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Abstract. With a radar working in the 24 GHz ISM-band in a
frequency modulated continuous wave mode the major vital
signs heartbeat and respiration rate are monitored. The obser-
vation is hereby contactless with the patient sitting straight
up in a distance of 1–2 m to the radar. Radar and sampling
platform are components developed internally in the univer-
sity institution. The communication with the radar is han-
dled with MATLAB via TCP/IP. The signal processing and
real-time visualization is developed in MATLAB, too. Cor-
nerstone of this publication are the wavelet packet transfor-
mation and a spectral frequency estimation for vital sign cal-
culation. The wavelet transformation allows a fine tuning of
frequency subspaces, separating the heartbeat signal from the
respiration and more important from noise and other move-
ment. Heartbeat and respiration are monitored independently
and compared to parallel recorded ECG-data.

1 Introduction

Examining a person’s health condition the initial step is the
analysis of the vital signs in general. Those are pivotal indica-
tors for any medical condition. Subject literature counts four,
some five, vital signs: body temperature, heartbeat rate, res-
piratory rate, blood pressure and some add the blood’s oxy-
gen saturation additionally. The observation is common in
hospitals as in daily homecare (Boric-Lubecke et al., 2016;
Schmidt and Thews, 1980).

The electrocardiograph (ECG) is the gold standard in mon-
itoring the heartbeat. It uses the heart’s electrical activity
causing it to contract to detect its beat. The electric waves
pass through the body and can be detected sufficiently with
adhesive electrodes on the skin. Two electrodes are used to
measure the voltage drop between the muscles on different

sides of the heart. The calculated heartbeat from an electro-
cardiograph is usually the average over a time-window of
6–12 s. Since adhesive electrodes are stringently needed to
tap the electric waves, there is no possibility to apply elec-
trocardiography contactless. This is an issue when patients
with skin diseases, skin burns or newborns with extremely
sensitive skin are monitored. Beyond, these electrodes must
be changed by medical staff regularly (Boric-Lubecke et al.,
2016; Schmidt and Thews, 1980).

The Respiration can be measured with systems which need
the tested person to inhale and exhale into a mouthpiece.
The respiration is calculated by the air pressure and flow,
corresponding measurements are called e.g. spirogramm and
pneumotachography. Also possible is the indirect measure-
ment of the respiration rate with a belt around the chest,
tracking the expansion (respiratory inductive plethysmog-
raphy). The chest’s stretch is also measurable optoelec-
tronic (optoelectronic plethysmography). Under certain cir-
cumstances it is possible to retrieve information about the
respiration from ECG-data. The respiration rate is often spo-
radically observed, no measurement method gained general
acceptance among the medical community, as they lack ei-
ther in precision or practicality or pressure the patient (Neff
et al., 2003; Pereira et al., 2017; Van Diest et al., 2014].

The concept of the radar is a promising platform for mon-
itoring two of the most pivotal vital signs: Heartbeat and
respiration rate. The characteristics of a radar’s working
principle allows a continuous non-contact observation even
through common clothing.

Another advantage is the easy implementation, a radar-
system just needs a correct alignment to the observed pa-
tient unlike to the ECG must no electrodes be placed cor-
rectly. A huge advantage has the radar to common respira-
tion measurements, which are usually performed with belts
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around the chest or require an extra mouthpiece. Both im-
pede the actual respiration as they put extra pressure on the
lungs, thus they may distort the measuring. Whereas radar-
measurements puts no extra load on the thorax as it works
completely contact free (Boric-Lubecke et al., 2016; Walter-
scheid, 2017).

The heartbeat and the respiration, which are focused in
this work, cause movement of the upper body. Those move-
ments can basically be understood as periodic oscillations,
a condition that enables the usage of radar-technique. The
radar is able to track movements by emitting and receiving
electromagnetic waves which are harmless to the patient’s
health. The radar’s response provides information about the
observed movements in line of sight, yet the information of
all movements are superimposed from another. Hence the
individual oscillations are not immediately retrievable and
must be further processed to determine both vital signs. To
separate both movements, an approach with wavelet filter
banks and the frequency estimation with the root-Music al-
gorithm is elaborated in this research. A simulation of up-
per body movement is assembled providing a huge amount
of data simulating different circumstances as different per-
sons height, heartbeat and respiration frequencies and vary
over time. The simulation does tremendous work to prove the
concept, refine the approach and eradicate teething troubles.
Afterwards the working principle is applied to data gener-
ated by real persons’ body movement. Tested are off-line and
on-line approaches of the algorithm. For evaluation of the re-
sults, radar data and electrocardiography data are recorded
parallel. The electrocardiograph’s data is used as reference
to calculate statistical errors of the algorithm and validate
the successful estimation of respiratory and heartbeat rate
(Boric-Lubecke et al., 2016; Schmidt and Thews, 1980).

Radar is an acronym for RAdio Detection And Ranging.
The working principle of a radar is, broadly speaking, emit-
ting RF-waves and collecting the reflected waves. Objects re-
flect RF-waves. The angle and intensity of the reflected wave
is depending on the object’s shape and material.

