Admittance inverters can be realized in various ways

(Zverev, 2005). It can be shown that a quarter-wave TL at ω0
with characteristic impedance Z0 approximates a J -inverter
in the vicinity of ω0. Other realizations are not suitable since
the occurring negative element values are not feasible in our
filter concept. The impact of the narrow-band approxima-
tion will be investigated together with further narrow-band
restrictions in Sect. 6.

5 Approximate Design by Slope Parameters

The Chebyshev filter resulting from the procedure described
in Sect. 4, consisting of SLCs and quarter-wave TLs only,
is the basis for the design of a bandstop filter with ceramic
resonators. The method described in the following has been
outlined, e.g., in (Matthaei et al., 1985).

As an alternative to an SLC with the reactance vanish-
ing at ω0, the serial connection of a capacitor and the in-
put impedance of a resonator (SCC) as shown in Fig. 4 is
considered. The electrical length φ of the resonator refers to
ω0. If ωR > ω0, where ωR is the quarter-wave resonance fre-
quency of the resonator, or, synonymously, φ < π/2, its input
reactance Xres will be positive but not divergent at ω0. The
negative reactance XC of a suitable capacitor added in series
compensates for Xres, such that the overall impedance van-
ishes at ω0, just like the original SLC. This formation of the
reactance root at ω0 of a SCC is shown in Fig. 5.

The proposed method maps the ith SLC to the SCC ap-
proximating the SLC near ω0 as best as possible, determin-
ing the required electrical length φi of the ith resonator to-
gether with an appropriate series capacitor CB,i . Replacing
each SLC in Fig. 3 by the corresponding SCC and using
quarter-wave TLs as J -inverters, the transformed filter re-
sponse approximates the basic filter. The resulting filter cir-
cuit is shown in Fig. 6.

The mapping is carried out by equating the reactance slope
parameters x{SLC,SCC},i of the respective series resonant cir-
cuits, defined as (Matthaei et al., 1985)

x{SLC,SCC},i =
ω0

2
dX{SLC,SCC},i(ω)

dω

∣∣∣∣
ω=ω0

, (11)

where X{SLC,SCC},i is the reactance of the ith SLC or SCC
branch. Bringing the equation into the form of the nonlinear
root-finding problem

ψ (φi)= 0 (12)

and using the Newton-Raphson algorithm yields the required
electrical length φi of th ith replacement SCC.

It can be shown that a solution for φi with 0< φi < π/2
always exists and that it is unique if the specifications are
reasonable, i.e., non-zero and non-divergent. Because ψ is
convex for 0< φi < π/2, convergence of the algorithm is
guaranteed if a starting value φ(0)i with φ∗i < φ

(0)
i < π/2 is

chosen, where φ∗i is the exact solution.
Setting the SCC impedance to zero at ω0 yields

ZR tan(φi)=
1

ω0CB,i
, (13)

from which CB,i is calculated using the obtained φi .
Additional solutions for φi with φi > π/2 can also exist

mathematically for corresponding filter specifications. Such
solutions, if existent, may lead to non-physical results or un-
desired filter behavior. They will not be considered further.

The SCC and SLC reactances for exemplary small and
large relative bandwidths 1 are shown in Fig. 7a and b, re-
spectively, where XSLC(ω0)= 0 and XSCC(ω0)= 0 are ob-
served. The dashed line is ω = ω0, the dotted line is ω =
ωR > ω0. Large slope parameter values correspond to a fast
change of the reactance over frequency near ω0 since it is
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Figure 3. Filter circuit consisting of SLCs and J -inverters.

Figure 4. A single SCC.

Figure 5. Formation of the root in the SCC reactance with signifi-
cantly different ω0 and ωR.

the derivative of the reactance with respect to the frequency,
evaluated at ω0. Consequently, a fast change in the filter input
reflection coefficient over frequency corresponds to a small
1 and vice versa.

In the vicinity of ω0, XSCC is convex, yielding a greater
steepness slightly above ω0 than below which can also be
seen from Fig. 7. Consequently, the upper stopband edge of
a filter is expected to be steeper than the lower one.

6 Restrictions to narrow stopbands

The reactance approximation of an SLC by an SCC is valid
only close to ω0 and quickly loses its validity when consider-
ing frequencies farther away from ω0, see Fig. 7. This effect
increases with increasing relative bandwidth 1 such that ad-
ditionally the approximation itself gets worse quickly. This
results in a restriction of the method to narrow stopbands,
additionally to the narrow-band restriction because of using
quarter-wave TLs as J -inverters as described in Sect. 4.

