Advances in Radio Science (2004) 2: 107-112

© Copernicus GmbH 2004 AdvanCGS |n
Radio Science

Simulation of microwave circuits and laser structures including
PML by means of FIT

G. Hebermeht, J. Scheftef, R. Schlund®, Th. Tischler3, H. Zscheile®, and W. Heinrich3

1Greifswalder Str. 147, 10409 Berlin, Germany
2Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Mohrenstr. 39, 10117 Berlin, Germany
SFerdinand-Braun-Instituiif Hochstfrequenztechnik (FBH), Albert-Einstein-Str. 11, 12489 Berlin, Germany

Abstract. Field-oriented methods which describe the phys- The subject under investigation are three-dimensional
ical properties of microwave circuits and optical structuresstructures of arbitrary geometry which are connected to the
are an indispensable tool to avoid costly and time-consumingemaining circuit by transmission lines. Ports are defined at
redesign cycles. Commonly the electromagnetic characteristhe transmission-lines outer terminations. In order to charac-
tics of the structures are described by the scattering matrixerize their electrical behavior the transmission lines are as-
which is extracted from the orthogonal decomposition of thesumed to be infinitely long and longitudinally homogeneous.
electric field. The electric field is the solution of an eigen- Short parts of the transmission lines and the passive structure
value and a boundary value problem for Maxwell's equa- (discontinuity) form the structure under investigation. The
tions in the frequency domain. We discretize the equationsentire structure has to be covered with an enclosure.
with staggered orthogonal grids using the Finite Integration
Technique (FIT). Maxwellian grid equations are formulated . .
for staggered nonequidistant rectangular grids and for tetra? Scattering matrix
hedral nets with corresponding dual Voronoi cells. The in- . . . .
) : . The scattering matrix describes the structure in terms of wave
teresting modes of smallest attenuation are found solving a oo : .
i o : modes on the transmission line sections at the ports. The di-
sequence of eigenvalue problems of modified matrices. Ta . : L :
C . . . mension of this matrix is determined by the total number of
reduce the execution time for high-dimensional problems a

: I . modes at all ports. The scattering matrix can be extracted
coarse and a fine grid is used. The calculations are car;

ried out, using two levels of parallelization. The discretized from the orthogonal decomposition of the electric field into

boundary value problem, a large-scale system of linear al e‘? sum of mode fields. This has to be done at a pair of neigh-
Y P ' 9 y 9 boring planes, andz,, on each waveguide (Christ and

braic equations with different nghF-hand_ sides, is SOIYET\d l?y aHartnagel, 1987). The electric fields at the cross-sectional
block Krylov subspace method with various preconditioning .
(ﬁ)lanesz,7 and z,ya, are known from the solution of the

technigues. Special attention is paid to the Perfectly Matche .
- : .~ eigenvalue problem (see Sect. 5) and from the computation
Layer boundary condition (PML) which causes non physical .
. . : . . of the boundary value problem (see Sect. 3), respectively.
modes and a significantly increased number of iterations in

the iterative methods.

3 Boundary value problem

A three-dimensional boundary value problem can be formu-
lated using the integral form of Maxwell’s equations in the

, L ) - frequency domain in order to compute the electromagnetic
The commercial applications of microwave circuits cover the fig g

frequency range between 1 GHz and about 100 GHz; spe-
cial applications, e.g. in radioastronomy, use even higher fre-¢y H . ds :/ JwlelE - dR,
Q

1 Introduction

quencies up to 1 THz. For optoelectronic devices, frequen-/9Q (1)
cies around several hund'red THz are common. High.er fr.e-?g E.ds = _f JolulH - d,
quencies lead to decreasing wavelength. Thus they yield in-/s Q
creased dimensions of the discretization corresponding to th
pondaingto™y — e, B =[uIA. 2)

numerical problem and demand new strategies.
with
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for rectangular grids and in this paper The vectorse and b contain the components of the electric
field intensity and of the magnetic flux density of the elemen-
le] = eoer, [l = pomur (4)  tary cells, respectively. The diagonal matrid®s;, Da,,

