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Abstract. Quantification and minimization of uncertainty is
an important task in the design of electromagnetic devices,
which comes with high computational effort. We propose a
hybrid approach combining the reliability and accuracy of a
Monte Carlo analysis with the efficiency of a surrogate model
based on Gaussian Process Regression. We present two opti-
mization approaches. An adaptive Newton-MC to reduce the
impact of uncertainty and a genetic multi-objective approach
to optimize performance and robustness at the same time. For
a dielectrical waveguide, used as a benchmark problem, the
proposed methods outperform classic approaches.

1 Introduction

In the manufacturing process of electromagnetic devices, e.g.
antennas or filters, uncertainties may lead to deviations in
the design parameters, e.g. geometry or material parameters.
This may lead to rejections due to malfunctioning. Therefore,
it is of great interest to estimate the impact of the uncertainty
before production is started, and to minimize it if necessary
in the design process.

The yield is a measure for the impact of uncertainty, it
is defined as the fraction of realizations in a manufacturing
process fulfilling some defined requirements, the so-called
performance feature specifications (cf. Graeb, 2007). The re-
lation between the yield Y and the failure probability F is
given by Y = 1−F . A well established method for estimat-
ing the yield is Monte Carlo (MC) analysis (Hammersley and
Handscomb, 1964, chap. 5). In a MC yield analysis, a large
number of sample points is generated according to a given
probability distribution of the uncertain design parameters.

Then, the percentage of accepted sample points leads to the
yield estimator. In order to decide if a sample point is ac-
cepted, a quantity of interest (QoI) has to be evaluated in or-
der to check the performance feature specifications. In case
of electrical engineering, very often this requires to solve par-
tial differential equations originating from Maxwell’s equa-
tions using the finite element method (FEM) for example.
This implies high computational effort (cf. Hess and Benner,
2013).

There are two common approaches to improve the effi-
ciency of MC analysis: reducing the number of sample points
and reducing the computational effort for each evaluation of
a sample point. Methods with regards to the first idea – re-
ducing the number of sample points – are for example Im-
portance Sampling (cf. Gallimard, 2019), or Subset Simu-
lation (cf. Kouassi et al., 2016; Bect et al., 2017). In or-
der to reduce the computational effort per evaluation, model
order reduction (cf. Hess and Benner, 2013), or surrogate
based approaches are used. Surrogate models are approxima-
tions (also known as response surfaces) of the original high
fidelity model, which can be evaluated cheaply. Common
surrogate model techniques are stochastic collocation (cf.
Babuška et al., 2007) linear regression (cf. Rao and Touten-
burg, 1999) Gaussian Process Regression (GPR) (cf. Ras-
mussen and Williams, 2006), and recently neural networks
(cf. Goodfellow et al., 2016). The two approaches for effi-
ciency improvement can also be combined, e.g., Tyagi et al.
(2018) use Importance Sampling and GPR.

This work deals with the efficient estimation of the yield
using a hybrid approach combining the efficiency of a sur-
rogate model approach and the accuracy and reliability of a
classic MC analysis (cf. Li and Xiu, 2010; Tyagi et al., 2018).
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The surrogate model is based on GPR, which has the feature
that the model can be easily updated during the estimation
process (see Fuhrländer and Schöps, 2020). The optimiza-
tion algorithm maximizing the yield is based on a globalized
Newton method (Ulbrich and Ulbrich, 2012, chap. 10.3).
The presented method is similar to the adaptive Newton-MC
method in Fuhrländer et al. (2020), but GPR is used here for
the surrogate model instead of stochastic collocation. Due to
the blackbox character of GPR, the opportunity arises to use
this algorithm in combination with commercial FEM soft-
ware. Finally, we formulate a new optimization problem and
propose a genetic multi-objective optimization (MOO) ap-
proach in order to maximize robustness, i.e., the yield, and
performance simultaneously.

2 Definition of the yield

Let p be the vector of uncertain design parameters. They are
modeled as random variables with a joint probability density
function denoted by pdf(p). Following Graeb (2007) the per-
formance feature specifications are defined as inequalities in
terms of one (or more) QoIs Q, which have to be fulfilled
for all so-called range parameter values r , e.g. frequencies,
within a certain interval Tr , i.e.,

Qr(p)≤ c ∀r ∈ Tr . (1)

Without loss of generality the performance feature specifica-
tions are defined as one upper bound with a constant c ∈ R.
The safe domain is the set of all design parameters, for which
the performance feature specifications are fulfilled, i.e.,

�s := {p|Qr(p)≤ c ∀r ∈ Tr} .

