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Calibration methods for microwave free space measurements
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Abstract. In this article calibration methqd.s for the precise, o VNA lens  material probe to VNA
contact-less measurement of the permittivity, permeability or port 1 N port 2
humidity of materials are presented. The free space mea-

surement system principally consists of a pair of focusing il I

horn-lens antennas connected to the ports of a vector network /™

analyzer. Based on the measured scattering parameters, th&"enna

dielectric material parameters are calculable. Due to system-

atic errors as e.g. transmission losses of the cables or mid=ig. 1. Setup of the free space measurement system.
matches of the antennas, a calibration of the measurement

setup is necessary. For this purpose calibration methods with 4, a by ma
calibration standards of equal mechanical lengths are pre- > G! > TMO ’ H
sented. They have the advantage, that the measurement setup,,, by as ma

can be kept in a fixed position, for example no displacement
of the antenngs is needed. The pr_esen_ted self-callbratlopig_ 2. Error model of the measurement system with a four-channel
methods have in common that the calibration structures conggctor network analyzer.
sist of a so-called obstacle network which can be partly un-
known. The obstacle can either be realized as a transmissive
or a reflective network depending on the chosen method. Afected by different systematic errors, which are caused e.g.
increase of the frequency bandwidth is achievable with thepy transmission losses of the cables or the mismatches of the
reflective realization. The theory of the calibration methodsantennas, it is necessary to calibrate the setup. For this pur-
and some experimental results will be presented. pose the whole measurement system can be described with
the help of an error model known from the calibration of
vector network analyzers with four measurement channels,
as shown in Fig. 2.

The error transmission matric€s and H which repre-
At microwave frequencies the permittivity, permeability or Sent the systematic errors have to be calculated during the
humidity of materials can be determined from measurement&alibration. It is advantageous to use self-calibration proce-
of the scattering parameters. For materials realized as plan&trés where some parameters of the calibration circuits can
probes the parameters can be measured contact-less in fr€€ partly unknown. For the measurements in free space, the

space (Ghodgaonkar et al., 1989). The free space measuré€ll-known TRL-method (firough Reflect Line) (Engen
ment system which is depicted in Fig. 1 basically consists@nd Hoer, 1979) has the drawback that its calibration stan-

of a vector network analyzer (VNA) connected to a pair of dards are of different mechanical lengths. For the realization
spot-focusing horn-lens-antennas. of the line standard for instance the antennas have to be dis-

The use of lenses aims at bundling the radiated electroP!2ced, as can be seen in Fig. 3. N . _
magnetic waves between the antennas where the material un- SUCh & variation of the antenna positions might be crit-

der test will be placed. As the measurement results are afi@ due to changes of the beam propagation. It is thus
more advantageous to use self-calibration techniques where

Correspondence td: Rolfes the standards are all of equal mechanical lengths as will
(ilona.rolfes@rub.de) be presented in the following. The described methods are

1 Introduction
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Fig. 3. TRL-calibration of the free space system.
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principally based on calibration standards which consist of -
a so-called obstacle network. It will be distinguished be-
tween methods based on transmissive calibration standards; .
LNN (Heuermann and Schiek, 1997);L,NN and LNyN2 Fig. 4. Setup of the LNN calibration structures.

method (Rolfes and Schiek, 2002), and methods with reflec-

tive standards which might have a weak transmission: LRRparameters. The following equation results i.e. for the ma-

(Rolfes and Schiek, 2003),1L2RR and LRRz method. In  tricesMq andM 4, using the similarity transformation of the
addition, the theory of the reflective methods can be adoptegrace function abbreviated as

to the well-known TRM-method (Eul and Schiek, 1991) re- 1, 1 1 1
sulting in a fairly brief derivation. a1 = 1r{MiMo 7} = rr{GLLQH (GTLLH) )
=tr{Q} = qu1+ q22 (4)

With o = r{MoM171}, a3 = tr{M3sM171} ande =
(a3 — 2)(a2 — 2)~ 1 the unknown parameters are calculable
as follows

2 Transmissive calibration methods

The calibration structures of the LNN-,1L>NN and the
LN1N2-method are all based on transmissive networks.
k—i—i qr2=—q1==%

2.1 LNN method

The LNN-structure consists of an obstacle network which

o?
has to be placed at three consecutive positions in equal disz1; = % + Z +4¢5 -1 go=o1—qu (6)
tances as shown in Fig. 4. The obstacle can e.g. be realized

as a dielectric plate. An approximate knowledge of the structures dimensions is

The calibration structures are described with the help ofnecessary in order to choose the correct solutions.
transmission matrices with representing the line element
of length!/ with the unknown propagation constgnandQ
standing for the obstacle network.