Radar systems are designed for several different frequency
bands, in the following are all numbers fitted for the ISM-
band at 24.00–24.25 GHz and f0 = 24.00 GHz.

A target moving towards the radar pushes the waves closer
to each other increasing the frequency. A receding target
flees from the emitted waves, so between two hits from
wave fronts the time increases, therefore, the reflected wave’s
frequency is lowered. Apparently, this frequency shift, the
Doppler frequency fD, is only depending on the emitted
wave’s frequency f0, the target’s velocity v and the wave’s
speed, the speed of the wave in the medium. Assuming the
wave travels through air, the wave’s speed is approximately
the speed of light c. It is assumed the target moves only in ra-
dial direction to the radar. A pure lateral motion would not be
detected. A motion with both radial and lateral components
is only detected by its radial velocity.

To detect the distance of a target to the radar, is commonly
an operation mode called frequency modulated continuous
wave chosen. Hereby the emitted frequency f is modulated
over time. An example is to linear increase the frequency
starting at f0 until a certain frequency fm is reached, then
the frequency drops back to f0 and rises again. This is called
a continuous sawtooth ramp. The difference between f0 and
fm is the bandwidth fδ . The time it takes to perform one
ramp determines the ramp repetition frequency frr = t

−1
ramp.

Depending on the distance d from the target to the radar re-
sponds with a certain frequency on its voltage output U(t),
the amplitude depends to the target’s scattering and distance.
However, only the obtained frequency leads to a decisive dis-
tance measurement. Is the target in motion there is an addi-
tional frequency shift due to the Doppler effect (Mahafza,
2009).

2 Simulation of Thorax and Abdomen Movement

To gather first experiences with thoracic and abdominal
movement a simulation in MATLAB is assembled. The sim-
ulated person hereby is adult and sits straight up. The simula-
tion features a two-body-model representing thorax and ab-
domen respectively (Karahasanovic et al., 2018). Both move
due to the respiration and heartbeat. The variables defining
the bodies and their movement, which are partly shared by
both bodies, alter in a previously set interval to cover a wide
amount of possible scenarios. Nevertheless the abdomen and
chest movement is a complex and chaotic system, which is
not covered in detail with this simplified two-body simula-
tion. Also part of the simulation is a FMCW-radar observing
the person in a distance of approximately 2 m. The radar’s
antennas are aligned to the monitored persons’ sternum. For
later signal analysis the response of a FMCW-radar in terms
of a voltage over time signal is synthesized working in the
24 GHz ISM band with a ramp repetition frequency of 32 Hz.
The two-body model is based on a number of distances,
oscillation frequencies and amplitudes. All influencing the
movement of the chest and abdomen regarding the heartbeat
and respiration motion. The bodies are compromised to a sin-
gle spot, for the chest (or thorax) this is the sternum, for the
abdomen the navel. Both spots are chosen since they appear
to have the most significant deviation due to body movement.

Objective of the signal processing is to derive the pulse and
the respiration frequency within the dataset. The only input is
the radar’s voltage respond to objects and their movement in
its line of sight. The working principle of a FMCW-radar is to
detect the distance and velocity of objects with the frequency
contained in the radar’s voltage output.

Therefore, the radar voltage signal of each frequency ramp
is transferred into the frequency domain via FFT for classi-
cal range processing. Prior, the signal is windowed with a
Hann-window to suppress leakage and zero-padded to gen-
erate a larger amount of supporting points. This is done for
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all individual ramps separately. By determining the signal’s
peak in the frequency domain the corresponding frequency
can be extracted which belongs to the observed two-body
model. Quickly, it is apparent that there is only one peak in
the frequency domain and not two, although the two-body
model certainly consists of two targets in the radar’s line of
site. Both targets are so close to each other, their frequency
lobes blur into one lobe and are not distinguishable. This is
attributable to the resolution of a radar using a bandwidth of
fδ = 250 MHz. The minimum resolution is 1R min ≈ 0.6 m,
which is far from the two body’s distance which is ranging
in a single digit centimetre area. Hence, to track the move-
ment due to heartbeat and respiration in the millimetre and
centimetre range the pure result of the FFT is not sufficient.
When observing the progression of the radar response within
consecutive ramps, it is noticeable that those are slightly
phase shifted to each other. This phase shift is caused by the
slightest movements of the two-body model, this phase-shift
is accessible by interpreting the frequency domain signal’s
phase. From the first ramp, the bin with maximum peak in
frequency domain (absolute values) is noted, the value of the
phase in the frequency domain at this bin is saved. For the
next ramp the phase value at this bin is also saved to this vec-
tor as for every following ramp. The phase rises and falls over
time corresponding to the targets’ movement opening and
closing to the radar. This creates a new time-domain signal
φ(t). The phase progression φ(t) is the result of the overlaid
distances and movements. Only the respiration movement is
vivid in the original not further processed φ(t).