D, andD4 contain the information on cell dimensions and

for tetrahedral grids. The electric field intensiy and the h ’ -
materials.A is sparse and contains the values 0, 1, aid

magnetic flux densityB are complex functions of the spatial

coordinatesw is the angular frequency of the sinusoidal ex- only._ o _ .
citation, and;2 = —1. Q is an open surface surrounded by Eliminating the components of the magnetic flux density

a closed contoudQ. The direction of the elemewls of the  [ToM the two Egs. (8) the number of .unknowns can b,e re-
contourd< is determined according to a right-hand system. duced by a factor of two, and we obtain the system of linear

- . algebraic equations
At the port p the transverse electric fielt} (z,) is given
by superposing the fields of the weighted transmission Iine(ATDs/ﬂ D;lADS — kéDAg)e =0, ko= w./eono. 9)

modesE :
1,1(2p) Taking into account the boundary conditions, Eq. (9) can be

m® written asAe = r, where the vector contains the boundary
E/(zp) = wi(Zp)E;1(2p). (5) values of the electric field according to Egs. (5) and &).
1=1 is the wavenumber in vacuum, which is proportional to the

The transverse electric mode fielis;(z,) have to be com- frequency.

puted solving an eigenvalue problem for the transmission4
lines (see Sect. 5). All other parts of the surface of the

computation domain are assumed to be electric or magnetigecause of the high spatial resolution CPU time and stor-
walls: age requirements are very high. Using rectangular grids
Exn=0 or Hxn=0. 6) a mesh refinement in one.point resulf[s in an acc;umulation
of small elementary cells in all coordinate directions even
In order to simulate open structures we apply the PML ab-though generally the refinement is needed only in inner re-
sorbing boundary condition. The uniaxial formulation ac- gions. In addition, rectangular grids are not well suited for
cording to (Sacks et al., 1995) is implemented. The PMLtreatment of curved and non-rectangular structures. Thus,
provides absorbing properties for any frequency, polarizationan additional finite-volume method was developed, which
and angle of incidence. lts layers are filled with an artifi- uses tetrahedral nets with corresponding Voronoi cells for the
cial material with complex anisotropic material properties. three-dimensional boundary value problem. This allows to
Therefore, the complex permittivifg ] and the complex per-  reduce the number of elementary cells by local grid refine-
meability [1] are diagonal tensors (see Eq. &anduoare  ment and improves the treatment of curved structures. The
the permittivity and the permeability in vacuum, respectively. primary grid is formed by tetrahedra and the dual grid by the
corresponding Voronoi cells (see Fig. 1).

For sake of simplicity, at first, we assume in this paper that
the circumcenter of a tetrahedron is located within the tetra-

Maxwell's equations are discretized on staggered grids using!€dron- We consider a tetrahedra® C D with the internal
the Finite Integration Technique with lowest order integra- edgeAB (see Fig. 2,) a_nd the ngghbourmg elements, which
tion formulae share the edga B with it (see Fig. 3).
The electric field intensity components (marked with red

fods~ Z(ifm), / f-d~ Q. (7)  colorinFig. 1 and in Fig. 2) are located at the centers of the

Q edges of the tetrahedra, and the magnetic flux density com-
In the following we refer to staggered nonequidistant rect-Ponents (marked with black color) are normal to the circum-
angular (Beilenhoff et al., 1992; Weiland, 1977: Hebermeh| centers of the trlapgular faces. The Vor(_)n0|_ cells are poly-.
et al., 1999) grids or tetrahedral nets with correspondingtOpe,S' In the special case demonstrated in Fig. 1 the Voronoi
Voronoi cells. cell is a pentadodecahedron which results as dual cell from

20 neighboring regular tetrahedra.

4.1 Staggered nonequidistant rectangu|ar grids We use the fOIIOWing notations (See FlgS 1, 2, and 3) with
X,Y,Z,W € {A, B,C, D}, whereX, Y, Z, W are different
The use of rectangular grids is the standard approach. In gerfrom each other, in order to develop the grid equations for
eral it is very well adapted to planar microwave structures,tetrahedral nets:
since most circuits have a rectangular geometry.
Using Eg. (7) for staggered nonequidistant rectangula
grids Egs. (1) are transformed into a set of grid equations:

.2 Tetrahedral grids and Voronoi cells

4 Maxwellian grid equations

02

|X’ Y, Z, W nodes,
edge between the nod&sandY,
XYz triangle,
ATDS/,lb = jweouoDy_e, ) XYZW tetrahedron,
AD;e = —jwDyb. Sxy center ofXY,
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D

Fig. 2. Tetrahedron with partial areas of the Voronoi cell faces,
which correspond to nodé.