2.2 Extended LNN method

An extension of the LNN method is the;LoNN method
k0 411 q12 with either equal or non-equal unknown distanteandi,

L= [0 k—l] Q= [ ] 1) between the obstacle positions. The advantage of this vari-
ant is that the positioning of the obstacles becomes quite un-

The obstacles have to be symmetrigal, = —g21) and re-  critical, because the obstacles do not have to be placed in

ciprocal(g11922 — q12921 = 1) and are assumed without loss precisely equal distances from each other. The theoretical

of generality to be of the electrical length zero. The calibra-derivation of this method is very similar to the one of the

tion circuits are described by matricks withi = 0,1,2,3  LNN method. Instead of one line matrixtwo line matrices

q21 422

which are known from measurements. L1 andL 2 have to be considered in Egs. (2) and (3), so that
1 1 with the trace functions

Mo=G7LLH. Mi=GLLQH @ p = MG, fo = MM Y, By =

Mz =G LQLH, Mj3=G 'QLLH B)  tr{MaM171}, B4 = tr{M3M1~1} the line and obstacle pa-

rameters can be determined as follows:
G andH are two-ports which represent the systematic errors

of the VNA. During the self-calibratio® andH are elimi- 2 Bs o 1 4 1-0, k= —Bs %
nated in order to determine the unknown line- and obstacle- 2 ,35 Bs Bs(Beka — 1)
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Fig. 6. Simplified block diagram of the analyzer setup.

E j On the basis of this system of equations the obstacle and line
parameters are calculable similar to the previous solutions

(Rolfes and Schiek, 2002). The calibration standards of the
! LN1N2 method have the advantage that only two obstacle

: j positions are needed instead of three for the LNN method.

' . The LN;N> calibration standards require thus less space. In

: addition the obstacles can be placed symmetrically around
|l—i the focusing area of the antenna-lens setup.

Fig. 5. Setup of the LNN> calibration structures. 3 Reflective methods

Br—2 While the previously presented methods have in common
2—2 (8) that the obstacles must be transmissive, the following pro-
(kl — kfl) cedures are based on obstacles either without transmission
or with only a weak transmission. The topologies of the
LRR, L1L2RR and LR Ry calibration structures are princi-

q12=—qan1 ==+

B1 ﬁf 2 ally identical to the previous ones. The obstacles can e.g. be
=75\ a1l gz=A-am ©) Feaﬁ/zed as a metal ;)Iate. However, in order to reduce m?JIti—
with ple reflections it is convenient to reduce somewhat the reflec-

=12 tion coefficient of the obstacle by coating the metal plate with
B = Pa—2 (ki—k) (10)  @bsorbing material. Due to the lack of transmission the cal-
B3—2 (kp— szl)z ibration structures cannot be described on the basis of trans-

, P2 (ky — k12 mission matrices. Figure 6 shows a simplified block diagram
5 = = }1 - (12) of the analyzer setup with the two error two-po&sandH
Pa=2  (kiko — ky ks ™) and the reflection coefficienys ; and p,; referring to thei
As already pointed out for the LNN method an approximate different reflective networks.
knowledge of the calibration circuits dimension is necessary. For the different methods it can be distinguished between
two cases. In the first one, the obstacles are assumed to show
2.3 LN;N2 method no transmission at all and in the second one, the obstacles
o ] ) might or might not show a weak transmission. Depending on
Furthermore the calibration on the basis of two different ihe realized calibration structures the appropriate way should
transmissive obstacle networks is realizable with theMN e chosen in order to improve the accuracy.