The phase data is massively corrupted by fast alterations
almost looking like points of discontinuity, making the signal
noisy and tough to analyse. These points originate from the
superposition of both bodies and their phase shift. An easy
way to expose the discontinuities in φ(t) is by differentiating
the signal with respect to the time. The fast alterations in φ(t)
are significant peaks in φ̇(t). Yet, the other oscillations keep
their frequencies. The noisy peaks are vividly identifiable as
not being part of the continuous signal of φ̇(t). The main part
of φ̇(t) is located in a limited interval. With the outlier test by
Grubbs featuring the generalized extreme Studentized distri-
bution (GESD-test) it is possible to detect data points which
appear not to fit to the majority. The GESD-test is an statis-
tical, iteratively applied outlier test for a data series x, based
on the Grubbs test. The test detects outlier depending on the
t-distribution, also known as Student’s t-distribution, and a
defined threshold. In advantage to the Grubb’s and Tietjen-
Moore test the number of outliers is not known in advance
for the GESD test and it performs better when two or more
outlier follow each other consecutively (Grubbs, 1950; NIST,
2012).

In detail the GESD-test works as follows: The data vec-
tor x is checked for outliers. The vector x with its length N
changes in every iteration, that is, it is denoted with the iter-
ation number k. First, the the value Rk of the N − k-length
data vector xk is calculated (Eq. 1), here σx is the standard

deviation and µx the mean value of x. The data point of xk
that maximizes Eq. (1) is the examined data point nk and po-
tential outlier.

Rk =
max|xk −µx |

σx
(1)

Following α is defined to set the significance level. The value
of ε =N − k− 1 varies in each iteration, too. The value of ε
defines the t-distribution (Eq. 2), whereby ε represents the
distribution’s degree of freedom and 0 the gamma function.

f (t)=
0
(
ε+1

2

)
√
επ0

(
ε
2

)(1+
t2

ε

)− ε+1
2

(2)

The probability value p is defined as in Eq. (3).

p = 1−
α

2ε+ 4
(3)

The value of tp,ε is the 100p percentage point from the t-
distribution from the kth iteration. Eventually, the threshold
ξ is calculated (Eq. 4).

ξk =
(N − k)tp,ε√
(ε+ t2p,ε)(ε+ 2)

(4)

If Eq. (5) is true, the data sample nk is classified as outlier
and removed. The algorithm restarts with N − k samples re-
spectively. If Eq. (5) is false, nk is not an outlier and there are
no (further) outlier in the dataset, the GESD test is completed
(Grubbs, 1950; NIST, 2012)

Rk > ξk (5)

The detected outliers are replaced with interpolated data by
using a fitted chirp signal. The processing of the signal is
shown in Fig. 1. This signal appears to be pure, as both os-
cillations due to heartbeat and respiration are already identi-
fiable. The exact angle information gets lost due to the pro-
cessing. Its frequency spectrum shows a clear peak for the
respiration and a several swings in the heartbeat rate region,
see Fig. 2.

The wavelet transformation is chosen to separate both vi-
tal sign signals in φ(t) since it performs signal analysis
and synthesis in different frequency ranges simultaneously.
In comparison to a common short-time Fourier analysis the
wavelet transformation serves with a better frequency reso-
lution at lower frequencies and further a better time resolu-
tion at higher frequencies. The wavelet analysis fits best for
signals interrupted by discontinuities, while usually having
a smooth progression and for signals that superimpose each
other despite being in different frequency ranges, both is the
case in this application.

The wavelet transformation is a time-frequency analysis
based on filtering. It serves for signal analysis, filtering and

https://doi.org/10.5194/ars-19-195-2021 Adv. Radio Sci., 19, 195–206, 2021



198 L. J. Dirksmeyer et al.: Algorithms for Heartbeat and Respiration Rate

Figure 1. Different stages of the phase signal’s processing.

Figure 2. Example for frequency spectra of unprocessed and fully processed phase data φ(t).

synthesis. Its foundation is the use of multiple scaled win-
dow functions and time shifting. A wavelet ψ(t) is a zero-
mean window function with an average frequency fψ 6= 0. A
not scaled or time shifted wavelet is called mother wavelet.
Scaling with a and time shifting with b, as in Eq. (6) with
a,b ∈ R+, modifies the wavelet ψa,b for the later applied
wavelet analysis.

ψa,b(t)=
1
√
a
ψ

(
t − b

a

)
(6)

Bandwidth 1f and time duration 1t of the transform are
heavily depending on a. The factor 1

√
a

secures a constant
signal energy of any scaled wavelet. The result of the wavelet
transform are the wavelet coefficients. While the average
time is τ = b and the average frequency is f = fψ

a
. A small

a leads to fine frequency resolution at high frequencies, large
a can perform a fine frequency resolution at low frequencies.
Any wavelet function ψ(t) and its corresponding frequency
transform 9(f ) must satisfy (Eq. 7).

