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Abstract. Field-oriented methods which describe the phys-
ical properties of microwave circuits and optical structures
are an indispensable tool to avoid costly and time-consuming
redesign cycles. Commonly the electromagnetic characteris-
tics of the structures are described by the scattering matrix
which is extracted from the orthogonal decomposition of the
electric field. The electric field is the solution of an eigen-
value and a boundary value problem for Maxwell’s equa-
tions in the frequency domain. We discretize the equations
with staggered orthogonal grids using the Finite Integration
Technique (FIT). Maxwellian grid equations are formulated
for staggered nonequidistant rectangular grids and for tetra-
hedral nets with corresponding dual Voronoi cells. The in-
teresting modes of smallest attenuation are found solving a
sequence of eigenvalue problems of modified matrices. To
reduce the execution time for high-dimensional problems a
coarse and a fine grid is used. The calculations are car-
ried out, using two levels of parallelization. The discretized
boundary value problem, a large-scale system of linear alge-
braic equations with different right-hand sides, is solved by a
block Krylov subspace method with various preconditioning
techniques. Special attention is paid to the Perfectly Matched
Layer boundary condition (PML) which causes non physical
modes and a significantly increased number of iterations in
the iterative methods.

1 Introduction

The commercial applications of microwave circuits cover the
frequency range between 1 GHz and about 100 GHz; spe-
cial applications, e.g. in radioastronomy, use even higher fre-
quencies up to 1 THz. For optoelectronic devices, frequen-
cies around several hundred THz are common. Higher fre-
quencies lead to decreasing wavelength. Thus they yield in-
creased dimensions of the discretization corresponding to the
numerical problem and demand new strategies.
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The subject under investigation are three-dimensional
structures of arbitrary geometry which are connected to the
remaining circuit by transmission lines. Ports are defined at
the transmission-lines outer terminations. In order to charac-
terize their electrical behavior the transmission lines are as-
sumed to be infinitely long and longitudinally homogeneous.
Short parts of the transmission lines and the passive structure
(discontinuity) form the structure under investigation. The
entire structure has to be covered with an enclosure.

2 Scattering matrix

The scattering matrix describes the structure in terms of wave
modes on the transmission line sections at the ports. The di-
mension of this matrix is determined by the total number of
modes at all ports. The scattering matrix can be extracted
from the orthogonal decomposition of the electric field into
a sum of mode fields. This has to be done at a pair of neigh-
boring planeszp andzp+1p on each waveguide (Christ and
Hartnagel, 1987). The electric fields at the cross-sectional
planeszp and zp+1p are known from the solution of the
eigenvalue problem (see Sect. 5) and from the computation
of the boundary value problem (see Sect. 3), respectively.

3 Boundary value problem

A three-dimensional boundary value problem can be formu-
lated using the integral form of Maxwell’s equations in the
frequency domain in order to compute the electromagnetic
field:∮

∂�

H · ds =

∫
�

ω[ε]E · d�,∮
∂�

E · ds = −

∫
�

ω[µ]H · d�,

(1)

D = [ε]E, B = [µ]H , (2)

with

[ε] = ε0diag
(
ε̃x, ε̃y, ε̃z

)
, [µ] = µ0diag

(
µ̃x, µ̃y, µ̃z

)
(3)
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for rectangular grids and in this paper

[ε] = ε0εr , [µ] = µ0µr (4)

for tetrahedral grids. The electric field intensityD and the
magnetic flux densityB are complex functions of the spatial
coordinates.ω is the angular frequency of the sinusoidal ex-
citation, and2

= −1. � is an open surface surrounded by
a closed contour∂�. The direction of the elementds of the
contour∂� is determined according to a right-hand system.

At the port p the transverse electric fieldEt (zp) is given
by superposing the fields of the weighted transmission line
modesEt,l(zp):

Et (zp) =

m(p)∑
l=1

wl(zp)Et,l(zp). (5)

The transverse electric mode fieldsEt,l(zp) have to be com-
puted solving an eigenvalue problem for the transmission
lines (see Sect. 5). All other parts of the surface of the
computation domain are assumed to be electric or magnetic
walls:

E × n = 0 or H × n = 0. (6)

In order to simulate open structures we apply the PML ab-
sorbing boundary condition. The uniaxial formulation ac-
cording to (Sacks et al., 1995) is implemented. The PML
provides absorbing properties for any frequency, polarization
and angle of incidence. Its layers are filled with an artifi-
cial material with complex anisotropic material properties.
Therefore, the complex permittivity[ε] and the complex per-
meability[µ] are diagonal tensors (see Eq. 3).ε0 andµ0 are
the permittivity and the permeability in vacuum, respectively.