method. The calibration structures for a free space system Tne theories of the LRR and the LLRR methods have

B

are shown in Fig. 5. , _already been presented in (Rolfes and Schiek, 2003). The
The two Q|ff_erent opstacle networks can be described W'thapplication of the LRR method in a free space system will be
the transmission matricés andB. discussed in some more detail in Sect. 5. In the following the
_ [an 6112:| B— [bn b12i| (12) LR1R2 method with transmission-free obstacles is presented.
azaz |’ b21 b22

For the determination of the unknown parameters the tracef;’"1 LR1Rz method without transmission

functions of the measurement matrices of Fig. 5 can be writ-

For this variant the free space calibration structures consist
ten as follows:

of two different reflective obstacle networks which are re-

Ya = triMiMo™Y} = 1r{A} (23) flection symmetrical and have to be placed at two positions
v = tr{iMaMo 1} = tr{B} (14)  as shown in Fig. 5. Although the calibration procedure al-
Vap = 1r{MaM N = r{AB~Y) (15) ready works on the basis of four calibration structures, it is

) PR more convenient for the algebraic derivation to consider one
Yai = tr{iMaM1™7} = tr{ALA77L 77} (16)  further calibration structure where the obstaBlés placed
Yapi = tr{MaM, ™1} = tr{ALB ~1L 1} (17)  on the left position.
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The calibration structures are described with the help ofwhich generally holds for a bilinear transformation as given
the line parametek = ¢~/ and the reflection coefficients in Eq. (22). A set of equations can thus be constructed, which
pa andp,. Based on the setup in Figs. 5 and 6 the reflectiononly depends on the unknown reflection coefficiemtsand
coefficientsp;; andp,; are defined as follows: pp and the unknown line parameterin dependence of the
2 2 measurement values as e.g.:

011 = k“pa, p1.2 = k"pp, P13 = Pas P1.4 = Pb (18)

V, — V, —V
Pr,1 = Pa, Pr,2 = Pb, Pr,3 = kzpav Pr,4 = kzpb (19) vy = ( r.3 r,4)( 53 1’4)

(V3 —v,a)(vi,3 —v4)

The f|_rst cgllbratlon structure, the throu_gh_ Connec_tpn, can (Br3— bra) (P13 — P1.4) (Pa — pb)?
be written in dependence of the transmission matriwith = — — = 5
Mo = GILH. During the self-calibration it is further on (Pr3 = pra)(p3 = pra) (1= papp)
the aim to eliminate the error two-por@ andH in order _ Wz —v3) (1 —v1) ﬁ Q- p2)? (28)
to determine the unknown parametérg, andp,. For this 2= a—v)We1—vr3)  p2 (1—k?)?

purpose the error two-po@ 1 is described by the following

(27)

_ (a—vra)2—v2) E (1-pp?

equation withG = G~ 1: v3 = == > (29)
g a—v2dW2—va)  p2 (I—k2)?
[ZL{} e [ZZ{] _ G [Plg‘b?’i} @) . M3-vI02-we _ ped-DE-D o
L 2 2 3 —vaW2=v.3)  (©a—pp)k2papp—D
resulting ingbilinear transformation, also known astius- After some algebraic manipulation the following equa-
transformation, for the measurement valug: tions for the determination of the line parameter and the re-
= ~ ~ ~ flection coefficients result:
bii  Guprib2i + Gi2b2i  Giipri + G12
=t = 2 ARl _ 2 212 (21) .
ati  Gaprib2i +Gab2i  Ga1p1i + G22 p w3 W, p Pa — W1 (31)
a = — 5~ ) T b b = T
Such a bilinear transformation is generally defined as, 2 4 1—-w1pq
2
v, — — -1
o Clyj LGy (22) k2 _ (4(:0a ;Ob) ,Oh(,O[E ; )1) (32)
J = Csy/ + C4 ) V4(Pa Pb)PaPb Pb(Py
witl
where the two variables; andy; correspond to the mea- 5 5
surement value; ; and the unknown calibration standard pa- wf . w% _ b2 ws = w2(l—wy) — (1+ w9
rameterp; ; and the constantSy, . .., C4 represent the error v3 w1
two-pprt parameters. .Concernlng the two-pidria similar 3.2 The LRR, method with a weak transmission
equation can be found:
an i bai ba: This algorithm is based on the description of the obstacle
40 | _ 4-1 30 | _ g-1 3,i 23 . .. . .
ba; | = az; | = orib3i (23) networks with pseudo-transmission matrices. According to
' ' T Fig. 6 the measurement matrix can be defined as follows,
With H=1 = Mo~1G~1L Eq. (23) can be rewritten in depen- Lo 1 Y
dence ofG: Mj = F}l /l/’i| ﬁ[_g}l /4"] (33)
1 1) ag by —ag by [7Pa; 94

