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Abstract. TEM-cells can be used as a standardized field gen-
erator for field probe calibration purposes or electromagnetic
compatibility measurements. Because of its practical use as
a measurement environment, the electromagnetic behavior
over a broad range of frequencies is essential. However, with-
out the understanding of wave reflection, mode-conversion,
and attenuation, using such a measurement environment is
impractical. In this contribution, we calculate the electro-
magnetic fields in a longitudinal irregular coaxial TEM-cell.
Using a semi-analytical approach, we can determine these
wave characteristics. The method is based on the projection
of Maxwell’s equations onto eigenfunctions. This work’s pri-
mary objective is to examine the effect of irregular deformed
boundaries on the electromagnetic field and the resonance
frequencies.

1 Introduction

An often-used field generator is the TEM-cell, a closed coax-
ial transmission line (Groh et al., 1999), as shown in Fig. 1.
For reproducible electromagnetic compatibility (EMC) re-
sults, a suitable measurement environment and a particular
field polarization are needed. It is desirable to measure the
field strengths in the so-called far-field region. The funda-
mental mode in a TEM-cell is the TEM-mode; above a spe-
cific frequency fc (cutoff frequency), waveguide modes (TM
and TE) start to propagate. So one primary downside is the
upper-frequency limit. The TEM-cell consists of a uniform
section tapered at each end to adapt to standard coaxial con-
nectors (see Fig. 2). Usually, the TEM-cell is designed as
a 50� impedance-matched system to ensure minimum re-
flection of the operating TEM-mode. Due to the tapered sec-
tions, the waveguide modes will reflect at both ends. Thus,

the TEM-cell forms a highly resonating structure. Another
disadvantage compared to an open site or anechoic chamber
is the limited test volume within the cell. Nevertheless, the
electromagnetic (EM) field is well defined and sufficiently
uniform to be useful in the calibration of EM field probes or
EMC measurements. Higher frequency operation is achieved
with a smaller TEM-cells cross-section S, but it also re-
duces the testing volume. The TEM-cell is used for creat-
ing a known EM field in which a field probe is calibrated for
use as transfer standards or general-purpose field probes. Be-
cause such probes are usually small in their dimensions, and
their calibration requires a very well-defined field, TEM-cells
are a suitable field generator. A circular coaxial TEM-cell is
of simple construction and basically an enlarged transmis-
sion line; it is also a portable measurement environment in
its smaller versions (see Fig. 5).

However, practical TEM-cells are usually not uniform
due to the geometry, e.g., surface roughness or tolerances
in the manufacturing process. An efficient approach to
calculate the EM fields in nonuniform waveguides is a
semi-analytical method known as Generalized Telegraphist’s
Equations (GTEs). The GTEs and related methods of trans-
verse cross-sections (also known as Coupled-mode theory
and cross-section method) are widely used in the theory of
waveguides with longitudinally varying boundaries (Shafii
and Vernon, 1995; Vlasov and Antonsen, 2001; Maksimenko
et al., 2019). By converting Maxwell’s equations with appro-
priate boundary conditions (BCs), we obtain ordinary differ-
ential equations of the transmission line type (Schelkunoff,
1952). Expanding the EM fields into an orthogonal series of
basis functions, an infinite system of differential equations
is derived. Sporleder and Unger (1979), Huang and Hung-
Chia (1984), and Katsenelenbaum et al. (1998) have pub-
lished comprehensive monographs on this method. The pre-
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Figure 1. Geometry of TEM-cell and schematic representation of
measurement setup. The probe is located at rm = (xm,ym,zm).

Table 1. Simulation Parameters.

z1 0.08 m Vq 0.2 V xm 0 m
z2 0.27 m ZL 50� ym 0.08 m
z3 0.41 m 1f 0.1 MHz zm 0.34 m
z4 0.60 m flow 2 GHz K 0.36
z5 0.68 m fup 3 GHz N 4

viously mentioned works are mostly limited to waveguides
with simply connected cross-sections.

Fliflet and Read (1981) originally derived the GTEs for
coaxial waveguides. Koch (1999) has made the first attempt
to thoroughly investigate closed TEM-Cells (Crawford- and
GTEM-cells) using GTEs. The mode coupling mechanism
in an ideal coaxial TEM-cell with circular cross-section has
been investigated, and numerical results were shown in Pham
and Garbe (2020). Because the GTEs can not directly calcu-
late the resonance frequencies fr of the TEM-cells, an ap-
proximated method was presented in Pham et al. (2020).