Fig. 1. Voronoi cell and single tetrahedron.

Sxvz circumcenter of the triangl¥Y Z,
Txyzw circumcenter of the tetrahedrofy ZW,
Exy magnitude of the electric field oy y
between the node¥ andY,
Bxyz magnitude of the magnetic flux density L
onSxyz, normal toXY Z,
wxyzw = uoir permeability inXYzZw, X D
€xyzw = €06, permittivity in XY ZW,
Ixy distance of nodé to nodeY’, Fig. 3. Tetrahedra which share the edgs.
Wy, distance of the circumcenter afY ZW
to the faceXY Z, . . .
d§Y distance of the circumcenter &fY Z polygon arqund the periphery of the mentlt_)ned \Voronoi cell
to the edgex Y, face (seg Fig. 1, upper pentagon). The vertlpes of the polygon
dxyz area of triangleX Y Z. are the circumcenters of the tetrahedra which share the edge

A B with the tetrahedro®d BC D (see Fig. 3). fi = Bxyz
Exy andByy  satisfy denotes the function values diyy (see Fig. 2).Q2 is the
area of the Voronoi cell facef = E 4 denotes the function

Exy =-— Evx, value on the cente§, 3. Thus, the discretized equation takes
Bxyz = Byzx= Bzxy = (10) )
the form:
—Byxz = —Bxzy = —Bzyx .,
1D c _
respectively. Ycp ey [1sc Banc +1igp Bagp] =
Using a finite volume approach with the lowest-order in- (11)

tegration f_ormulae (7) Egs. (1) are transformed into a set of jw [} "-p %EAB(;D (dS3 1050 +dRs1550) | Ea
grid equations.
Taking into account the constitutive relations (2) the first Where the sum is over those tetrahedC D, which share

equation of (1) is discretized on the dual grid. The internalthe €dgeA B (see Fig. 3).

edgeA B is orthogonal to the corresponding Voronoi cell face  The second equation of (1) is discretized using Eq. (7) on
over which we have to integrate (see Fig. 1). The closedhe primary grid. We have to integrate over the triangeC,
integration pathdQ2 (see Egs. 1 and 7) consists of the edgesi.e. the closed integration pa#tf2 consists of the edges with
with lengths; = l;vayz (see Eq. 7 and Fig. 2), and is the lengths; = Ixy and is the polygon around the periphery of
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the mentioned trianglef; = Exy denotes the function value The transverse electric mode fields (see Eq. 5) at the ports

on the edgeXY. Q is the arears g¢ of the triangleABC. of a transmission line, which is discretized by means of tetra-
f = Bapc denotes the function value on the circumcenterhedral grids, are computed interpolating the results of the
Sapc of the triangleA BC. This yields the following form: rectangular discretization.

_ The field distribution at the ports is computed assuming
las Eap +1sc Epc +lca Eca = —jwaspc Bapc.  (12) longitudinal homogeneity for the transmission line structure.
Now we address the first of the surface integrals Thus, any field can be expanded into a sum of so-called

modal fields which vary exponentially in the longitudinal di-
([€]E) - dR=0, (WH) - dR=0, (13)  rection:
Ve Ve E(x,y,z+£2h) = E(x, y, z)eT/k?", 17

reverting to the dual grid. In Eq. (13)2 is a closed sur- s th . s the | h of |
face with an interior volume. We have to integrate over the'* Is the propagation constan the length of an elemen-

surface of the Voronoi cell. The surface of the Voronoi cell :?ry cell |nz—d|:§ctloln. Wetcon3|dl?er t_?ﬁ f|e:d (iqupolgents n
consists of all partial Voronoi areas, which belong to tetra- rete cc;rliecu |vte € emerllzarygce S- eEe ec r|cE|e compo-
hedron edges, whose shared corner nodé (see Figs. 1, nents of the vectoe (see EA. O 1410 Exijur Eyijuras