Then, the yield is introduced as (Graeb, 2007, chap. 4.8.3,
Eq. 137)

Y (p) := E
[
1�s(p)

]
:=

∞∫
−∞

. . .

∞∫
−∞

1�s(p)pdf(p)dp, (2)

where E is the expected value and 1�s(p) the indicator func-
tion which has value 1 if p lies in �s and 0 otherwise.

For yield estimation and the proposed genetic MOO ap-
proach, there are no restrictions on the distribution of the ran-
dom inputs. For the single-objective optimization approach
based on the Newton method, the gradient and the Hessian of
the yield need to be calculated. For Gaussian distributed ran-
dom inputs, an analytical formulation is known (see Sect. 4),
for other distributions a difference quotient can be used (with
additional computing effort) or a non-gradient based opti-
mizer can be employed. In the following, we assume that
the uncertain design parameters are truncated Gaussian dis-
tributed (cf. Cohen, 2016) i.e., p ∼NT (p,6, lb,ub), where
p denotes the mean value, 6 the covariance matrix and
lb = p−1p and ub = p+1p the lower and upper bounds,

where 1p is a vector with positive entries. The covariance
matrix originates from the given uncertainties in the manu-
facturing process and is assumed to be unchangeable. With
the intention of highlighting the dependence of the truncated
Gaussian distributed probability density function on p, 6, lb
and ub we write pdfNT (p,6,lb,ub)(p).

3 Yield estimation

A classic MC analysis would consist in generating a set of
NMC sample points and calculating the fraction of sample
points pi lying inside the safe domain. The MC yield esti-
mator is then given by (Hammersley and Handscomb, 1964,
chap. 5)

ỸMC(p)=
1

NMC

NMC∑
i=1

1�s(pi).

A commonly used error indicator for the MC analysis is

σ
ỸMC
=

√√√√ ỸMC (p)
(

1− ỸMC (p)
)

NMC
≤

0.5
√
NMC

, (3)

where σ
Ỹ

is the standard deviation of the yield estimator (cf.
Giles, 2015). Thus, for high accuracy a large sample size is
needed, which means high computational effort, i.e., note the
square root in the denominator.

In this work, we focus on surrogate based approaches.
These approaches are common in order to reduce the com-
putational effort of MC analysis, by reducing the computa-
tional effort of each model evaluation. Nevertheless, one has
to be careful when replacing a model by a surrogate for MC
analysis. In most surrogate approaches, e.g. stochastic collo-
cation, the computational effort to build the surrogate model
increases rapidly with an increasing number of uncertain pa-
rameters (curse of dimensionality; cf. Bellman, 1961). And,
in Li and Xiu (2010) it is shown, that there are examples,
where the yield estimator fails drastically, even though the
surrogate model seems highly accurate. Therefore, Li and
Xiu (2010) introduce a hybrid approach. Its basic idea is to
distinguish between critical sample points and non-critical
sample points. Critical sample points are those which are
close to the border between safe domain and failure domain,
see the red sample points in Fig. 1 (left) for a visualization
with two uncertain parameters. While most of the sample
points are only evaluated on a surrogate model, the critical
sample points are also evaluated on the original model. Only
then it is decided if the sample point is accepted or not. By
this strategy, accuracy and reliability can be maintained while
computational effort can be reduced. A crucial point is the
definition of the critical sample points, i.e., of the term close
to the border.

The hybrid approach we use in this work is based on Li
and Xiu (2010) and is explained more detailed in Fuhrländer
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Figure 1. Critical (red) and non-critical (green) sample points.

and Schöps (2020). As surrogate model we use GPR, i.e., we
approximate the QoI as Gaussian Process (GP) and assume
that the error of the surrogate model is Gaussian distributed.
For detailed information about GPR we refer to Rasmussen
and Williams (2006, chap. 2). One advantage of GPR is that
the standard deviation σ(pi) of the GP may serve as an error
indicator of the surrogate model and thus can be used to find
the critical sample points. With GPR predictor Q̃(pi) and
safety factor γ > 1 we define a sample point pi as critical, if

Q̃rj (pi)− γ σrj (pi) < c < Q̃rj (pi)+ γ σrj (pi)

holds for any rj , where rj is a discretization of Tr with
j = 1, . . .,Nrange. In this case, Qrj (pi) is evaluated on the
original model, before classifying pi as accepted or not ac-
cepted, see the red case in Fig. 1 (right, γ = 2). Using an-
other surrogate technique, e.g. stochastic collocation, would
require commonly the calculation of a separate error indica-
tor, e.g. with adjoint methods (cf. Fuhrländer et al., 2020).
This requires additional computing time and in case of ad-
joint error indicators, knowledge about the system matrices,
which is not always given when using proprietary FEM im-
plementations. After classifying the sample points, the GPR-
Hybrid yield estimator is calculated by

ỸGPR-H (p)=
1

NMC

∑
pi

crit.