In this contribution, the GTEs are used to investigate
the effects of mechanical tolerances on the electromagnetic
fields in coaxial TEM-cells. Therefore, the numerical results
of the GTEs are verified by comparing them with a com-
mercially available field simulator (CST Studio) and field
measurements in a TEM-cell with similar geometric dimen-
sions. The knowledge can be used in the design process of the
TEM-cell to reduce mode-coupling and field uncertainties. In
addition, the contribution of the field generator (TEM-cell) to
the measurement uncertainty of electromagnetic fields can be
determined, which is of great importance during field probe
calibration.

First of all, we briefly introduce the theoretical formalism
of the approach in Sect. 2. In Sect. 3, the irregular bound-
aries are modeled, and all relevant equations and parameters
are derived. Following, Sects. 4 and 5, all numerical results
are shown and discussed. The conclusion in Sect. 6 gives a
summary of the most important insights of this contribution.

Figure 2. Longitudinal view of the tapered section of coaxial TEM-
cell.

2 Generalized Telegraphist’s Equations

As mentioned above, we concisely review the GTEs in this
section, following prior published work (Pham and Garbe,
2020). To derive the GTEs for a two-port coaxial TEM-
cell (see Fig. 1), we introduce a set of appropriate orthog-
onal coordinates (u,v,z). u and v are transverse coordinates,
and for convenience, the z-axis coincides with the TEM-cells
z-axis (see Fig. 2). We limit our analyses to an empty TEM-
cell with the electric and magnetic constants (ε,µ). Next, we
decompose the EM field vectors (E,H )

E =E⊥+Ez, H =H⊥+H z, (1)

and the Nabla operator ∇

∇ = ∇⊥+ ez
∂

∂z
, (2)

into transverse and longitudinal parts. (E⊥,H⊥) and
(Ez,H z) are the transverse and longitudinal field ampli-
tudes, and ∇⊥ is the Nabla operator for the transverse co-
ordinates. We assume harmonic time dependence, and there-
fore the term ejωt (ω = 2πf , carrier frequency) is omitted
in all sequential equations. The transverse components of
Maxwell’s equations define E⊥ and H⊥ (Reiter, 1959)

∂E⊥

∂z
= jωµ(ez×H⊥)+

1
jωε
∇⊥ (∇⊥ (H⊥× ez)) , (3a)

∂H⊥

∂z
= jωε (E⊥× ez)+

1
jωµ
∇⊥ (∇⊥ (ez×E⊥)) . (3b)

Both transverse field components E⊥ and H⊥ will be ex-
panded into a series of orthogonal vector functions (e,h).
The transverse fields are represented at each axial location
as a sum of the fundamental TEM-mode and the waveg-
uides modes (TM- and TE-mode) with a transverse cross-
section S equal to the local cross-section of the reference
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TEM-waveguide. We have a solution in the following form

E⊥ = V
TEM
0 eTEM

0 +

∞∑
n=1

V TM
n eTM

n +V
TE
n eTE

n , (4a)

H⊥ = I
TEM
0 hTEM

0 +

∞∑
n=1

ITM
n hTM

n + I
TE
n hTE

n , (4b)

where (en,hn) are the eigenvector fields of the reference
TEM-waveguide’s electric and magnetic fields. The single
subscript n in Eq. (4b) is considered a double subscript pq,
where

p ∈ N0 := N∪ {0} , q ∈ N (5)

To avoid the double summation expression, we will use the
single subscript. For brevity, we will omit the index (TM,
TE, and TEM) and distinguish between the different waveg-
uide modes by enclosing the subscripts in parentheses (n) for
TM-modes and in brackets [n] for TE-modes. The basis am-
plitudes (Vn (z) ,In (z)) are functions of the coordinate z. The
eigenvector fields (e,h) in Eq. (4b) can be obtained by

e(n) =−∇⊥5(n), h(n) = ez× e(n), (6a)
e[n] = h[n]× ez, h[n] =−∇⊥5[n], (6b)
e0 =−∇⊥50, h0 = ez× e0, (6c)

where5(u,v) is the scalar wavefunction (Marcuvitz, 1951).
The different mode’s scalar wavefunctions 5 are deter-
mined by the following differential equations (Helmholtz and
Laplace equation) and BCs(
∇

2
⊥
+ k2

(n)

)
5(n) = 0, 5(n) = 0|∂S , (7a)(

∇
2
⊥
+ k2

[n]

)
5[n] = 0,

∂5[n]

∂n
= 0|∂S , (7b)

∇
2
⊥
50 = 0, 50 = C|∂S , (7c)

where ∇2
⊥

denotes the Laplacian to the transverse coordi-
nates. The term kn in Eqs. (7a) and (7b) describes the eigen-
value of the nth TM- or TE-mode.