Furthermore, denoting the individual quarter-wave reso-
nance frequency of the ith resonator by ωR,i , the respec-
tive short-circuit termination is identically transformed into
a short-circuit at 2nωR,i , n ∈ N, and into an approximation
to it at frequencies ω ≈ 2nωR,i . This can be approximated
by a separate SLC with its center frequency at approximately
2nωR,i at the ith branch, with the capacitor CB,i in series.
Consequently, an additional bandstop effect will degrade the
desired upper passband to a certain extent. The additional
bandstop effect is the weaker, the smaller CB,i is. As will
turn out in Sect. 8, small values of CB,i correspond to small
relative bandwidths.

With all restrictions together,1 should be limited to small
values even more. Increasing N accordingly leads to even
worse approximations, such that there might be a maximum
N where further increase is not recommended.

7 Full-wave simulation

Three prototypes with N = 5 were designed as described in
Sect. 5 for different stopband center frequencies and absolute
bandwidth of ω2−ω1 = 2π ·0.02 GHz for each filter, result-
ing in a different 1, each. The structure in which the proto-
types from Sect. 8 were to be built was approximately trans-
ferred to the full-wave simulation software “CST Microwave
Studio” (CST) (Dassault Systèmes, 2020), see Fig. 8.

The quarter-wave TLs representing the J -inverters were
implemented by U-like shaped coaxial cables. This is an ap-
proximation to the actual shape, since the TLs of the hard-
ware prototypes from Sect. 8 are wound into helices for space
reasons. This structure would be very complicated to transfer
to CST, apart from the fact that this would disproportionately
increase the simulation time. Simulations with the U-shaped
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Figure 6. Filter consisting of SCCs and quarter-wave lines as J -inverters.

Figure 7. Comparison of the reactance of an SCC with that of an
SLC over frequency, for different relative bandwidths of the stop-
band. (a): Narrow bandwidth. (b): Large bandwidth.

inverter lines bent upwards into closer proximity to the re-
maining structure showed no significant change of the filter
behavior which is why this approximation of the shape is as-
sumed appropriate.

The capacitors are each represented by lumped compo-
nents in CST. One terminal of each capacitor is connected
to the respective pad on a printed circuit board (PCB), onto
which also the inner conductors of the neighboring semi-
rigid cables are mounted. The other terminal of each capaci-
tor is connected to the circular belt around the inner conduc-
tor of the respective resonator, which is discussed in Sect. 8.

Every metallic part is modeled as perfectly electrically
conducting (PEC) and dielectric constants are purely real, no
losses are considered. Parasitic effects such as electromag-
netic coupling between components are expected to deterio-
rate the filter response to some extent.

7.1 Prototype 1

The scattering parameters |S11| and |S21| resulting from
the simulation of the prototype with ω0 ≈ 2π · 0.8 GHz and
1≈ 2.5 % are shown over frequency in Figs. 9a, b. The de-
sired Chebyshev frequency response in the vicinity of ω0 is
identifiable but deteriorated while the stopband is shifted to-
wards a lower center frequency ω′0 ≈ 0.778GHz, see Fig. 9a.
Slightly below 2ω′0, |S21| collapses down to |S21| ≈ −5 dB in

a certain frequency range, see Fig. 9b, corresponding to the
half-wave resonance of the individual resonators described
in Sect. 6. With increasing ω, |S21| recovers first to approx-
imately zero and collapses again notch-like slightly above
ω = 2.2ω′0. The filter can be reasonably used up to about
1.5ω′0, because the signal is attenuated too much at higher
frequencies.

7.2 Prototype 2

The scattering parameters |S11| and |S21| resulting from
the simulation of the prototype with ω0 ≈ 2π · 1.3 GHz and
1≈ 1.5 % are shown over frequency in Figs. 9c, d. The de-
sired Chebyshev frequency response in the vicinity of ω0
is more deteriorated than for the first prototype, while the
stopband is shifted towards a lower center frequency ω′0 ≈
1.25 GHz, see Fig. 9c. Below 2ω′0, |S21| drops to a mini-
mum of |S21| ≈ −1.46 dB, recovers to approximately zero
and collapses again notch-like slightly above ω = 2.2ω′0, see
Fig. 9d. It is notable that the passband drop is to a lesser
extent than for the first prototype due to the lower relative
bandwidth resulting from smaller CB,i values, see Sect. 6.
However, the filter may also only be used reasonably up to
about 1.5ω′0.

7.3 Prototype 3

The scattering parameters |S11| and |S21| resulting from the
simulation of the prototype with ω0 ≈ 2π · 2 GHz and 1≈
1 % are shown over frequency in Fig. 9e, f. The desired
Chebyshev frequency response in the vicinity of ω0 is even
more deteriorated than for the first two prototypes, while
the stopband is shifted towards a lower center frequency
ω′0 ≈ 1.89 GHz, see Fig. 9e. Slightly below 2ω′0, |S21| shows
a slow break-in followed by a notch down to a minimum of
|S21| ≈ −16 dB, see Fig. 9f. The upper passband is altogether
approximately zero and constant up to about 2ω′0, which is a
significantly better performance for the upper passband than
found for the first two prototypes.