1�s

(
pi
)
+

∑
pj

non-crit.

1�̃s
(pj )

 ,
where �̃s is the safe domain based on the performance fea-
ture specifications with the approximated QoI.

Another advantage of GPR is that we are not limited to
specific training data, e.g. points on a tensor grid as in poly-
nomial approaches (e.g. the stochastic collocation approach
in Fuhrländer et al., 2020), and thus we can add arbitrary
points in order to update the GPR model on the fly. This al-
lows us to start with a rather small initial training data set
and improve the GPR model during the estimation by adding
the critical sample points to the training data set without
much extra cost. Also, sorting the sample points before clas-
sification can increase the efficiency (cf. Bect et al., 2012).
For more details and possible modifications of the estima-
tion with the GPR-Hybrid approach, we refer to Fuhrländer
and Schöps (2020). The flowchart in Fig. 2 shows the basic
procedure of the Hybrid-GPR approach for yield estimation.

4 Yield optimization

After estimating the impact of uncertainty, often a minimiza-
tion of this impact is desired. In the following we propose
two optimization approaches. In the first approach, we as-
sume that a performance optimization was carried out in a
previous step, and focus here on the maximization of the
yield. The optimization problem reads

max
p
Y (p)

(2)
= max

p

∞∫
−∞

. . .

∞∫
−∞

1�s(p)pdfNT (p,6,lb,ub)(p)dp. (4)

Please note that we model this optimization problem as un-
constrained, since the performance feature specifications (1)
are considered within the indicator function, i.e., within the
safe domain �s. However, it is also possible to include con-
straints and use another optimization method. Further, note
that the optimization variable p appears only in the probabil-
ity density function. Thus, when calculating the gradient with
respect to p for optimization purpose, only the derivative of
the probability density function needs to be calculated, see
Graeb (2007, chap. 7.1), i.e.,

∇pY (p)=

∞∫
−∞

. . .

∞∫
−∞

1�s(p)∇ppdfNT (p,6,lb,ub)(p)dp.

For a Gaussian distribution the probability density function
is an exponential function, thus the gradient (and the Hes-
sian, respectively) can be calculated analytically. This would
allow us an efficient use of a gradient based algorithm like
a globalized Newton method (Ulbrich and Ulbrich, 2012,
chap. 10.3). For that reason we use the probability den-
sity function of a Gaussian distribution pdfN (p,6) instead of
pdfNT (p,6,lb,ub) in order to calculate the derivatives for the
Newton method. Using a Gaussian distribution instead of a
truncated Gaussian distribution can be understood as apply-
ing an inexact Newton method (cf. Dembo et al., 1982). In
Fuhrländer et al. (2020), the difference between the analyt-
ical inexact gradient (of the Gaussian distribution) and the
difference quotient gradient (of the truncated Gaussian distri-
bution) and its effect on the optimization procedure has been
investigated. The results justify the assumption of the use of
an inexact Newton method. For other distributions, e.g. uni-
form distributions, a difference quotient can be used instead
of the analytical gradient and Hessian.

From Eq. (3) we know that the size of the sample set is
crucial for the accuracy of the yield estimator, but it is also
crucial for the efficiency of the algorithm. Typically, in the
first steps of the Newton method high accuracy of the yield
estimator is not necessary as long as the gradient indicates
an ascent direction. Thus, we modify the Newton algorithm
from Ulbrich and Ulbrich (2012) and propose an adaptive
Newton-MC method, where we start with a small sample size
N start

MC . When the solution shows no improvement and the tar-
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Figure 2. Flowchart for the Hybrid-GPR approach.

get accuracy σ̂
ỸGPR-H

is not reached in the kth step, i.e.,∣∣∣ỸGPR-H

(
pk−1

)
− ỸGPR-H

(
pk
)∣∣∣< σ̂ỸGPR-H

and

1
2
σ̂
ỸGPR-H

< σ
ỸGPR-H

(
pk
),

then the sample size is increased toNk
MC =N

k
MC+N

start
MC . The

detailed procedure can be found in Fuhrländer et al. (2020).
As a novelty, here, the GPR-Hybrid approach is used for
yield estimation.