4 Maxwellian grid equations

Maxwell’s equations are discretized on staggered grids using
the Finite Integration Technique with lowest order integra-
tion formulae∮

∂�

f · ds ≈

∑
(±fisi),

∫
�

f · d� ≈ f �. (7)

In the following we refer to staggered nonequidistant rect-
angular (Beilenhoff et al., 1992; Weiland, 1977; Hebermehl
et al., 1999) grids or tetrahedral nets with corresponding
Voronoi cells.

4.1 Staggered nonequidistant rectangular grids

The use of rectangular grids is the standard approach. In gen-
eral it is very well adapted to planar microwave structures,
since most circuits have a rectangular geometry.

Using Eq. (7) for staggered nonequidistant rectangular
grids Eqs. (1) are transformed into a set of grid equations:

AT Ds/µ̃b = ωε0µ0DAε̃
e,

ADse = −ωDAb.
(8)

The vectorse andb contain the components of the electric
field intensity and of the magnetic flux density of the elemen-
tary cells, respectively. The diagonal matricesDs/µ̃, DAε̃

,
Ds , andDA contain the information on cell dimensions and
materials.A is sparse and contains the values 0, 1, and−1
only.

Eliminating the components of the magnetic flux density
from the two Eqs. (8) the number of unknowns can be re-
duced by a factor of two, and we obtain the system of linear
algebraic equations

(AT Ds/µ̃D−1
A ADs − k2

0DAε̃
)e = 0, k0 = ω

√
ε0µ0. (9)

Taking into account the boundary conditions, Eq. (9) can be
written asÃe = r, where the vectorr contains the boundary
values of the electric field according to Eqs. (5) and (6).k0
is the wavenumber in vacuum, which is proportional to the
frequencyω.

4.2 Tetrahedral grids and Voronoi cells

Because of the high spatial resolution CPU time and stor-
age requirements are very high. Using rectangular grids
a mesh refinement in one point results in an accumulation
of small elementary cells in all coordinate directions even
though generally the refinement is needed only in inner re-
gions. In addition, rectangular grids are not well suited for
treatment of curved and non-rectangular structures. Thus,
an additional finite-volume method was developed, which
uses tetrahedral nets with corresponding Voronoi cells for the
three-dimensional boundary value problem. This allows to
reduce the number of elementary cells by local grid refine-
ment and improves the treatment of curved structures. The
primary grid is formed by tetrahedra and the dual grid by the
corresponding Voronoi cells (see Fig. 1).

For sake of simplicity, at first, we assume in this paper that
the circumcenter of a tetrahedron is located within the tetra-
hedron. We consider a tetrahedronABCD with the internal
edgeAB (see Fig. 2) and the neighbouring elements, which
share the edgeAB with it (see Fig. 3).

The electric field intensity components (marked with red
color in Fig. 1 and in Fig. 2) are located at the centers of the
edges of the tetrahedra, and the magnetic flux density com-
ponents (marked with black color) are normal to the circum-
centers of the triangular faces. The Voronoi cells are poly-
topes. In the special case demonstrated in Fig. 1 the Voronoi
cell is a pentadodecahedron which results as dual cell from
20 neighboring regular tetrahedra.

We use the following notations (see Figs. 1, 2, and 3) with
X, Y, Z, W ∈ {A, B, C, D}, whereX, Y, Z, W are different
from each other, in order to develop the grid equations for
tetrahedral nets:

X, Y, Z, W nodes,
XY edge between the nodesX andY ,
XYZ triangle,
XYZW tetrahedron,
SXY center ofXY ,
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Fig. 1. Voronoi cell and single tetrahedron.

SXYZ circumcenter of the triangleXYZ,
TXYZW circumcenter of the tetrahedronXYZW ,
EXY magnitude of the electric field onSXY

between the nodesX andY ,
BXYZ magnitude of the magnetic flux density

onSXYZ, normal toXYZ,
µXYZW = µ0µr permeability inXYZW ,
εXYZW = ε0εr permittivity in XYZW ,
lXY distance of nodeX to nodeY ,
lWXYZ distance of the circumcenter ofXYZW

to the faceXYZ,
dZ
XY distance of the circumcenter ofXYZ

to the edgeXY ,
aXYZ area of triangleXYZ.