2 and 3). A discretization formula, with similar form to the iyi~.f-k—|1' Ezi,.f,fk—l'IkEZH_l,./.k—l' andEﬁH{r—ﬁ alre egprglss?d Iby
right-hand side of (11) is obtained, i.e. the values of celk using ansatz (17). The longitudinal elec-

tric field component€, can be eliminated by means of the
1 electric-field divergence equation (see first equation of (13)).
> ([Z € (dfg I0sc +dip ISBD>i| EAB) =0, (14)  Thus, we obtain an eigenvalue problem for the transverse
B D electric fieldy on the transmission line region:

with € = €4 pcp, except for the additional outer summation Gy — )y = g7kt 4 o Hsk2h 2 — _Asirf(hk,).(18)

taken over all the nodeB8 neighboringA (in the primary o _
grid). The sparse matri% is in general nonsymmetric and com-

d plex. The order oG isn = 2nyn, — ny. nyny is the number

For our final integral Eq. (13) the primary grid is use )
again, but now the integration is over the surface of the tetra-Of elementary cells at the port. The sizg depends on the

hedronA BCD. As a consequence, the discretized form r_lumber of cells with perfec_tly conducting matenaI: The rela-
tion between the propagation constahtand the eigenval-

uesy is nonlinear. The interesting modes of smallest attenu-

ation are found solving a sequence of eigenvalue problems of

modified matrices (see (Hebermehl et al., 2003b)) using the

can be deduced. invert mode of the Arnoldi iteration (Lehoucq, 1995).
Equations (11) and (12) form a system of linear algebraic

equations for the computation of the electromagnetic field.

Substituting the components of the magnetic flux density thé® PML modes

number of unknowns in this system can be reduced by a fac- _ _
y y We use the PML in order to calculate the eigen modes of

—appc Bapc — aacp Bacp+ (15)
+aapp Bapp +apcp Becp =0

tor of two: open waveguide structures as well as for structures that re-
5 1 R n $ep i Exp + quire electrically large computational cross sections. Using

CD jiapcp |\ aasc  aapp ) "AB TAB only magnetic or electric walls at the outer boundaries causes
additional non-physical box modes. Those modes would

+1/’33c186 Epc + 185 lca Ecat affect the propagation behavior of the physical waveguide
aasc aaBc (16) modes. Introducing the PML shifts these box modes within

€ e © the eigenvalue spectrum, away from the physical ones. The

+ % Epp + % EDA] = difference, however, is not always large enough to be clearly
detectable. Therefore, we need an additional criterion to dis-

w2 C D D iC tinguish these PML modes from the desired physical ones.
=% [Xcpeasc (dip e +dip155p)] Eas. The PML modes are characterized by their high power con-
Here, summation is taken over these tetrahed®CD, centration in the PML area (Tischler and Heinrich, 2000).
which possess the common edg®. Equation (16) has to  1hus, to eliminate the PML modes we calculate.the magni-
be solved using the boundary conditions (5) and (6). tude of the power flow of each computed mode in the PML

(PP, in the waveguide regiorA™’), and in the total com-
putational domain®):

5 Eigenvalue problem p=pPP 4 pW) —

For the eigenvalue problem, we refer to the rectangular grids . g+ 49 E x H* ).do (19)
(Christ and Hartnagel, 1987). Qé)( o> Hyp) +Q(fw)( ¢t X Hi ) :
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A mode is specified as PML-mode if 8.1 Rectangular grids

oy PP Multiplying (9) by DY/ yields a symmetric form of linear
o= - £, (20)  aigebraic equations:
with valuest = 0.2, ..., 0.6, found empirically. Ax =0, A= (Dg/ZATDs/;zDXlAD%/Z —k§Da,)  (21)

with x = Djl/ze. The gradient of the electric field divergence
7 Laser analysis [E]V([e]_zv [€]E) =0 (22)