The Poynting vector describes the power of the EM field.
Concerning the orthogonality properties (9) and the series
expansion (4b), we get

Sz =
1
2

∫
S

(
E⊥×H ∗

⊥

)
ezdS

=
1
2

∞∑
n
Vn · I

∗
n

∫
S

e2
ndS . (8)

The surface integral is to be extended over the TEM-
waveguide cross-section S at z (see Fig. 2). We use the
above expression (8) to simplify the entire representation and

choose the eigenvector fields (en,hn) to satisfy the orthogo-
nality condition∫
S

(en×hm)ezdS = T 2
n δmn, δmn =

{
0 m 6= n

1 m= n
, (9)

where δmn is the Kronecker delta function, and

T 2
n =

∫
S

e2
ndS =

∫
S

h2
ndS (10)

is a normalization factor (Marcuvitz and Schwinger, 1951).
We use Maxwell’s transverse components Eq. (3b), the

modal expansion (4b), and the orthogonality condition (9) to
derive the GTEs. Taking the projection on Maxwell’s equa-
tions onto the eigenvector fields (e,h) results in an infinite
set of ordinary differential equations (Vlasov and Antonsen,
2001)

dVm

dz
=− jγmZmIm+

∞∑
n

Vn

∫
S

em
∂en

∂z
dS

+

∮
∂S

Eτn⊥emdL (11a)

dIm

dz
=− j

γm

Zm
Vm−

∞∑
n

In

∫
S

en
∂em

∂z
dS

−
1

jωµ

∮
∂S

(ez×E⊥)n⊥∇⊥hmdL (11b)

in which γm is the propagation constant and Zm the wave
impedance of the respective mode

γ0 = jω
√
εµ, Z0 =

√
µ

ε
, (12a)

γ(m) =

√
k2
(m)−ω

2εµ, Z(m) =
γ(m)

jωε
, (12b)

γ[m] =

√
k2

[m]−ω
2εµ, Z[m] =

jωµ
γ[m]

. (12c)

The surface integrals on the right-hand side of Eq. (11b)

Cmn =

∫
S

em
∂en

∂z
dS, Cnm =

∫
S

en
∂em

∂z
dS, (13)

describe the effect of axial variations of the transverse
cross-section S (Reiter, 1959). The remaining line inte-
grals in Eq. (11b) involve the tangential electric field at the
boundary ∂S. For the current case, we restrict our analy-
sis to perfectly conducting TEM-cells (perfect electric con-
ductor, PEC). Therefore, both terms become equal to zero
using cylindrical coordinates (u= r,v = ϕ,z) and substitut-
ing the BCs (n×E = 0|∂S , PEC) into the integral kernel of
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Eq. (11b) (see Fig. 2)

O =

∮
∂S

(Ez+ tan(θ)Er)n⊥emdL= 0, (14a)

P =

∮
∂S

−Eϕ∇⊥hmdL= 0. (14b)

The preceding Eq. (11b) apply to either TM-, TE-, or TEM-
modes. A more detailed derivation of the GTEs can be seen
in Marcuvitz and Schwinger (1951). In Pham and Garbe
(2020), the mode coupling mechanism due to longitudinal
variations of the geometry was reduced to TM0q - and TEM-
mode coupling.