1 Tay. ] = b3 ~ kb3 ; . o . .
Mo [24’1]2[;”} =GL [ 31’7’ }zG [ 3 } (24)  where the primes indicate from which side of the setup the
4,i 4 pr,ib3i prik™ b3 i . ; : ) A
: generator signal is fed in. The determinant = ay b} ; —
In this way, another bilinear transformation in the error ay .b, ; might become zero without any transmission. The

two-port paramete® results withg, ; = kzp; l.l. reflective structures can thus not be described on the basis

. . _ L of transmission matrices. They have to be represented by
N Yai _ G11kb3 i + G12prik™ b3 pseudo-transmission matrices. These pseudo-transmission
"UUby, Gotkbag + Gooprik—Yh3; matrices are constructed by multiplying the measurement

matrices with the determinantsm,;, Amy;, j = 1,2. The
(25)  resulting finite part of the matrix is naméd;.

1 -

. éllkzﬂ;il +G12 _ Gupri + G12
Gok?p;  + G2 Gaapri + G2

Y -1
On the basis of the measurement of four reflection co-'vIl - AmalMl = Mi=GTLAmaAH (34)
efficients, four equations of the type of Eqgs. (21) and 1 - - 1

(25) result, so that the unknown error two-port parameteré\/|2 = AmblM = Mz2=G"LAmpBH (35)
G11, G12, G21 and G2 can be eliminated. This can be per- 1 . ~

formed with the help of the cross ratio M3 = Ay Mz = Mgz=G 1Amu,ALH (36)

a
(1 —y2)(y3—ya) _ (x1 —x2)(x3 — x4) (26)  Mg— 1 Ms = Na— G LAmuBLH 37)

01— ya)(y3—y2)  (x1— xa)(x3 — x2) Ampp



|. Rolfes and B. Schiek: Measurement of dielectric materials 23

absorber Br = tr{MaMo~'M1Mo ™"} = tr{AzLAIL T (53)
Bg = tr{M3aMg IMoMo ™Y} = rr{AsLB 1LY (54)
adjustable mirror Po = t”{'\7|4'v|0_l|\7| 1M0_l} = tr{BaLA lL_l} (55)
Bro=tr{MsMo MaMo ™1} = tr{BoLB1L 1) (56)
E . With Egs. (47) and (48) the following relations for the reflec-

tion coefficientp, andp result:

,03 = —Bilfa1 + Amzlufcal +1 (57)

pp = —Bapp1 + Ampyug,, +1 (58)
) .. From Eqgs. (47) to (50) it can be derived:

The product of the determinant and the obstacle transmission

matrix is called pseudo-transmission matrix. With the gen- A1 B (59)
eral relation between a transmission maffand the scat- /92 T gptt/ety Hip2 = g Kbl

B3 Ba
tering parametersyy, 512, Sa1, 522 For the obstacle parametey1 it can be found:

Fig. 7. Realization of the Match for the right antenna.