In the second approach, we formulate a multi-objective op-
timization problem to optimize yield and performance at the

same time. Without loss of generality it can be formulated as

min
p
fm (p) , m= 1, . . .,M (5)

s.t. gn (p)≤ 0, n= 1, . . .,N
plb
i ≤ pi ≤ p

ub
i , i = 1, . . .,dim(p) ,

with f1(p)=−Y (p) and fm(p), m= 2, . . .,M are key per-
formance indicators, e.g. cost or performance functions. By
solving this optimization problem, we aim to obtain the
pareto front, which is the set of pareto optimal solutions
(Ehrgott, 2005, Def. 2.1). For any pareto optimal solution
holds, that one objective value can only be improved at the
cost of another objective value. Classic approaches include
the weighted sum or the ε-constraint method (Ehrgott, 2005,
chaps. 3–4). However, these methods require convexity of
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the pareto front, which cannot be guaranteed in this context.
Furthermore, they always find only one pareto optimal solu-
tion for each run of the solver, thus they need to be solved
many times with different settings in order to approximate
the entire pareto front. Genetic algorithms, however, approx-
imate the entire pareto front in one run. But for this purpose,
a swarm of solutions needs to be evaluated. Thus, genetic
algorithms are also computationally expensive. In genetic al-
gorithms an initial population of individuals is generated, in
our case the individuals are randomly generated p-values.
For each individual, all objective functions from Eq. (5) are
evaluated. This information is used to calculate the so-called
fitness of a solution. Based on the fitness value, promis-
ing individuals of the initial population are selected (selec-
tion rule). These individuals are recombined (crossover rule)
in order to create new individuals, the so-called offsprings.
These offsprings are manipulated, often with a certain prob-
ability (mutation rule). From parts of the individuals of the
initial population and the offsprings, a new generation is cre-
ated. This procedure is repeated until some stopping crite-
rion is reached, e.g. number of generations or improvement
in the solution or objective space. The output is a generation
of individuals approximating the pareto front. A simplified
visualization of the procedure is shown in Fig. 3. For more
details about genetic algorithms we refer to Audet and Hare
(2017). In contrast to the above mentioned classic methods,
genetic algorithms do not require convexity or any other pre-
vious knowledge about the problem.

5 Numerical results

We apply the proposed methods for yield estimation and
yield optimization to a benchmark problem in the context of
electromagnetic field simulations. The benchmark problem
is a rectangular waveguide with dielectrical inlay, see Fig. 4.
In the following we briefly describe the model of the waveg-
uide, for more details we refer to Fuhrländer et al. (2020)
and Loukrezis (2019). From the time harmonic Maxwell’s
formulation on the domain D ⊆ R3 we derive the curl-curl
equation of the E-field formulation

∇ ×

(
µ−1
∇ ×Eω

)
−ω2εEω = 0 on D.

It is to be solved for the electric field phasor Eω, where ω
denotes the angular frequency, µ the permeability and ε the
permittivity. Discretizing the weak formulation by (high or-
der) Nédélec basis functions leads to an approximated E-field
Ẽω. Let 0P1 and 0P2 denote the two ports of the waveguide.
We assume that the waveguide is excited at port 0P1 by an in-
cident TE10 wave. Then, the QoI is the FEM approximation
of the scattering parameter (S-parameter) of the TE10 mode
on 0P1 . We write

Qω(p)= q
(

Ẽω(p)
)
. (6)

Figure 3. Flowchart for the genetic MOO approach.

Figure 4. FEM model of a rectangular waveguide with dielectrical
inlay.

For uncertainty quantification we consider the waveguide
with four uncertain parameters: two geometrical parameters
p1 (length of the inlay in mm) and p2 (length of the offset
in mm) and two material parameters p3 and p4, with the fol-
lowing impact on the relative permeability and permittivity
of the inlay:

εr = 1+p3+ (1−p3)

(
1+ jω

(
2π5× 109

)−1
)−1

,

µr = 1+p4+ (2−p4)

(
1+ jω

(
1.1 · 2π20× 109

)−1
)−1

.
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For the generation of the MC sample we assume the un-
certain parameters to be truncated Gaussian distributed. The
mean and the covariance matrix are given by

p = [10.36,4.76,0.58,0.64]T,

6 = diag
([

0.72,0.72,0.32,0.32
])
.