An analytical expression for the coupling coefficients C
can be derived from the normalized eigenvector fields of a
uniform coaxial TEM-waveguide. In our case, the coupling
coefficients in Eq. (13) can be further simplified. We use the
following boundary conditions for the scalar wavefunction
5 (Solymar, 1959)

5= − tan(θ)
∂5

∂n⊥

∣∣∣∣
∂S
,
∂5

∂z
= − tan(θ)

∂5

∂z∂n⊥

∣∣∣∣
∂S
, (15)

to reduce the surface integrals in Eq. (13) to line integrals
over the cross-section’s S perimeter (Fliflet et al., 1980;
Shafii and Vernon, 1995)

C(n)(m) = C(m)(n) = F1 (z)

∮
∂S

∂5(n)

∂n⊥

∂5(m)

∂n⊥
dL, (16a)

C(m)(m) = F2 (z)

∮
∂S

(
∂5(m)

∂n⊥

)2

dL, (16b)

C0(m) = C(m)0 = 2F2 (z)

∮
∂S

∂50

∂n⊥

∂5(m)

∂n⊥
dL, (16c)

C00 = F2 (z)

∮
∂S

(
∂50

∂n⊥

)2

dL (16d)

with

F1 (z)= tan(θ (z))
k2
(m) (z)

k2
(m) (z)− k

2
(n) (z)

, (17a)

F2 (z)=−
tan(θ (z))

2
. (17b)

3 Irregular boundary

According to Pham and Garbe (2020), TEM-cell’s mode-
coupling mechanism with longitudinal variations in the
cross-section S can be reduced to only interactions between

Figure 3. One implementation of a longitudinal irregularly
deformed TEM-cell and the resulting normalization factors(
T0,T(01)

)
and the eigenvalue k(01). The terms ξ and η define the

frequency and the amplitude of the perturbation along the TEM-
cell. Below, the root χ(01) of the TM01-mode as a function of the
ratio rR is shown.

TEM- and TM0q -modes. As long as the outer and inner ra-
dius ratio rR is constant along the z axis, no reflection of the
operating TEM-mode occurs, and the coefficient in Eq. (16c)
is zero. There is also no coupling to any higher-order TE-
mode.

In Sect. 2, explicit formulas of the coupling coefficients
were derived (see Eq. 16d). In the case of a longitudinal irreg-
ular TEM-cell, these coefficients do not change significantly.
Due to the irregular inner and outer radius, the ratio

rR (z)=
ra (z)

ri (z)
(18)

varies along the z axis. Hence the characteristic impedance

ZL (z)=
Z0

2π
√
ε

ln(rR (z)) (19)

is not constant, which causes reflections of the operating
TEM-mode. The coefficient C00 in Eq. (16c) becomes un-
equal zero. Another important fact is that the TM-modes
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Figure 4. Magnitude of the longitudinal field component
|Ez (xm,ym,zm)| and the output voltage Vo as a function of the
frequency f =

[
flow,fup

]
.

eigenvalues

k(pq) (z)=
χ(pq) (z)

ri (z)
(20)

and both normalization factors

T0 (z)= (2π ln(rR (z)))−
1
2 , (21a)

T(pq) (z)=

√
π

2εp

(
Jp
(
χ(pq) (z)

)
Jp
(
χ(pq) (z)rR (z)

))− 1
2

(21b)

with

εp =

{
2 p = 0
1 p > 0 . (22)

depend on the ratio rR (z). To calculate χ(pq) in Eq. (20), we
need to compute the roots of the following equation (Marcu-
vitz, 1951)

0=Np
(
χ(pq) (z)

)
Jp
(
χ(pq) (z)rR (z)

)
− Jp

(
χ(pq) (z)

)
Np

(
χ(pq) (z)rR (z)

)
. (23)

In which Jp and Np denote to Bessel- and Neumann func-
tions. As an illustrative example of a longitudinal irregular
TEM-cell, the outer and inner radius

(
ro,i
)
, the normalization

factors
(
T0,T(01)

)
, the eigenvalue k(01), and the root χ(01) are

shown in Fig. 3. The radius ro,i is only a function of z

ro,i = Ro,i · (1+ δ (z)) , (24)

where Ro,i is the radius of the ideal TEM-cell, and the func-
tion δ describes the random deformation of the boundary.

4 Numerical results

To solve the GTEs of a two-port TEM-cell (see Fig. 1), we
need additional BCs for the respective mode’s basis ampli-
tudes (V ,I ). The following BCs apply to the TEM-cells’s

Figure 5. Coaxial TEM-cell.