∞∫
∞

|9(af )|2

|f |
<∞ (7)

Is Eq. (7) true, fulfils the wavelet transform the Parseval en-
ergy conservation. The wavelet transform W

ψ
x (a,b) of a sig-

nal x(t) is performed with Eq. (8).
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Wψ
x (a,b)=

1
√
a

∞∫
∞

x(t)ψ

(
t − b

a

)
dt (8)

A time shift ts in x(t − ts) shifts the wavelet transform by
the same time Wψ

x (a,b− ts), hence the wavelet transform
is invariant for a time shift. Also the wavelet transform is
invariant in scaling, a function is scaled with s as 1

√
|s|
x
(
t
s

)
the transform is scaled, too:Wψ

x

(
a
s
, b
s

)
(Percival and Walden,

2000; Kienecke et al., 2008).
To benefit the wavelet transform’s potential to resolve

good frequency resolutions in high as in low frequencies, the
transform is performed multiple times (K-times) with dif-
fering a and b. The scale factor a is usually chosen dyadic
as ak = 2k with k = 1,2, . . .K . The time scale factor b rises
dyadic, too, bk,m = 2kmT , that is, the sample distance of
the wavelet coefficients are further apart for wavelets with
a higher k. The analysing wavelet ψk(t) is calculated dyadic
as in Eq. (9).

ψk(t)= 2−
k
2ψ(2−kt −mT ) (9)

The wavelet transform at (m,k) is then W
ψ
x (m,k)=

W
ψ
x

(
m2kT ,2k

)
with Wψ

x as in Eq. (8).
In general, a wavelet is characterized as bandpass-filter.

For a k the wavelet transform projects x(t) in a subspace
with the frequencies ]2−kFN,2−k+1FN], whereby FN is the
Nyquist frequency. The projection results in a function yk(t).
For the original signal x(t) and its projections yk(t) take
Eqs. (10) and (11) affect. The signal xk(t) takes the low-
pass parts of x(t) =̂xk−1(t) which are below the bandpass-
subspace of yk(t). Equations (10) and (11) show the mathe-
matical connection of x(t), xk(t) and yk(t) with x̄(t) repre-
senting x(t) in the relevant frequency domain of [FN 0].

x̄(t)= x0(t)=

∞∑
k=1

∞∑
m=1

Wψ
x (m,k)ψm,k(t)=

∞∑
k=1

yk(t) (10)

xk−1(t)= xk(t)+ yk(t) (11)

These coherence can also be expressed in their subspaces.
For a function x(t) ∈ L2(R), with L2(R) being the subspace
of all square-integrable functions, is yk(t) the projection in
the subspaceWk while xk(t) is part of the low-pass subspace
Vk . The subspaces have the coherences Eqs. (12) and (13).

Vk−1 = Vk ∪Wk (12)
Vk ∩Wk =� (13)

The transition from Vk−1 to Wk is performed by a bandpass
filter GBP with the impulse response gBP(m), and from Vk−1
to Vk by a low-pass filter GLP with the impulse response
gLP(m). The subspace Vk is spanned by the orthonormal base
function φm,k(t)= 2−

k
2 ·φ(2−kt −mT ) which is orthogonal

to the wavelet ψm,k(t) for all m,k. The base function ψ is
also called scale function and is able to describe xk(t) in Vk .

xk(t)=

∞∑
m=0
〈xk−1(t)φm,k(t)〉 ·φm,k(t) (14)

When transitioned into another subspace the impulse re-
sponses g(t), wavelet ψk+1(t) and scale functions ψk(t) and
ψk+1(t) are related with Eq. (15).

φm,k(t)=

∞∑
l=m−∞

gTP(2l−m)φl,k+1

+

∞∑
l=m−∞

gBP(2l−m)ψl,k+1 (15)

The argument 2l−m needs some closer attention, increasing
the index of ψk+1(t) and ψk+1(t) by one, increases the in-
dex in ψk(t) by two. Consequently, the subspace Vk+1 and
Wk+1 are sampled with halve the sample frequency as Vk .
For the inverse wavelet transformation besides the scale and
wavelet function the impulse responses hBP(m)= g

∗
BP(−m)

and hLP(m)= g
∗
LP(−m) and their corresponding filters are

needed. Eventually, to determine the filter bank only hLP is
needed from the start. The other filter and their responses
can be calculated with hLP, the bandpass filter response is
hBP(m)= (−1)mh∗BP(1−m). The low pass filter HLP and its
response hLP are used to calculate the scale function ψ(t)
and the wavelet function φ(t), too.

φ(t)=
1

2π

+∞∫
−∞

∞∏
k=1

(
1
√

2
HLP

(
f

2k

))
e2πjf tdt (16)

With the low pass filter response hLP and the scale filter φ(t)
the wavelet function ψ is calculated in Eq. (17).

ψ(t)=

∞∑
m=−∞

(−1)mh∗LP(1−m)
√

2φ(2t −mT ) (17)

The previously described fully processed φ(t) is used for
the transformation. Used are the MATLAB-functions modwt
and modwtmra for transformation and analysis. A Symlet-4
is utilized as wavelet and its corresponding scaling function.
The wavelet transformation level is 7, following a sample fre-
quency of frr the signal is divided in frequency intervals as
in Table 1 (Percival and Walden, 2000; Kienecke et al., 2008;
MathWorks, 2020).

For the respiration frequency intervals VI and VII are to
consider, satisfying the respiration rate in a range of 12 to
20 respirations per minute. For the pulse the interval IV is
sufficient for the simulation. Although cutting the heartbeat
frequency off at 124 bpm which is sufficient for the simulated
data. The wavelet coefficients are processed to synthesize the
original signal in the corresponding frequency bounds. For
the respiration signals the intervals VI and VII are summed
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Table 1. Frequency intervals according to the described wavelet transformation, values are rounded, the residue is omitted.