The geometrical parameters are truncated at ±3 mm and the
material parameters at ±0.3. By this truncation, we avoid
the generation of unphysical values (e.g. negative distances).
With the frequency as range parameter the performance fea-
ture specifications are

Qω(p)≤−24dB (7)

with ω = 2πf ∀f ∈ Tf = [6.5,7.5] in GHz. The frequency
range Tf is parametrized in 11 equidistant frequency points.
Then, a sample point is accepted, if the inequality in Eq. (7)
holds for all frequency points in the discretized range param-
eter interval Td ⊂ Tf .

For the estimation we set an initial training data set of 10
sample points and an allowed standard deviation of the yield
σ̂
ỸGPR-H

≤ 0.01 which leads to a sample size of NMC = 2500,
cf. Eq. (3). In order to build the GPR surrogate the python
package scikit-learn is used (cf. Pedregosa et al., 2011). For
each frequency point, a separate GPR model is built for the
real part and the imaginary part. For the GP we use the mean
value of the training data evaluations as mean function and
the squared exponential kernel

k
(
p,p′

)
= ζe−

|p−p′|
2

2l2 .

The two hyperparameters ζ ∈ R and l > 0 are internally op-
timized within the scikit-learn package. For GPR the default
settings of scikit-learn have been used, except for the follow-
ing modifications: the starting value for ζ has been set to 0.1,
its optimization bounds to

[
10−5,10−1] and the noise factor

α = 10−5.
We compare the proposed GPR-Hybrid approach with the

hybrid approach based on stochastic collocation (SC-Hybrid)
from Fuhrländer et al. (2020), but without adaptive mesh
refinement. As reference solution we consider the classic
MC analysis. Both hybrid methods achieve the same ac-
curacy, i.e., the same yield estimator as the MC reference,
ỸMC(p)= 95.44 %. In order to compare the computational
effort we consider the number of FEM evaluations, neces-
sary for solving Eq. (6). In all methods a short circuit strat-
egy has been used such that a sample point is not evalu-
ated on a frequency point if it has already been rejected for
another frequency point. Figure 5 shows the comparison of
these methods. The lower number of FEM evaluations in the
GPR-Hybrid approach compared to SC-Hybrid can be ex-
plained by the fact that the surrogate model can be updated
on the fly.

Figure 5. Computational effort for yield estimation.

Figure 6. Single- and multi-objective optimization.

For the single-objective optimization in Eq. (4) we use the
same settings as above and additionally the starting point
p0
= [9,5,1,1]T and the initial sampling size N start

MC = 100
in the adaptive method. Figure 6a and b show the increase of
the yield and the sample size in each iteration for the adaptive
Newton-MC compared with a classic Newton method with a
fixed sample size. Both methods achieve the same optimal
yield of ỸGPR-H(p

opt)= 98.32 %. The adaptive Newton-MC
needs 11 iterations and 571 FEM evaluations for that, the
classic Newton method 37 iterations and 2643 FEM evalua-
tions.

For the multi-objective optimization in Eq. (5) the python
package pymoo has been used (cf. Blank and Deb, 2020). We
formulate a second objective function to minimize the ex-
pected width of the waveguide. Further we request the yield
to be larger than a minimal value Ymin = 0.8, include this as
a constraint and define lower and upper bounds for the mean
value of the uncertain parameter. We obtain the optimization
problem

min
p
(−Y (p))

min
p

ENT

[
p1+ 2p2

]
s.t. g1 (p)= Ymin−Y (p)≤ 0,

[5,3,0.5,0.5]T
≤ p ≤ [25,15,1.5,1.5]T,
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where ENT ≡ EpdfNT (p,6,lb,ub)
denotes the expected value

with respect to the distribution of the uncertain parameter
p. In pymoo, the NSGA2 solver and the default settings
have been used, except for the following modifications: ini-
tial population size was set to 200, number of offsprings per
generation to 100 and maximum number of generations to
30. In Fig. 6c we see the pareto front after 30 generations.
Depending on the rating of the significance of the two objec-
tive functions, a solution can be chosen.

6 Conclusions

Reliable and efficient methods for yield estimation and op-
timization have been presented. The hybrid approach based
on a GPR surrogate model including opportunity to model
updates reduces the computational effort significantly, while
maintaining high accuracy. The proposed adaptive Newton-
MC reduces the uncertainty impact with low cost compared
to classic Newton methods. A new multi-objective approach
allows optimizing performance and robustness simultane-
ously. In future, we will work on improving the efficiency
of multi-objective optimization based on genetic algorithms
by using adaptive sample size increase and GPR approxima-
tions of the yield, in addition to the GPR approximations of
the QoIs.
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