The simulation results do not show an ideal Chebyshev re-
sponse. At each prototype the stopband is shifted towards
lower frequencies. Simulations considering losses in non-
ideal materials showed no significant change in this respect.
It is assumed that the discrepancies are due to the already ex-
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Figure 8. Simulation model in CST with resonator dielectrics (dark green) and the capacitors as lumped components (blue). (a) Perspective
view. (b) Top view.

Figure 9. Scattering parameters resulting from the full-wave simulation, near the respective stopbands and up to about 3ω0. (a, b): Prototype
with ω0 ≈ 2π · 0.8 GHz. (c, d): Prototype with ω0 ≈ 2π · 1.3 GHz. (e, f): Prototype with ω0 ≈ 2π · 2 GHz.

isting complexity of the model and the associated challenges
to the computational software.

8 Fabricated filter prototypes and tuning

The three prototypes from Sect. 7 were manufactured in
hardware. Five resonators were individually cut to the re-
spective required physical lengths from their initial length of
18 mm, with the precision of the caliper of 0.01 mm. Exploit-

ing production tolerances, available stock capacitors were
measured individually in order to meet the required capac-
itor values as accurately as possible.

Semi-rigid coaxial cables were cut to length with the pre-
cision again limited by the caliper and stripped afterwards at
the ends, such that the section of the cable with outer con-
ductor corresponds to an electric length of λ0/4. The result-
ing TL sections are used as J -inverters. The inner conductor
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Figure 10. Filter prototype.

stands out a little to solder it to the respective pad as can be
seen in Fig. 8.

To provide a fixture for the capacitors and the coaxial ca-
bles, a PCB was designed with N pads on it in front of the
resonators. The outer two resonators were connected to the
respective inner conductors of the coaxial terminals via the
series capacitors CB,1 and CB,N . Since the inner conductor
of the resonators only consists of the coating of the ceramic
material inside the resonator, where the capacitors can not
be soldered onto, conducting ferrules were inserted into the
resonators, building a flattened circular belt around the can-
nulation. One of the capacitor terminals is soldered to the
belt, the other one is connected to the inner conductors of the
neighboring semi-rigid cables. A photograph of one of the
prototypes is shown in Fig. 10, where the small cuts at the
upper resonator edges result from the tuning process. The
other two prototypes are identical in construction except for
different element values resulting from the design.

After assembling the whole filter, the frequency response
was first measured directly without any adjustment, see
Fig. 11 for the neighborhood of the respective center fre-
quencies. By a subsequent, targeted manipulation of the cir-
cuit, the prototypes were improved in terms of a best possi-
ble Chebyshev-like frequency response to meet the specifica-
tions in center frequency and bandwidth as well as possible.
This filter tuning process is discussed in the following.

For an ideal Chebyshev filter, each branch is resonant at
ω0. The ith branch of a manufactured filter in general res-
onates at ω0,i 6= ω0 effectively, which is because of manu-
facturing tolerances and parasitic effects in the filter struc-
ture. By adjusting the element values φi and the capacitor
CB,i of the N branches, the filter response should be trans-
formed into a Chebyshev-like frequency response satisfying
given specifications as close as possible.

All manipulations are carried out in situ to avoid thermal
stress by disassembling the filter once for each tuning step.
However, occurring parasitics are not completely predictable
and would generally change after each reassembly, especially

Figure 11. Measured scattering parameters before tuning, in the
vicinity of the respective stopbands. (a): Prototype with ω0 ≈ 2π ·
0.8 GHz. (b): Prototype with ω0 ≈ 2π ·1.3 GHz. (c): Prototype with
ω0 ≈ 2π · 2 GHz.

at higher frequencies, which is also why disassembling the
whole filter is not recommended.

In the following, the impact of φi and CB,i manipulations
on the frequency response of one individual branch is con-
sidered. Since the filter consists of N branches, it is assumed
that the impact on one filter branch qualitatively influences
the frequency response of the whole filter. Practice shows
that this assumption is appropriate.

The impact of a change in φi on ω0,i is investigated by
rearranging Eq. (13) and taking the derivative with respect to
φi , yielding

∂ω0,i

∂φi
=−

1

ZRCB,isin2 (φi)
< 0. (14)
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Figure 12. Measured scattering parameters resulting after tuning, near the respective stopbands and up to about 3ω0. (a, b): Prototype with
ω0 = 2π · 0.8 GHz. (c, d): Prototype with ω0 = 2π · 1.3 GHz. (e, f): Prototype with ω0 = 2π · 2 GHz.