Figure 6. Simulation results of the basis amplitudes
(
V0,V(01)

)
and

the magnitude of the radial field component |Er (xm,ym,z)| in be-
tween ro and ri at two frequencies (flow and fup).

left and the right port for the TEM-mode basis amplitude V0

V0 = Vq− I0ZL
∣∣
z=0, V0 = I0ZL|z=z5 . (25)

For the basis amplitudes of the waveguide modes (TM and
TE), the radiation conditions will be used at the TEM-cells
in- and output (Fliflet and Read, 1981)

V(n) = Z(n)I(n)
∣∣
z=0, V[n] = Z[n]I[n]

∣∣
z=0, (26a)

V(n) = −Z(n)I(n)
∣∣
z=z5

, V[n] = −Z[n]I[n]
∣∣
z=z5

. (26b)

Wave impedances are used in the GTEs (Eq. 11b). There-
fore, the characteristic impedance ZL needs to be substituted
by the wave impedance Z0 in the above BCs (Eq. 25). The
relation between both terms can be obtained by Eq. (19).
According to the normalization of the basis amplitudes and
eigenvectors (see Eqs. 9–8), Vq also needs to be substituted
by

V TEM
q =

Vq

K
. (27)

For coaxial TEM-waveguides with a concentric circular
cross-section S, the transformation factor K becomes

K =

√
ln(rR)

2π
. (28)
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Combining the two differential equations in Eq. (11b), we
obtain the state space equation

d
dz

[
V

I

]
=

[
C O
P −C>

]
·

[
V

I

]
. (29)

The explicit form of the above matrices (C,O,P) and vectors
(V ,I ) can be found in Pham and Garbe (2020).

The infinite set of coupled differential equations (Eq. 29)
is truncated and solved numerically by the finite difference
method. In Pham and Garbe (2020), it has been shown that
only four additional modes need to be considered in the fre-
quency bandwidth fb =

[
flow,fup

]
for a coaxial TEM-cell

with these geometric dimensions (see Fig. 1 and Table 2).
Therefore, all our simulations were performed with N = 4
modes. We have compared the longitudinal field component
|Ez (rm)| and the output voltage Vo = |V0 (z5)| of the GTEs
with numerical results of another software tool and measure-
ments on a coaxial TEM-cell with similar geometric dimen-
sions. For the electric field measurements, we have used an
optical field probe system (ENprobe EFs-105). A schematic
setup of the measurement is given in Fig. 1. All results are
displayed in Fig. 4.

The magnitude of the basis amplitudes V0,V(01) and V(02)
for the upper and lower limit of our frequency bandwidth fb
is displayed in Fig. 7. Using the GTEs, the resonance fre-
quencies fr of the TEM-cell can be computed. We limited
our simulations to a frequency step size of 1f = 0.1 MHz,
resulting in 10 001 frequency samples. The resonance fre-
quencies fr can be obtained by analyzing the output volt-
age V0. Figure 8 shows the output voltage V0 as a func-
tion of the frequency f at the second port of an ideal and
three implementation of an irregularly deformed TEM-cell.
The transverse EM fields can be determined according to
Eq. (4b). An analog expression for the longitudinal fields can
be obtained by substituting Eq. (4b) into Maxwell’s Equa-
tions (see Pham and Garbe, 2020). Figure 9 shows the mag-
nitude of the radial and longitudinal electric field component
(|Er (xm,ym,z)| , |Ez (xm,ym,z)|) as a function of the fre-
quency

(
f =

[
flow,fup

])
along the z axis. The electric field

magnitude is shown below the waterfall plots at the first res-
onance frequency

(
fr1 ≈ 2.4GHz

)
along the radius r and the

z axis.
Using the GTEs, the basis amplitudes (V ,I ) for different

implementations of longitudinal irregularly deformed TEM-
cells can be calculated, and a local probability density func-
tion (PDF) for the basis amplitudes can be obtained. As a
representative example, 104 random implementations at fup
were computed. The local PDF of the basis amplitude V0 is
shown in Fig. 10a (only for the middle section of the TEM-
cell). The mean value and the standard deviation of the basis
amplitudes V0,V(01) and I(01) are given in Fig. 10b.

Figure 7. Simulation results of the basis amplitudes V0,V(01) and
V(02) at two different frequencies for an irregularly deformed TEM-
cell.

Figure 8. (a) Output voltage Vo at the second port (z= z5) for an
ideal and three implementation of an longitudinal irregularly de-
formed TEM-cell. (b) As an illustrative example three implemen-
tation of an longitudinal irregularly deformed inner radius ri are
shown. Because of the small deformation an additional zoom plot
(blue box) is given for the middle section of ri.