EXY andBXYZ satisfy

EXY = − EYX,

BXYZ = BYZX = BZXY =

−BYXZ = −BXZY = −BZYX ,

(10)

respectively.
Using a finite volume approach with the lowest-order in-

tegration formulae (7) Eqs. (1) are transformed into a set of
grid equations.

Taking into account the constitutive relations (2) the first
equation of (1) is discretized on the dual grid. The internal
edgeAB is orthogonal to the corresponding Voronoi cell face
over which we have to integrate (see Fig. 1). The closed
integration path∂� (see Eqs. 1 and 7) consists of the edges
with length si = lWXYZ (see Eq. 7 and Fig. 2), and is the
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Fig. 2. Tetrahedron with partial areas of the Voronoi cell faces,
which correspond to nodeA.
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Fig. 3. Tetrahedra which share the edgeAB.

polygon around the periphery of the mentioned Voronoi cell
face (see Fig. 1, upper pentagon). The vertices of the polygon
are the circumcenters of the tetrahedra which share the edge
AB with the tetrahedronABCD (see Fig. 3).fi = BXYZ

denotes the function values onSXYZ (see Fig. 2).� is the
area of the Voronoi cell face.f = EAB denotes the function
value on the centerSAB . Thus, the discretized equation takes
the form:∑

CD
1

µABCD

[
lDABC BABC + lCABD BABD

]
=

ω
[∑

CD
1
2εABCD

(
dC
AB lDABC + dD

AB lCABD

)]
EAB

(11)

where the sum is over those tetrahedraABCD, which share
the edgeAB (see Fig. 3).

The second equation of (1) is discretized using Eq. (7) on
the primary grid. We have to integrate over the triangleABC,
i.e. the closed integration path∂� consists of the edges with
lengthsi = lXY and is the polygon around the periphery of
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the mentioned triangle.fi = EXY denotes the function value
on the edgesXY . � is the areaaABC of the triangleABC.
f = BABC denotes the function value on the circumcenter
SABC of the triangleABC. This yields the following form:

lAB EAB + lBC EBC + lCA ECA = −ωaABC BABC . (12)

Now we address the first of the surface integrals∮
∪�

([ε]E) · d�=0,

∮
∪�

([µ]H ) · d�=0, (13)

reverting to the dual grid. In Eq. (13)∪� is a closed sur-
face with an interior volume. We have to integrate over the
surface of the Voronoi cell. The surface of the Voronoi cell
consists of all partial Voronoi areas, which belong to tetra-
hedron edges, whose shared corner node isA (see Figs. 1,
2 and 3). A discretization formula, with similar form to the
right-hand side of (11) is obtained, i.e.

∑
B

([∑
CD

1

2
ε
(
dC
AB lDABC + dD

AB lCABD

)]
EAB

)
= 0, (14)

with ε = εABCD, except for the additional outer summation
taken over all the nodesB neighboringA (in the primary
grid).

For our final integral Eq. (13) the primary grid is used
again, but now the integration is over the surface of the tetra-
hedronABCD. As a consequence, the discretized form

−aABC BABC − aACD BACD+

+aABD BABD + aBCD BBCD = 0
(15)

can be deduced.

Equations (11) and (12) form a system of linear algebraic
equations for the computation of the electromagnetic field.
Substituting the components of the magnetic flux density the
number of unknowns in this system can be reduced by a fac-
tor of two:∑

CD
1

µABCD

[(
lDABC

aABC
+

lCABD

aABD

)
lAB EAB +

+
lDABC lBC

aABC
EBC +

lDABC lCA

aABC
ECA+

+
lCABD lBD

aABD
EBD +

lCABD lDA

aABD
EDA

]
=

=
ω2

2

[∑
CD εABCD

(
dC
AB lDABC + dD

AB lCABD

)]
EAB .

(16)

Here, summation is taken over these tetrahedraABCD,
which possess the common edgeAB. Equation (16) has to
be solved using the boundary conditions (5) and (6).

5 Eigenvalue problem

For the eigenvalue problem, we refer to the rectangular grids
(Christ and Hartnagel, 1987).

The transverse electric mode fields (see Eq. 5) at the ports
of a transmission line, which is discretized by means of tetra-
hedral grids, are computed interpolating the results of the
rectangular discretization.