Interval I II III IV V VI VII

in Hz [16–8] [8–4] [4–2] [2–1] [1–0.5] [0.5–0.25] [0.25–0.13]
in bpm [990–495] [495–247] [247–124] [124–61.9] [62–31] [31–15.5] [15.5–7.7]

up, baseline wander can be removed easily (Kienecke et al.,
2008; MathWorks, 2020).

The frequency in the separated signals is estimated with
the root-MUSIC. The root-MUSIC is a variant of the MUSIC
algorithm, which is a frequency estimation method based on
the fundamentals of Pisarenko’s harmonic decomposition. It
was first presented by Arthur J. Barabell in 1983. The pivotal
step is to split the correlation matrix’ Rx eigenvectors λ in a
signal subspace and noise subspace (Manolakis et al., 2005;
Barabell, 1983).

For the Root-MUSIC algorithm some knowledge about the
evaluated signal x(t) is needed: that is the signal length M
and more crucial the number of contained harmonic oscilla-
tions P . For the root-MUSIC algorithm M > P + 1 must be
true, that means the evaluated time window of x(t) must be
at least contain two more samples than harmonic oscillations.
The signal x(t) is assumed to be the sum of the actual signal
s(t) and uncorrelated white noise w(t). x(t) can be denoted
as Eq. (18), whereby the vector v(f ) is the frequency vector
in form of a M-length DFT-vector.

x(t)= s(t)+w(t)=

P∑
p=1

αpv(fp)e
j2πtfp +w(n) (18)

Similar to the time signal itself the autocorrelation Rx can be
split into signal Rs and noise correlation matrices Rs, assum-
ing independence of signal and noise. The autocorrelation
may also be expressed with eigenvalues λ and their respec-
tive eigenvectors q, as defined in Eq. (19).

Rx = E{x(n)xH (n)} = Rs+Rw =
M∑
k=1

λkqkq
H
k (19)

The eigenvalues are sorted in descending order, that λ1 ≥

λ2 ≥ . . .≥ λM is true. For m> P the eigenvalues λk are
caused by noise and can be summarized in σ 2

w. For k ≤ P
the eigenvalues λk are evoked by the actual signal s(t).
The subspaces of signal and noise are orthogonal follow-
ing is the frequency vector vH (fp) orthogonal to Qw with
Qw = [qP+1. . .qM ]. The pseudospectrum Rm for one eigen-
vector qk calculates to:

Rk

(
ej2πf

)
=

1
|vH (f )qk|

2 (20)

The denominator of Eq. (20) produces M − 1 roots, M −P
of them due to the noise subspace and occur on different fre-
quencies without any restrictions. However, P of them are

correspond to the P oscillations in s(t). To secure a cor-
rect identification of peaks corresponding to the frequencies
fP , the MUSIC-pseudospectrum RMUSIC is defined as in
Eq. (21).

RMUSIC

(
ej2πf

)
=

1∑M
k=P+1|vH (f )qk|

2

=
1∑M

k=P+1|Qk

(
ej2πf

)
|2

(21)

The peaks of RMUSIC represent the frequencies fP . For the
root-MUSIC approach the z-transform of the denominator in
Eq. (21) is needed, Eq. (22) represents the sum of the noise
vector’s pseudospectrum in the z-domain.

P(z)=

M∑
k=P+1

Qk(z)Q∗k

(
1
z∗

)
(22)

From Eq. (22) stem M− 1 pairs of roots with one inside and
one outside the unit circle. Since there is no attenuation on
the P oscillations, the P -closest roots to the unit circle match
the oscillations in s(t). For real signals x(t)= Re(x(t)) with
k frequencies fk , P = 2k roots have to be regarded. Due to
the two sided spectrum the roots appear at each fk and at
−fk (Manolakis et al., 2005; Barabell, 1983).

3 Off-Line Processing for Real-World Data

The two-body model for the simulation is sufficient for a first
testing, yet it is not covering the complex movements of the
upper body entirely. Further are the altering variables, such as
the heartbeat rate, really complex to model as they follow no
known rule and are more like a mathematical chaos. The sim-
ulation of their shift is a simple approximation. To proceed
with the algorithm development it is tested with real data.
The data is measured with a radar working under the same
settings as the simulation except for the sampling rate, which
is slower, and the ramp repetition frequency, which is faster.
Each measurement is 3 min in time. Several test persons were
used for the measurement procedure, in some cases they were
given special tasks such as holding their breath for a period of
time. All have a healthy respiration system. For later compar-
ison the monitored persons are connected to an ECG which
tracks the heartbeat data parallel.

Before starting the vital sign calculation, the phase pro-
gression φ(t) is extracted as described in the previous sec-
tion. The reconstructed signals for both vital signs there is
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a noticeable differing in their frequency and amplitude over
time which is distinctly higher than in the simulation. The os-
cillations appear uneven as there are flatter and steeper parts
in the phase progression. The signal processing algorithm
developed for the simulated signals fails, especially for the
heartbeat. Errors between the ECG-data are significant and
not tolerable. Hence the algorithm is further developed and
the input signal analysed.

