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Abstract. Radar signal processing is a promising tool for vi-
tal sign monitoring. For contactless observation of breathing
and heart rate a precise measurement of the distance between
radar antenna and the patient’s skin is required. This results
in the need to detect small movements in the range of 0.5 mm
and below. Such small changes in distance are hard to be
measured with a limited radar bandwidth when relying on the
frequency based range detection alone. In order to enhance
the relative distance resolution a precise measurement of the
observed signal’s phase is required. Due to radar reflections
from surfaces in close proximity to the main area of interest
the desired signal of the radar reflection can get superposed.
For superposing signals with little separation in frequency
domain the main lobes of their discrete Fourier transform
(DFT) merge into a single lobe, so that their peaks cannot be
differentiated. This paper evaluates a method for reconstruct-
ing the phase and amplitude of such superimposed signals.

1 Introduction

Radar appliances are a promising platform for contactless vi-
tal sign monitoring. Due to regulations the usable bandwidth
and hence the distance resolution is limited. With signal anal-
ysis based on the Fourier transform this results in limitations
of the maximum achievable frequency and distance resolu-
tion. Algorithms like estimation of signal parameters via ro-
tational invariance techniques (ESPRIT) or MUltiple SIgnal
Classification (MUSIC) allow detection of signal frequencies
with much closer limits. They provide frequency estimates or
a pseudospectrum, that can be used for peak detection. While
those methods provide good signal separation in frequency
domain, they do not provide values for signal phase or ampli-

Figure 1. Superposition of signals with similar signal frequencies
and their reconstruction in time domain: (a) shows the signal mea-
surement y is shown. Based on this measurement the component
signals x̂1 and x̂2 shown in (b) are estimated. With this the mea-
surement error ey = y−x̂1−x̂2 is determined in (c). The actual sig-
nal noise v, that was used for generating the measurement y, is also
shown for comparison.

tude. Figure 1 shows the observation of a pair of oscillations,
that have similar frequencies.

The corresponding power spectral densities (PSD) dis-
played in Fig. 2 make the difficulty in determining the correct
signal frequencies obvious.

Section 2 presents a way to retrieve the signals’ amplitude
and phase based on a harmonic signal model, assuming the
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Figure 2. Superposition of two signals x1 and x2, that are similar
in frequency: (a) shows the power spectral density (PSD) of the
measured signal Y and the signal signal noise V . The dotted lines
show the PSD in (a) and phase of the matching estimated signals X̂1
and X̂2 in (b). The crosses X̂ show amplitude and phase estimates
based on the frequency values delivered by an ESPRIT total least
squares algorithm. The dashed line in (c) shows the residual error
ey , when the signal estimates X̂1 and X̂2 are subtracted from the
observed signal.

signals’ frequencies can be estimated. The presented method
is evaluated in Sect. 3 before a conclusion is discussed in
Sect. 4.

2 Signal parameter estimation

For a successful phase and amplitude reconstruction an accu-
rate signal model is required. Using a matrix representation
of superimposed harmonic signals as described in Sect. 2.1
forms the basis for frequency, phase and amplitude estima-
tion. For the analysis presented in this paper the signal fre-
quencies are determined using estimation of signal parame-
ters via rotational invariance techniques (ESPRIT). However
any algorithm could be used, that allows a reasonably precise
estimation of signal frequencies. Therefore only the general
principle of ESPRIT is described in Sect. 2.2. The phase and
amplitude estimation is done using the method described in
Sect. 2.3.

2.1 Harmonic signal model

A sampled harmonic oscillation xp is completely described
by its amplitude ap, frequency fp and its initial phase value
8p as a function of time t :

xp(t)= apcos
(
2πfp · t +8p

)
(1)

In discrete signal processing any signal is sampled using a fi-
nite sampling frequency Fs =

1
T

. It can be described in mul-
tiple equivalent equations:

xp(n)=
1
2

[
xp + x

∗

p

]
(2)

=
1
2

[
ape

j2πfp ·T ·n+8p + ape
−j2πfp ·T ·n−8p

]
(3)

= apcos
(
2πfp · T · n+8p

)
(4)

= ap
[
cos
(
2πfpT n

)
cos
(
8p
)

(5)
− sin

(
2πfpT n

)
sin
(
8p
)]