The field distribution at the ports is computed assuming
longitudinal homogeneity for the transmission line structure.
Thus, any field can be expanded into a sum of so-called
modal fields which vary exponentially in the longitudinal di-
rection:

E(x, y, z ± 2h) = E(x, y, z)e∓kz2h. (17)

kz is the propagation constant. 2h is the length of an elemen-
tary cell inz-direction. We consider the field components in
three consecutive elementary cells. The electric field compo-
nents of the vectore (see Eq. 9)Exi,j,k+1, Exi,j,k−1, Eyi,j,k+1,
Eyi,j,k−1, Ezi,j,k−1, Ezi+1,j,k−1, andEzi,j+1,k−1 are expressed by
the values of cellk using ansatz (17). The longitudinal elec-
tric field componentsEz can be eliminated by means of the
electric-field divergence equation (see first equation of (13)).
Thus, we obtain an eigenvalue problem for the transverse
electric fieldy on the transmission line region:

Gy = γy, γ = e−kz2h
+ e+kz2h

− 2 = −4 sin2(hkz).(18)

The sparse matrixG is in general nonsymmetric and com-
plex. The order ofG is n = 2nxny − nb. nxny is the number
of elementary cells at the port. The sizenb depends on the
number of cells with perfectly conducting material. The rela-
tion between the propagation constantskz and the eigenval-
uesγ is nonlinear. The interesting modes of smallest attenu-
ation are found solving a sequence of eigenvalue problems of
modified matrices (see (Hebermehl et al., 2003b)) using the
invert mode of the Arnoldi iteration (Lehoucq, 1995).

6 PML modes

We use the PML in order to calculate the eigen modes of
open waveguide structures as well as for structures that re-
quire electrically large computational cross sections. Using
only magnetic or electric walls at the outer boundaries causes
additional non-physical box modes. Those modes would
affect the propagation behavior of the physical waveguide
modes. Introducing the PML shifts these box modes within
the eigenvalue spectrum, away from the physical ones. The
difference, however, is not always large enough to be clearly
detectable. Therefore, we need an additional criterion to dis-
tinguish these PML modes from the desired physical ones.
The PML modes are characterized by their high power con-
centration in the PML area (Tischler and Heinrich, 2000).
Thus, to eliminate the PML modes we calculate the magni-
tude of the power flow of each computed mode in the PML
(P (P )), in the waveguide region (P (W)), and in the total com-
putational domain (P ):

P = P (P ) + P (W) =∫
�(P )

(Et × H ∗
t,m) · d� +

∫
�(W)

(Et × H ∗
t,m) · d�.

(19)



G. Hebermehl et al.: Microwave and laser structures 111

A mode is specified as PML-mode if

r(P )
=

P (P )

P
> ξ , (20)

with valuesξ = 0.2, . . . , 0.6, found empirically.

7 Laser analysis

The presented method, although developed initially for mi-
crowave structures (Hebermehl et al., 2001), is expanded to
meet the special requirements of optoelectronic structure cal-
culations. For optoelectronic devices frequencies of about
several hundred THz are common. Thus the complex region
containing the eigenvalues of potentially propagating modes
grows substantially. A significantly higher number of eigen-
value problems have to be solved within our algorithm. Ad-
ditionally, the maximum cell size of the discretization should
be less thanλ

10, whereλ denotes the wavelength in the mate-
rial with the highest<([ε]). Additional mesh refinements
have to be used for structure regions with highly varying
fields. All this results in high-dimensional problems which
have to be handled.

To reduce the execution times, in a first step the problem
is solved using a coarse grid with lower accuracy require-
ments in order to find the approximate locations of the inter-
esting propagation constants. Anyway, the number of mod-
ified eigenvalue problems to be solved is high. Thus, we
split the interesting interval into subintervals and compute
the corresponding eigenpairs independently and in parallel,
for instance on different workstations or shared memory mul-
tiprocessors. Finally, the modes of interest are calculated in
a second step for an essentially reduced region using a fine
grid, that fulfills higher accuracy requirements.

The linear sparse solver PARDISO (Schenk et al., 2000)
is applied in order to fulfill the high accuracy requirements
of the eigenvalue problem. The parallel CPU mode of PAR-
DISO provides the additional possibility to reduce the com-
puting times for this high-dimensional problem on shared
memory multiprocessors without essential additional mem-
ory requirements.

A Laser application can be found in (Hebermehl et al.,
2003a).

8 Systems of linear algebraic equations

Four kinds of preconditioning and a block quasi-minimal
residual algorithm are applied to solve the large scale sys-
tems of linear algebraic equations. Details are given with
(Schlundt et al., 2001) and (Hebermehl et al., 2003a).

Especially, adding the gradient of the electric field diver-
gence the numerical properties of the system matrix are im-
proved and the equations can be solved faster.