In comparison to the simulated two-body model the sig-
nal φ(t) is derived from the chest movement affected by
considerably more radar targets as neither the chest nor the
abdomen can be considered as uniformly moving unit. The
movement amplitude is differing on the various upper body
parts. Additionally, besides the movements due to heartbeat
and respiration other irregular motions are to expect, al-
though the test person were told to sit still and not to talk. In
sum this certainly leads to a less smooth phase progression
as in the simulation with more superimposed intermittent os-
cillations. Since the wavelet transform’s resolution already
causes problems in analysis of the simulation an improved
version of the wavelet transformation is chosen for the fur-
ther development: The wavelet packet transform. For most
applications in signal processing is it useful to have the tar-
geted frequency parts in preferably few subspaces. Yet, es-
pecially in higher frequency ranges the frequency bandwidth
can be quite huge, while the short time resolution in those is
not essential if the signal is fairly stable in its frequency over
time. This issue can be solved by using wavelet packets. In
the regular wavelet transformation the subspaces Vk and Wk

are strictly expanded from the previous low-pass subspace
Vk−1. Thus, the bandpass subspace Wk is not further pro-
cessed. The subspaces in the wavelet packet transformation
are expanded in both Vk and Wk . That is, the signal yk(t) is
transformed, too. For k = 1 is no difference to the standard
wavelet transformation, but if k = 2 there are 4 subspaces
present. The indice i is introduced along with k:

– V2,0 the low-pass subspace of V1 containing x2,0(t)

– W2,1 the band-pass subspace of V1 containing y2,1(t)

– V2,2 the low-pass subspace of W1 containing x2,2(t)

– W2,3 the band-pass subspace of W1 containing y2,3(t)

For larger k the time resolution becomes worse, yet the fre-
quency resolution improves. By a constant k signals and sub-
spaces with higher i represent higher frequency bandwidths
(Kienecke et al., 2008).

This transform is capable to realize an even resolution dis-
tribution of the individual frequency intervals. The frequency
width of a single interval (or level) is depending on the cho-
sen tree depth. To achieve a desired resolution, the tree-depth
is chosen to 9 which results in 512 nodes. By a radar ramp
repetition frequency of 62.5 Hz the frequency levels have
a width of 0.061 Hz (3.662 bpm). MATLAB provides two

functions to perform a complete transform with wavelet fil-
ter banks: modwpt ensures an accurate resolution of the en-
ergy to the frequency levels, drawback is a delay in the time
domain for the wavelet coefficients. This effects arises from
the use of filters with a non-linear phase response. While the
other function modwptdetails is true to the time, which
is particularly important for the signal synthesis. In opposite
to the other this function utilises zero-phase filtering for the
transformation, which is mandatory for the application.

The frequency may be estimated from a time domain sig-
nal, therefore the wavelet coefficients are regarded, which
represent the original signal in the respective frequency level.
For this transformation the function modwptdetails is
used. Since the exact value is yet to be determined, the whole
pulse related possible frequency range is regarded. That is,
the levels 14–49 contain frequencies in the interval of 0.824–
3.021 Hz (49.44–181.27 bpm). Therefore, the coefficients of
these levels are summed up. This signal equals the original
signal in the corresponding frequency bounds.

For heartbeat estimation is the signal cut into 3 s parts.
The consequently following data snippet is reconstructed in
dependence to the previously detected heartbeat rate. Only
adjacent frequency levels of the one containing the heart-
beat are regarded, limiting the evaluated frequency interval
to 0.31 Hz (18.6 bpm). With the reconstruction being a sim-
ple summation of wavelet coefficients, it is easy to handle for
each data excerpt.

Since the phase progression appears to be less harmonic
and the oscillations’ frequency and amplitude differs mas-
sively, the estimation with root-MUSIC causes issues. The
number of frequencies in a signal processed with root-
MUSIC must be known precisely. If the signal or the evalu-
ated signal part is corrupted due to minor body movement the
estimated frequency can deviate from the correct heartbeat
frequency massively. Hence, the data is searched progres-
sively for erratic oscillations with the Pearson-Coefficient. If
a fitting part is not detected, it is omitted. Nevertheless, out-
lier occur those are ascertained and removed by the Grubbs
test for outlier and afterwards replaced by interpolation. An
example for excluded data is shown in Fig. 3.

For the detection of the respiration movement and conse-
quently the respiration rate the same input data is used as for
the heartbeat rate. The processing is similar to the heartbeat
detection. The data is differentiated before wavelet trans-
formed, too. The relevant frequency interval is lower and
overall smaller as for the heartbeat, yet the level frequency
width is chosen the same with 0.061 Hz. That is, the wavelet
packet transform must be performed only once to calculate
both vital signs. The respiration is assumed in the frequency
range of 12 to 20 breaths per minute. Thus, the levels 2 to 6
are used for signal reconstruction, with the signal having fre-
quencies in the bounds of 0.09–0.40 Hz (5.5–23.8 bpm). For
the time signal analysis the sliding time window is adjusted
to the slower frequencies, too. The window size is 500 sam-
ple points (8 s of data), this time window should be sufficient
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Figure 3. Heartbeat rate for ECG and radar data inclusive omitted
data due to statistical outlier.

to have one full breathing cycle within, even for slow respi-
ration rates. The time step for each evaluated data excerpt is
set to 1.92 s, the alterations in the respiration are expected to
be not as sudden as for the heartbeat. The sample frequency
of the generated respiration signal following the time step
length is roughly 0.5 Hz.