The superposition of P complex signals xp(n)

x(n)=

P∑
p=1

xp(n) (6)

can be described as follows:

ap = ap · e
j8p (7)

bp(n)= e
j2πfp ·T ·n (8)

⇒ x(n)=

P∑
p=1

ap · bp(n) (9)

For real valued signals this expression expands to:

x(n)=

P∑
p=1

1
2

[
ap · bp(n)+ a

∗

p · b
∗

p(n)
]

(10)

=

P∑
p=1

ap
[
cos
(
8p
)
· cos

(
2πfpT n

)
(11)

− sin
(
8p
)
· sin

(
2πfpT n

)]
2.2 Frequency estimation

For the analysis in this paper frequency estimation is done
using ESPRIT. Since the method of frequency estimation is
exchangeable and not the main scope of this paper, only a
rough outline of the ESPRIT algorithm is given in this sec-
tion (Roy and Kailath, 1989; Ingle et al., 2005).

Based on the harmonic signal model the signal vectors xp
can be defined

xp =
[
xp(0) xp(1) . . . xp(N − 1)

]T (12)

such that a composite signal matrix X can be formed:

X=
[

x1 x2 . . . xP
]

(13)
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By splitting the signal matrix X into submatrices

X1 =
[

IN−1 0
]

X (14)

=


x1(0) x2(0) . . . xp(0)
x1(1) x2(1) . . . xp(1)
...

...
. . .

...

x1(N − 2) x2(N − 2) . . . xp(N − 2)

 (15)

and

X2 =
[

0 IN−1
]

X (16)

=


x1(1) x2(1) . . . xp(1)
x1(2) x2(2) . . . xp(2)
...

...
. . .

...

x1(N − 1) x2(N − 1) . . . xp(N − 1)

 (17)

the signal frequencies fp are embedded into the diagonal ma-
trix 8

8= diag
[
ej2πf1T ej2πf2T . . . ej2πfP T

]
(18)

, that relates both signal matrices X1 andX2:

X2 = X18 (19)

Because the actual signals xp and the correspond-
ing signal matrix X are unknown in real applications,
for the ESPRIT algorithm a measured signal vector y =[
y(0) y(1) . . . y(N − 1)

]
is rearranged to generate a

data matrix

Y=


y(0) y(1) . . . y(M − 1)
y(1) y(2) . . . y(M)
...

...
. . .

...
y(N −M) y(N −M + 1) . . . y(N − 1)

 (20)

. This data matrix is used for singular value decomposition

Y= L6UH (21)

in order to get the signal subspace UH
s from UH. The signal

subspace Us itself is split into

U1 =
[

IP−1 0
]

Us (22)

and

U2 =
[

0 IP−1
]

Us, (23)

so that both matrices are related by the rotation matrix 9:

U2 = U19 (24)

The eigenvalues of 9 correspond to the values in the diag-
onal matrix 8, so that the component signal frequencies fp
can be acquired.

2.3 Phase and amplitude reconstruction

The signal model presented in Sect. 2.1 and a reasonably
good estimate of the signal frequencies give the prerequisites
for phase and amplitude reconstruction. By writing Eq. (9)
as a matrix operation relating the signal vector x

x =
[
x(0) x(1) . . . x(N − 2) x(N − 1)

]T (25)

and complex amplitude vector a

a =
[
a1 a∗1 . . . aP a∗P

]T (26)

a simple matrix operation can be used to describe the sum of
an arbitrary number of harmonic oscillations:

x = B · a (27)

With the condition of a known sampling time T and known
signal frequencies fp the matrix B is defined according to
Eq. (8) for an observation window of N samples:

B=


b1(0) b2(0) . . . bP (0)
b1(1) b2(1) . . . bP (1)
...

...
. . .

...

b1(N − 1) b2(N − 1) . . . bP (N − 1)

 (28)

Similarly Eq. (11) can be written as a real valued matrix
operation relating the signal vector x and a real valued am-
plitude vector a:

x = B · a (29)

In this case the amplitude vector becomes a composite of the
in-phase and the quadrature amplitude values ap,I and ap,Q:

a =
[
a1,I a1,Q . . . aP,I aP,Q

]T (30)

The real valued matrix B is defined defined as:

B=


cos(2πf1T · 0) sin(2πf1T · 0) · · ·

cos(2πf1T · 1) sin(2πf1T · 1) · · ·

.

.

.
.
.
.