The presented method, although developed initially for mi-is equivalent to the matrix equation
crowave structures (Hebermehl et al., 2001), is expanded ta _ ~1/2 P ~1/2
meet the special requirements of optoelectronic structure ca®* = 0. B = D; 7"Da,B7 Dy 2BD4. D, ™~ (23)
culations. For optoelectronic devices frequencies of aboutrpe rectangular matrig is sparse and contains the values 0,
several hundred THz are common. Thus the complex region gng—1 only. The diagonal matri®y.. is a volume matrix
containing the eigenvalues of potentially propagating modesor the 8 partial volumes of the dual elementary cell. Taking
grows substantially. A significantly higher number of eigen- j1io account the boundary conditions (5) and (6) Egs. (21)

value problems have to be solved within our algorithm. Ad- 54 (23) yields the forrdx = b andBx = 0, respectively,
ditionally, the maximum cell size of the discretization should 5,

be less tharfy, wherei denotes the wavelength in the mate- o
rial with the highesth([e]). Additional mesh refinements (A +B)x = b, A + B complex indefinite symmetrjc(24)
have to be used for structure regions with highly varying

fields. All this results in high-dimensional problems which can be solved faster than Eq. (9).
have to be handled. In comparison to the simple lossy case the number of it-

. ) ) erations of Krylov subspace methods increases significantly
To reduce the execution times, in a first step the problerqn the presence of PML. Among others the speed of conver-

is solved uzlng af-cc:jarﬁe grid with Iovvler a(-:curacfy r:equ're'gence depends on the relations of the edges in an elementary
ments in order to find the approximate locations of the Inter-qq|| of the nonequidistant rectangular grid in this case. The

esting propagation constants. Anyway, the number of mody,q regyits can be obtained using nearly cubic cells. More-

ified eigenvalue problems to be solved is high. Thus, wWeq e o\eriapping PML conditions at the corner regions of the

split the interesting interval into subintervals and compute ., tational domain lead to an increase of the magnitude
the corresponding eigenpairs independently and in parallelyg e ¢orresponding off-diagonal elements in comparison to

for instance on different workstations or shared memory mul-y, diagonal of the coefficient matrix. This downgrades the

tiprocessors. Finally, the modes of interest are calculated i’broperties of the matrix. Thus, overlapping PML should be
a second step for an essentially reduced region using a ﬁngvoided. ’

grid, that fulfills higher accuracy requirements.

The linear sparse solver PARDISO (Schenk et al., 2000)8-2 Tetrahedral grids
is applied in order to fulfill the high accuracy requirements , . . .
of the eigenvalue problem. The parallel CPU mode of PAR-EAuations (11), (12), (14) and (15) can be written in matrix

DISO provides the additional possibility to reduce the com-form: Besides of the locations and values of the entries, the
puting times for this high-dimensional problem on sharegMatrix representations of Egs. (11) and (12) have the same

memory multiprocessors without essential additional mem_struc_ture as Eq: (8), and an .approprllate (see Eq. 21) sym-
metric form of linear algebraic equations can be deduced.

ory requirements.
yreq o . Adding the gradient of the electric field divergence also gives
A Laser application can be found in (Hebermehl et al., a system which can be solved faster. Here, the gradient of

2003a). the divergence at an internal point is obtained considering
the partial volumes of the appropriate Voronoi cell. PML are
not included.

8 Systems of linear algebraic equations

Four kinds of preconditioning and a block quasi-minimal 9 Application

residual ‘f’"go”thm are 'applled 'to solve th? large ;cale SYSasan example we have simulated a microwave structure with
tems of linear algebraic equations. Details are given with

a microstrip changing its width (impedance step, see Fig. 4).
(Schlundt etal., 2001) and (Hebermehl etal., 2003a). 3o discor?tinuitygof the metalli(c S'E)rip s locatet ot 1. :
Especially, adding the gradient of the electric field diver- The metal is assumed to be ideally conducting. The relative
gence the numerical properties of the system matrix are impermittivity of the substrate below the microstrip linejs=
proved and the equations can be solved faster. €x = €, = €; = 11.9. Above the microstrip line one has air
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with extremely large mesh sizes, e.g. laser structures, are re-
duced using a coarse and a fine grid, and two levels of paral-
lelization. The high-dimensional systems of linear algebraic
equations are solved using a bock Krylov subspace method.
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