Enlarging the ith resonator will, therefore, decrease, shorten-
ing it will increase the resonance frequency ω0,i of the corre-
sponding branch, respectively. Analogously, the impact of a
change inCB,i on ω0,i is investigated by rearranging Eq. (13)
and taking the derivative with respect to CB,i ,

∂ω0,i

∂CB,i
=−

1
ZR tan(φi)C2

B,i

< 0. (15)

Enlarging the ith capacitor will, therefore, decrease, reducing
it will increase the resonance frequency of the corresponding
branch, respectively.

To investigate the impact of changes in φi or CB,i on
the bandwidth of the ith branch, the slope parameter serv-
ing as measure for bandwidth could be consulted by taking
the derivative of xSCC,i with respect to either of φi or CB,i .
However, it should be noted that by changing these param-
eters independently, ω0,i is also changed as was shown be-
fore. Since the slope parameter is defined by evaluating the
derivative of the branch reactance at ω0,i , it will not be ex-
act anymore. Considerations analogue to the preceding ones
can, therefore, not be made without introducing an approxi-
mation, which gets worse with larger modifications.

With knowledge of the aforementioned, taking the deriva-
tive of xSCC,i with respect to φi qualitatively yields

∂xSCC,i

∂φi
> 0,∀φi ∈

(
0,
π

2

)
, (16)

implying that an increasing φi will lead to an increasing
xSCC,i and, thus, to a narrower bandwidth of the stopband and
vice versa, as described in Sect. 5. Analogously, taking the
derivative of xSCC,i with respect to CB,i qualitatively yields

∂xSCC,i

∂CB,i
< 0, (17)

implying that an increasing CB,i will lead to a decreasing
xSCC,i and, thus, to a larger bandwidth of the stopband and
vice versa. Frequency shifts occurring while tuning the band-
width are compensated for by using Eq. (14), which in turn
will have an influence on the bandwidth. The tuning may,
therefore, need a number of iterations until the specifications
are met.

An effective shortening of the built-in resonator length φi
can be achieved by cutting into the ith resonator at the up-
per edge as observable in Fig. 10. The frequency increasing
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effect of this cutting can be shown by simulation of a sin-
gle resonator with a cut at the same place and observing its
quarter-wave resonance frequency with increasing cut depth.
This only works with a limited cutting depth as the resonator
obviously gets defaced otherwise.

Electrically increasing the length can be done by adding a
piece of metal or solder to the ferrule. This acts as an ad-
ditional capacitance between inner conductor and ground,
added in parallel to the equivalent PLC approximating the
TL. From Eq. (1), it can be seen that the resonance frequency
thereby decreases.

Increasing the capacitor values is carried out by exchang-
ing it to another one or, if the effect should be rather small,
mounting a piece of metal to one of its terminals. Doing so,
a capacitor with air as dielectric is effectively added in paral-
lel. It is advisable to perform this at the side facing away from
the resonator to avoid possible influence on the resonator. A
smaller capacitance can be achieved by replacing it by one
with a smaller value or by removing solder around the ca-
pacitor, if present.

The influence of individual tuning steps can be observed
using a vector network analyzer. After few iterations, the fil-
ters were significantly improved in performance. To preserve
the symmetry of odd-N Chebyshev filters, both φi = φN−i+1
and CB,i = CB,N−i+1 should be achieved.

The resulting frequency responses of the tuned filter pro-
totypes are shown in Fig. 12. The individual bandwidths can
not exactly be adjusted to meet the specification because the
|S21| ripples do not exist. This fact is assumed to be a conse-
quence of parasitics, losses and radiation from the structure.
Nevertheless, the shape of |S11| in the stopband, correspond-
ing to supposed |S21| ripples, is recognizable, in particular
see Fig. 12a. Towards higher center frequencies, the oscilla-
tion in |S11| is qualitatively reduced, see Fig. 12c and e. This
effect is assumed to be due to stronger parasitics at higher fre-
quencies. Considering frequencies beyond the corresponding
stopbands, see Fig. 12b, d and f, again the transmission drop
in the upper passband, as described in Sect. 6, is observed.
Its impact decreases with decreasing 1.

9 Conclusions

The filter design method investigated in this paper was able to
reasonably approximate Chebyshev bandstop filters by solv-
ing a series of one-dimensional, non-linear root finding prob-
lems, carried out by Newton’s method and with guaranteed
convergence.

The manufactured filters were slightly shifted away from
the desired center frequency, which could be corrected for by
applying the described tuning methods. Approximate Cheby-
shev behavior at the respective desired stopband frequen-
cies was observable together with reasonable passband per-
formance below the stopband and above, the latter under

the premise that the relative stopband bandwidth is small
enough.

Filters with order 5 and a relative bandwidth of < 1 %
seem to show good performance in the upper passband. In or-
der to generalize this approach to larger filter orders, further
prototypes have to be built, tuned and characterized. It is ex-
pected that the approximation to a Chebyshev filter qualita-
tively degrades with increasing filter order since the assumed
approximations become worse.
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