3.1 Results

Having the gold-standard of heartbeat frequency measure-
ment electrocardiography as reference is the best case sce-
nario to evaluate the algorithm results. Observing the error
over time m(t) for all measurements are significant devia-
tions partially only for a few seconds noticeable. Looking
closely into the data for some parts massive outlier are rec-
ognizable, for example in one measurement the ECG calcu-
lated heartbeat frequency rises tremendous two times for 2 s
peaking at over 220 bpm and falling then back to plausible
values. This happens into unnatural deep ranges, too, in an-
other measurement the ECG calculated pulse falls from 90
below 40 within seconds before rising again. Those miscal-
culations by the ECG may not compromise the quality of the
radar based pulse computation. Therefore, the error is calcu-
lated once more with the intervals of implausible ECG-data
omitted. With this approach the average absolute error over
all measurements is m= 3.138 bpm with a standard devia-
tion of σ = 2.839 bpm. The results of one single measure-
ment and comparison to ECG-data is shown in Fig. 4 and in
numbers for eight measurements in Table 2.

On the first look, the respiration rate calculated with the
radar-data is plausible. The respiration has some dynamic
over time and yet no discontinues are to find. Only smaller
spikes strike arise, these could be avoided by applying a
low-pass filter, as a moving-average filter, with the drawback
of more time-inertial. However, within some of the datasets
the monitored persons were told to hold the breath for a
certain time. These parts of respiratory arrest are not cor-
rectly detected at all. The reason for that failure are appar-
ent, the wavelet level of very low frequencies, below 0.09 Hz

Table 2. Errors and standard deviations for all measurements for
complete datasets and modified data with ECG-data anomalies and
possible background movements automatically cut out.

No. mabs in BPM m2abs in BPM σm in BPM σ
m2 in BPM

1 2.456 6.649 8.984 23.292
1.334 2.910 1.408 3.188

2 16.423 45.212 16.646 49.510
1.643 3.592 1.283 2.846

3 1.186 2.603 1.013 2.142
– – – –

4 3.400 7.827 3.374 8.027
– – – –

5 888.54 27 815.1 3982.9 160 480.2
1.792 3.931 1.754 3.962

6 6.671 15.425 7.065 16.341
5.510 12.610 5.811 13.109

7 8.221 24.142 5.677 16.230
7.319 21.621 5.326 15.228

8 3.123 9.560 2.956 9.481
2.956 9.061 2.741 8.252

(5.5 bpm), are excluded to avoid wrong detections at first.
In this region is a lot of noise which would disturb the fre-
quency estimation. Additionally forces the frequency estima-
tion with the root-MUSIC algorithm a detection of a single
frequency within a signal, although there is none with sig-
nificant energy. The estimation treats the oscillations equal
not regarding their energy. If the monitored person does not
move its chest in the observed frequency range, a phase vari-
ation signal within the range will be classified as respira-
tion movement and then estimated as respiration frequency.
The mean error for the 4 datasets without respiratory stand-
still is m= 1.92 bpm (0.032 Hz) and the standard deviation
σm = 1.21 bpm (0.020 Hz). A Bland-Altman plot showing
the results in comparison to the ECG-data is given in Figs. 5
and 6.

4 Live Processing for Real-World Data

Vital sign measuring is most importantly done to trace the
data in a live measurement as the data is needed immedi-
ately for further diagnosis. Therefore, the given measurement
sets are processed pseudo-live, that is, the signal is partially
loaded to the algorithm in real time. In opposite to the initial
off-line processing algorithm the data is completely trans-
formed to the wavelet coefficients at the beginning. Since the
single level frequency resolution shall not be decreased, the
wavelet packet transformation tree depth is unchanged at 9.
For the long off-line processed data sequence, this is quite
CPU-intensive but once done the coefficients can be used
in arbitrary ways without extra computations. In the live al-
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Figure 4. (a) Time progression of the heartbeat tracked by ECG and radar. (b) Bland-Altman Plot for both approaches.

Figure 5. (a) Time progression of the respiration rate tracked by ECG and radar. (b) Bland-Altman Plot for both approaches.

gorithm the angle data φ(t) is only piecewise processable,
hence the wavelet packet transform must be performed sev-
eral times generating an increase in the calculation time. To
ensure proper data sampling and enough calculation time the
heartbeat rate here is estimated just every 3.6 s. The short
data windows causes another hitch. The wavelet transform
is based and bound to different filter, those filter appear to
have some settling time as the results of the transform are
attenuated at the beginning and the end of the signal. The
signal snippet is basically split in thirds. The first and the last
third are just dummy data for the processing as the recon-
structed signal contains corrupted data in these parts caused
by the wavelet transform. That is, only the middle section

of the signal part is used for frequency estimation. the latest
calculated frequency and the ones already present from for-
mer iterations in the heartbeat rate-vector are checked with
the GESD test for outlier. As before, detected outlier are re-
placed by interpolated values. Although tremendous outliers
are removed, the heartbeat frequency over time signal ap-
pears erratic also it frames the desired values. These leaps
are not explainable by heartbeat variations. When observing
the derived ECG-signal it is erratic too, yet not to the de-
gree the signal from the radar derived is. In practice, how-
ever, the ECG-signal is always averaged over time before it
is displayed. Since the ECG is considered the gold-standard
of pulse measuring this is a widely held and proven approach.
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Figure 6. Bland-Altman Plot for the respiration rate measurements
comparing ECG and radar based data.