. . .

cos(2πf1T · [N − 1]) sin(2πf1T · [N − 1]) · · ·

· · · cos(2πfP T · 0) sin(2πfP · 0)
· · · cos(2πfP T · 1) sin(2πfP T · 1)
. . .

.

.

.
.
.
.

· · · cos(2πfP T · [N − 1]) sin(2πfP T · [N − 1])

 (31)

Both complex and real matrix definitions can be used to de-
scribe a real valued signal vector x and provide a relation to
the signal’s phase 8p and its amplitude ap:

ap =ap,I− jap,Q (32)

8p =Arg
(
ap

)
=−tan

(
ap,I

ap,Q

)
(33)

ap =|ap| =

√
a2
p,I+ a

2
p,Q (34)

By using a pseudo inverse of B or B Eqs. (27) and (29)
can be solved for the complex and real amplitude vectors a
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and a:

B+x =a (35)
B+x =a (36)

As a consists of the complex signal amplitudes ap, the
pseudo inverse B+ essentially is a reduced form of the dis-
crete Fourier transform:

B+ =
[
BHB

]−1BH (37)

With an observation y(n) containing some noise v(n)

y(n)= x(n)+ v(n) (38)

this approach results in a least squares solution

aLS = B+y, (39)

that minimizes the quadratic error Qy

Qy =eye
H
y (40)

=
[
y− x

][
y− x

]H (41)

while assuming errors in the transition matrix QB being 0:

QB =eBeH
B (42)

=

[
B̂−B

][
B̂−B

]H
(43)

Due to imperfect knowledge of the observed signal frequen-
cies, an increased error in B and B respectively is to be ex-
pected. Therefore a total least square algorithm to minimize
both Qy and QB might be desirable in some applications (Ot-
tersten et al., 1991; Markovsky and Van Huffel, 2007).

3 Testing

The methods described in Sect. 2 are tested using a series
of randomly generated signals consisting of two real valued
oscillations superimposed in each realization. Both the true
frequency values used for generating the test signals and fre-
quency estimates acquired by the ESPRIT algorithm are used
for phase and amplitude estimation as described in Sect. 2.3.

With the parameters listed in Table 1 random signals for
testing are created according to the following equations:

x1(n,ξ)= a1(ξ) · cos
(

2π
fc(ξ)− 0.51f (ξ)

Fs
· n+81(ξ)

)
(44)

x2(n,ξ)= a2(ξ) · cos
(

2π
fc(ξ)+ 0.51f (ξ)

Fs
· n+82(ξ)

)
(45)

y(n,ξ)= x2(n,ξ)+ x2(n,ξ)+ v(n,ξ) (46)

Figures 1 and 2 display one of the signals, that are generated
with the described parameters. The time domain depiction

shows both the generated and the reconstructed signals using
the measured phase and amplitude. The displayed error

ey(n)= y(n)− x̂(n) (47)

represents the difference between the measured signal

y(n)= x1(n)+ x2(n)+ v(n)

and the reconstructed signal:

x̂(n)= x̂1(n)+ x̂2(n)

The errors ex1 and ex2 are generated accordingly. The fre-
quency domain representation displayed in Fig. 2 shows, that
the measurement error ey(n) approximates the actual mea-
surement noise v(n) closely. Furthermore the power leakage
from the windowed signals across the frequency spectrum
is removed almost entirely. Due to the nature of the least
squares algorithm used to derive the complex signal ampli-
tudes, the residual PSD will be close to the sampling noise
even with bad frequency estimates.

For further understanding of the limitations connected to
the provided method of phase determination first some limi-
tations of the ESPRIT algorithm are presented in Sect. 3.1
representative for a method of frequency estimation. In
Sect. 3.2 the results are further investigated in regard to the
resulting root mean square error (RMSE).

3.1 Limits of ESPRIT

When analyzing the resulting measurements, the limits ES-
PRIT must be examined. For this purpose a range of ran-
domly distributed signals according to Table 1 is generated
and analyzed using ESPRIT. Afterwards the measured oscil-
lations corresponding to distinct signal frequencies are con-
sidered valid measurements. The ratio of correctly detected
oscillations is displayed in Fig. 3.

As shown in Fig. 3 the rate of correctly detected oscillation
frequencies is mostly depending on the frequency separation
1f and the signal to noise ratio (SNR) of the sampled signal.
Center frequency, input phase and power difference between
both oscillations play a minor role.