1 _ 2
T=— |:S125_2g St1 Si1:| (38)  mspirar(1— 05814 pa1) ©0)
i - o= mlufalz +map a1 +m3
the pseudo-transmission matrices can be written as follows: my = Amglﬂl(ﬁg/% — B9— 05p1Br/ B3 BB — B9
[ —~ 02 =- 05
AmgA = Ay = K fallral = Py Pa] (39) mp = —B1m3 + 0.582ms
Kral L ~Pa 1 m3 = BgP1/Ps — Ps
[ T 2 2
Amp1B =B = L Hfblbrbl — 'Oi% ,(?Lh (40) ms = B7B1/B3 — BT + 2Am;
Mflbl '- s 5 - and for the line parametérthe equation results:
AmgoA = Az = aetez = pa pla] (41) 2
Hfa2 L —Pa - k_l)z _ M5UT 41 61)
[ i - 2 2
AmyB = By = —— [ svatroz = 0 by (42) ~Lt Buptpar — Amgg
M fb2 —Pb 1

- - After some algebraic manipulation a quadratic equation for
The calibration structures can thus be described on the bathe obstacle parametgry,1 can be derived:

sis of 11 parametersit rq1, trals M fbls Hrbls M fa2s Mra2, )

I fb2, b2, Pas p» @ndk under the condition of symmetry: Mgy, + moph fa1 +mio =0 (62)

Sa,11 = Pa = Sa,22, Sp,11 = pp = Sp,22. With the reci- me = BroB2/Ba — B3 + 2Am2;

procity condition it follows: m7 = msAmpy — meAmyg

Sa21 = AMgiftfai = Sa12 = f’—‘”’,i —1,2 43)  mg=0.25Zmsm7 + 0.5p1amims + m}
o
oA P rgy 9= (L0255 ms — 7 +0Sama) — famy)
b21= Ampiltpni = Sp1z= e, i =1, (44) S 2mims
and thus m1o = ms(B1(—1.2581me + 0.582m3) + m7 — Bom2)
2
. . +m35 + 2mims
Lrai _ Am2, B Am2i=1.2 (45)
M fai M fbi The unknown parameters of the {R,-method can thus be
_Ama _ Amy (46) calculated within the self-calibration procedure. In order to
Hfaz= Amaz'uf”l’ Krbz = Amhz“fbl' choose the correct solution, an approximate knowledge of the

| der to determine th K ters the followi geometrical dimensions is necessary. Besides this solution
h order to determine the unknown parameters e 10lowing, , 1he pasis of five calibration structures a further solution

trace equations are constructed eliminatthgndH: based on only four structures is also possible.

1= tr{MiMo™t) = 1r{Aq) (47)

B2 = tr{MaMo ™1} = 1r{B1} (48) 4 TRM-method

Bs = tr(MaMo ™) = tr{Az) (49) o _

Ba = tr{MaMo~1} = 17(By) (50) Based on the setup in Fig. 6, the theory of the reflective cal-

- 1 1 ibration methods without transmission can be transfered to
Ps = 1r{M2Mo™"M1Mo ™"} = 1r{A1B1) (51)  the well-known TRM-method. The calibration standards of
Be = tr{MaMo M3Mo ™1} = 1r{A2By} (52)  the TRM method consist of a reflection with the reflection
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Fig. 9. Measured permittivity and permeability.

coefficientp and of a match with the reflection coefficieht
which is supposed to converge towards zero. One possible
realization of the match in a free space system, based on a
mirror and an absorber, is depicted in Fig. 7.

With the bilinear relations of Egs. (21) and (25) where the
measurement matrikl o corresponds to the T-standard and
k equals one, because the T-standard is supposed to be of
length zero, the following cross relation can be written with
o1 = pr1 = p for the R-standard angy 2 = p, 2 = § for
the M-standard:

2= wDW2—v)  B=p)@t=phH
2= D2 =) = p (- p)
_-pA-5p7h
G -pHA-6p)

(63)

With § = 0 for the match the very compact solution for the
reflection coefficienp results:

v =p? (64)

5 Experimental results

Measurements were performed with a free space system in
a frequency range from 10 GHz to 14 GHz. Some measure-
ment results for a polyamide probe (P6, thickness: 4.2 mm,
size: 50 cmx 50 cm) are shown in the following.

Fig. 8. Error-corrected scattering parameters of the material accord- In Fig. 8 the error-corrected scattering parameters calcu-

ing to the TRL (blue line) and the LRR method (red line).

lated according to the TRL in comparison to the LRR method
are depicted. Both methods show a good agreement. Based
on the measured scattering parameters the calculated permit-
tivity is depicted in Fig. 9.
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