5 Discussion of numerical results

Before examining the effect of longitudinal irregularly de-
formed boundaries on the EM fields and the resonance fre-
quencies fri , we verified our numerical results of the GTEs
for an ideal and regular TEM-cell.

First, we compared the numerical results of the GTEs with
simulations of commercially available software (CST Stu-
dio Suite 2019). The magnitude for the longitudinal elec-
tric field component |Ez (rm)| and the output voltage Vo =
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Figure 9. (a) Magnitude of the radial field component |Er (xm,ym,z)| in between ro and ri as a function of the frequency f . Below a
cross-sectional view of |Er (r,z)| at the first resonance frequency fr1 . (b) Magnitude of the longitudinal field component |Ez (xm,ym,z)| in
the center between ro and ri as a function of the frequency f . Below a cross-sectional view of |Ez (r,z)| at the first resonance frequency fr1 .

Figure 10. (a) Local probability function of the basis coefficient V0 as a function of the distance z. (b) Mean value and standard deviation of
the basis amplitudes V0,V(01) and I(01) as a function of the distance z.

|V0 (z5)| are in good agreement. Second, we conducted mea-
surements on a TEM-cell with similar geometric dimensions
(see Fig. 5). We can see some differences between the numer-
ical results (GTEs and CST) and the measurements. Most
likely due to various uncertainties during the measurement
setup, e.g., position and alignment of the field probe, which
have not been considered. The geometric uncertainties sig-
nificantly impact the EM fields and resonance frequencies;

for example, the tapering length and the coaxial connectors
differ from our simulation model. Another critical factor is
that we have limited our analyses to PEC, so all losses were
neglected in the GTEs. Hence, the shift of the resonance fre-
quencies fri is partially due to ohmic losses.

The obtained numerical results confirm strong mode-
conversion from the operating TEM-mode to the TM01-
mode, mostly in the tapered sections (see Fig. 7). Above
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Table 2. Resonance frequencies fri (GHz) of the TM01-mode in a
coaxial TEM-cell with circular cross-section.

Order i = 1 i = 2 i = 3

ideal 2.357 2.538 2.821
implementation 1 2.354 2.534 2.814
implementation 2 2.357 2.542 2.824
implementation 3 2.362 2.545 2.821

the TM01-mode’s cutoff frequency fc, the basis amplitude
V(01) has a considerable magnitude and can not be neglected.
In Fig. 6, the effect of the TM01-mode on the radial field
component Er becomes apparent. A simple approximation
of the radial field is possible since the basis amplitude V0 is
dominant for most frequencies, except for the resonance fre-
quencies (see Fig. 9). Due to the irregular boundaries, local
coupling to higher-order TM0q -modes occurs throughout the
TEM-cell. The deformed boundaries impact the course of the
basis amplitudes and hence the field distribution (see Figs. 7
and 9). However, only the first propagating TM01-mode af-
fects the middle section field because all basis amplitudes of
the non-propagating modes are negligibly small. Addition-
ally, we also have an impact on the resonance frequencies.
A slight shift of all three resonance frequencies fri (up to
7 MHz) is notable (see Fig. 8 and Table 2).

6 Conclusions

In this contribution, the EM field and the resonance frequen-
cies in a longitudinal irregular coaxial TEM-cell have been
calculated using the GTEs. First of all, the coupling coeffi-
cients revealed the TEM-mode’s effective mode-conversion
in the tapered sections of the TEM-cell. Due to the irregular
longitudinal boundaries along the TEM-cell, local excitation
of the higher-order modes occurs. The magnitude of the cou-
pling depends on the frequency. All calculations have been
performed for a cylindrical TEM-cell with a circular cross-
section, and numeric results were presented. The effect of
irregularly deformed boundaries on the field and the reso-
nance frequencies were shown. Comparable simulations and
measurements on a coaxial TEM-cell with similar geometric
dimensions have been performed to verify the results of the
GTEs. Using the GTEs, we can calculate a local probability
density function for the EM fields in the TEM-cell. Hence an
uncertainty contribution due to the geometric tolerances of
TEM-cell can be defined. The results can be used during the
designing process of the TEM-cell to prevent higher-order
mode coupling or estimate the uncertainty contribution of the
field generator for a field probe calibration.
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