Notable is the increase of erroneous detections close to
0 Hz and close to the Nyquist frequency 64 Hz. Below the
minimum frequency of 1 Hz and above of 1 Hz below the
Nyquist frequency the rate of correctly identified frequencies
drops to less than 0.5. With a frequency separation above
0.14 Hz two oscillations can be separated in with a ratio
above 0.5. At 0.32 Hz frequency separation this ratio be-
comes greater than 0.9. Applied to a radar system with a
bandwidth of 250 MHz, as it is common in 24 GHz radar ap-
plications, this could result in a 90 % peak separation rate for
reflecting surfaces with a distance of approximately 20 cm.

3.2 Measurement error analysis

The set of successfully separated signals is evaluated further.
The system’s accuracy is analyzed regarding the accuracy in
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Table 1. Testing parameters.

name value description

Fs 128 Hz Sampling frequency
Ns 128 Number of samples per ramp
NR 106 Number of realizations
ξ realization
v(n,ξ) WGN(0,σv) white Gaussian noise with 10lg(σ 2

v )=−87 dB (≈ 14.5 bit dynamic range)
1f (ξ) [0Hz, 1Hz] range of random frequency distance (uniform probability distribution)
fc(ξ) 1 to 63 Hz center frequency
81(ξ), 82(ξ) [0, 2π ] range of random signal phase (uniform probability distribution)
a1(ξ), a2(ξ) [10−6, 10−0.3

] range of random signal amplitude (logarithmic probability distribution)

Figure 3. Rate of successful signal separation based on ESPRIT:
The number of successfully detected distinct oscillations in relation
to the total number of measurements r =Nseparated/Ntotal.

Table 2. Summarized results.

parameter name value

SNR mean 67.6347dB
SNR range 27 to 87 dB
amplitude mean −19.4dB
amplitude range −60 to −3 dB
amplitude distribution log
frequency range 1 to 63Hz
1f 1Hz
σv −87 dB
RMSE(8(f )) 0.41533× 10−3

·π rad
RMSE(8(f̂ )) 20.942× 10−3

·π rad

frequency estimation and phase measurement. Table 2 gives
a summarized overview of the performed signal simulation.

The distribution of the estimated frequencies root mean
square error (RMSE) displayed in Fig. 4 gives further insight
into the performance of the utilized ESPRIT algorithm. The
observed estimation error of the signal frequency is consis-

Figure 4. RMSE of the signal frequencies estimated by the ESPRIT
method for all successfully separated signals.

tent with the results of successful frequency separation dis-
cussed in Sect. 3.1.

The resulting RMSE of the measured signal phase based
on the actual signal frequencies is displayed in Fig. 5. The
phase error distribution is comparable to the frequency error
distribution, though the displayed results must be taken with
a grain of salt, because measurements without successful fre-
quency separation are excluded from the statistical RMSE
analysis. This especially becomes clear when looking at the
f and 1f subplots: In the upper and lower ranges of the
center frequency fc and below a frequency separation of
1f = 0.4 Hz the phase error decreases. This is due to mea-
surements with bad signal separation being disregarded. In
general the phase estimation error is dependent primarily on
the signal’s SNR and decreases with increasing SNR and fre-
quency separation.

In comparison to the phase measurement based on the
true frequency value, the phase error is two orders of mag-
nitude worse, when it’s based on imperfect frequency mea-
surements. Across the complete set of measurements the root
mean square error is 0.021π rad= 3.78◦. Transferred to a
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Figure 5. RMSE of the signal phase derived from the measured
signal using the true signal frequency for the successfully separated
signals.

Figure 6. RMSE of the signal phase derived from the measured
signal using the signal frequency estimated by the ESPRIT method
for the successfully separated signals.

24GHz radar application with a wavelength of 12mm this
transfers to a relative distance error of 63µm. While the de-
pendency on the signal to noise ratio (SNR) is almost neg-
ligible, the dependency on the frequency separation 1f be-
comes more obvious. As expected, an error in the estimated
frequency results in an increased phase error.

4 Conclusions

In conclusion the method described in Sect. 2.3 represents
a useful addition to frequency estimations like MUSIC or
ESPRIT. While depending on the quality of the underlying

frequency estimation, a very promising level of accuracy in
phase measurement can be reached. Given that the analysis
in this paper are done purely on synthetic data, further inves-
tigations using real world data are required.
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