Table 3. Statistical errors and their standard deviations for the
pseudo-live processed data compared to the ECG-data as reference.

Dataset m in BPM m2 in BPM σm in BPM σ
m2 in BPM

# 1 2.073 5.094 5.195 14.301
# 2 2.510 5.552 2.292 5.057
# 3 0.791 1.726 0.836 1.796
# 4 5.921 14.036 5.963 14.385
# 5 1.519 3.364 2.672 5.937
# 6 3.121 7.312 3.193 7.448
# 7 9.128 29.395 7.292 23.814
# 8 2.798 8.609 2.818 8.703

Following, is the heartbeat over time signal derived from
the radar measurement averaged over time, just as the ECG-
signal, for a fair comparison. Likewise to the extraction from
the respiration in off-line processing, the observed time win-
dow is enlarged in comparison to the heartbeat detection to
fit the appreciable lower frequencies occurring. The lowest
in the regarded frequency range frequency has a time period
of roughly 10 s, the window size is therefore chosen with a
length of 16 s in time.

4.1 Results

Eventually the comparison of live processed smoothed data
to ECG’s data is closer to real-world data since erratic
peaks are usually omitted as those are sleeked for evalua-
tion whereas they are assumed as measurement inaccuracy.
In opposite to the off-line processed data no extra evaluation,
excluding suspected ECG-data measuring errors or disrup-
tive background movement, is done. The time averaged sig-
nals are used for comparison, this mitigates the influence of
measuring errors to an extend, as single deviations get lost.

The heartbeat rate only suffer slight errors, larger errors
only happened only in time intervals of 5 s or less, but ob-
served throughout the measuring period the result is satisfy-

ing. The absolute mean error is m= 3.311 bpm with a stan-
dard deviation of σ = 3.783 bpm. The pure result might be
slightly worse than for the off-line processed data but with
no probably corrupted ECG failures omitted this is expected
and still a fairly good result. Exemplary are the results of one
single measurement shown in Fig. 7.

The datasets including a respiratory arrest are excluded
from the review, as they are corrupted by measurement fail-
ures inevitably. Although the respiration rate’s values of both
approaches are within the same range and the rate’s trend
is discernible as similar, the deviations become significant
within few intervals. Which is possibly caused by the differ-
ing approaches the compared data is acquired.

Overall the mean error is m= 1.21 bpm (0.020 Hz) and
the standard deviation of the mean error σm = 1.74 bpm
(0.029 Hz), the individual numbers are presented for each
measurement in Table (3). This result is satisfying, as the
radar delivers respiration rates comparable to the ECG.
Partly, the radar data is even more plausible, as it omits rapid
variation in the respiration rate, which are tracked in the
ECG-data. The comparison is visualized in Figs. 7 and 8.

5 Conclusions

With the lessons learned from the processed simulated data
the basics of the algorithm to evaluate data sampled from real
humans are quickly established. Yet, other difficulties are en-
countered as the simulated data lacked in the complexity of
the upper body movement and missed common disruptions in
the data and measurement noise. The use of correlation, the
Pearson-coefficient and the GESD-test helped to overcome
those troubles as corrupt data are detected and excluded from
the evaluation. For the heartbeat rate, the off-line process-
ing algorithm provided satisfying results overall, when com-
pared to the ECG-data. The estimated respiration rate for all
off-line processed datasets is plausible in terms of range and
dynamic and follow the same trends as the ECG-data. One
major issue for the respiration rate estimation is unavoidably
the lack of correct respiratory standstill detection.

Since it is a common approach and consequently closer
to the reality the calculated live processed data and the cor-
responding ECG-data time are averaged before comparison.
Here too, the results for the heartbeat rate compared to the
ECG-data are satisfying. The impacts of disruptive back-
ground movements causes inferior errors than in the off-line
processed data, explainable by the larger observed time win-
dow and the time averaging. For all datasets without respira-
tory standstill the results show the working principle is ad-
equate. The slightly larger regarded data time windows in
the calculation have no adverse effect on the respiration rate
detection. The retrieved data stands comparison to the ECG-
data, similar to the off-line processed data. The radar based
progression is smoother as it omits rapid variations, making
it even more plausible than the ECG-data. The radar trends
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Figure 7. (a) Time progression of the heartbeat tracked by ECG and radar. (b) Bland-Altman Plot for both approaches.

Figure 8. (a) Time progression of the respiration rate tracked by ECG and radar. (b) Bland-Altman Plot for both approaches.

to detect slightly lower respiration rates, as the deviation be-
tween both approaches averages +1.21 bpm (+0.02 Hz).
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