8.1 Rectangular grids

Multiplying (9) by D1/2
s yields a symmetric form of linear

algebraic equations:

Āx = 0, Ā = (D1/2
s AT Ds/µ̃D−1

A AD1/2
s − k2

0DAε̃
) (21)

with x = D1/2
s e. The gradient of the electric field divergence

[ε]∇([ε]−2
∇ · [ε]E) = 0 (22)

is equivalent to the matrix equation

B̄x = 0, B̄ = D−1/2
s DAε̃

BT D−1
Vε̃ε̃

BDAε̃
D−1/2

s . (23)

The rectangular matrixB is sparse and contains the values 0,
1, and−1 only. The diagonal matrixDVε̃ε̃

is a volume matrix
for the 8 partial volumes of the dual elementary cell. Taking
into account the boundary conditions (5) and (6) Eqs. (21)
and (23) yields the form̂Ax = b andB̂x = 0, respectively,
and

(Â + B̂)x = b, Â + B̂ complex indefinite symmetric, (24)

can be solved faster than Eq. (9).

In comparison to the simple lossy case the number of it-
erations of Krylov subspace methods increases significantly
in the presence of PML. Among others the speed of conver-
gence depends on the relations of the edges in an elementary
cell of the nonequidistant rectangular grid in this case. The
best results can be obtained using nearly cubic cells. More-
over, overlapping PML conditions at the corner regions of the
computational domain lead to an increase of the magnitude
of the corresponding off-diagonal elements in comparison to
the diagonal of the coefficient matrix. This downgrades the
properties of the matrix. Thus, overlapping PML should be
avoided.

8.2 Tetrahedral grids

Equations (11), (12), (14) and (15) can be written in matrix
form. Besides of the locations and values of the entries, the
matrix representations of Eqs. (11) and (12) have the same
structure as Eq. (8), and an appropriate (see Eq. 21) sym-
metric form of linear algebraic equations can be deduced.
Adding the gradient of the electric field divergence also gives
a system which can be solved faster. Here, the gradient of
the divergence at an internal point is obtained considering
the partial volumes of the appropriate Voronoi cell. PML are
not included.

9 Application

As an example we have simulated a microwave structure with
a microstrip changing its width (impedance step, see Fig. 4).
The discontinuity of the metallic strip is located atz = l1.
The metal is assumed to be ideally conducting. The relative
permittivity of the substrate below the microstrip line isεr =

ε̃x = ε̃y = ε̃z = 11.9. Above the microstrip line one has air
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Fig. 4. The microstrip line changes its extension.
Measurements: b = 300µm, w1 = 60µm, w2 = 80µm, ts = 250µm,
tl = 250µm, t = 3µm, l1 = 200µm, l2 = 200µm.

(εr = ε̃x = ε̃y = ε̃z = 1). Ports are located at the planes
z = 0 andz = l1 + l2. The remaining 4 outer surfaces
are assumed to be electric walls. The structure is symmetric
with respect to the planey = b/2. But, the whole structure
is discretized in this test example.

For comparison the structure is subdivided in nonequidis-
tant rectangular three-dimensional elementary cells on the
one hand and in tetrahedra on the other hand.

In case of rectangular grids, the order of the system of lin-
ear algebraic equations, which corresponds to the boundary
value problem (1), isn = 3nxnynz = 335 160. nxnynz is
the number of cells of the structure which is assumed to be
a parallelepiped. We need a high mesh refinement near the
microstrip line. Using the rectangular grid the mesh refine-
ment in this region results in an accumulation of elementary
cells in all coordinate directions even though the refinement
is not necessary in order to approximate the solution with the
required accuracy.

The tetrahedral grid consists ofnn = 29 615 nodes,nt =

161 308 tetrahedra, andnp = 16 100 peripheral cell faces.
The order of the corresponding system of linear algebraic
equations is equal to the number of edges and amounts

n = nn + nt + np/2 − 1 = 198 972. (25)

The disadvantage of rectangular grids, the accumulation of
elementary cells in all coordinate directions, is avoided here.

10 Conclusions

Finite-difference analysis of microwave circuits including
lossy materials and radiation effects leads to an complex
eigenvalue problem and large-scale complex indefinite sym-
metric systems of linear algebraic equations. Staggered
nonequidistant rectangular grids and tetrahedral nets with
corresponding Voronoi cells are used. The high execution
times in the eigenvalue problems for waveguide applications

with extremely large mesh sizes, e.g. laser structures, are re-
duced using a coarse and a fine grid, and two levels of paral-
lelization. The high-dimensional systems of linear algebraic
equations are solved using a bock Krylov subspace method.
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