
Advances in Radio Science (2004) 2: 19–25
© Copernicus GmbH 2004 Advances in

Radio Science

Calibration methods for microwave free space measurements

I. Rolfes and B. Schiek

Institut für Hochfrequenztechnik, Ruhr-Universität Bochum, Universiẗatsstraße 150, 44801 Bochum, Germany

Abstract. In this article calibration methods for the precise,
contact-less measurement of the permittivity, permeability or
humidity of materials are presented. The free space mea-
surement system principally consists of a pair of focusing
horn-lens antennas connected to the ports of a vector network
analyzer. Based on the measured scattering parameters, the
dielectric material parameters are calculable. Due to system-
atic errors as e.g. transmission losses of the cables or mis-
matches of the antennas, a calibration of the measurement
setup is necessary. For this purpose calibration methods with
calibration standards of equal mechanical lengths are pre-
sented. They have the advantage, that the measurement setup
can be kept in a fixed position, for example no displacement
of the antennas is needed. The presented self-calibration
methods have in common that the calibration structures con-
sist of a so-called obstacle network which can be partly un-
known. The obstacle can either be realized as a transmissive
or a reflective network depending on the chosen method. An
increase of the frequency bandwidth is achievable with the
reflective realization. The theory of the calibration methods
and some experimental results will be presented.

1 Introduction

At microwave frequencies the permittivity, permeability or
humidity of materials can be determined from measurements
of the scattering parameters. For materials realized as planar
probes the parameters can be measured contact-less in free
space (Ghodgaonkar et al., 1989). The free space measure-
ment system which is depicted in Fig. 1 basically consists
of a vector network analyzer (VNA) connected to a pair of
spot-focusing horn-lens-antennas.

The use of lenses aims at bundling the radiated electro-
magnetic waves between the antennas where the material un-
der test will be placed. As the measurement results are af-
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Fig. 1. Setup of the free space measurement system

bles or the mismatches of the antennas, it is necessary to cali-
brate the setup. For this purpose the whole measurement sys-
tem can be described with the help of an error model known
from the calibration of vector network analyzers with four
measurement channels, as shown in Fig. 2.
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Fig. 2. Error model of the measurement system with a four-channel
vector network analyzer

The error matrices G and H which represent the system-
atic errors have to be calculated during the calibration. It is
advantageous to use self-calibration procedures where some
parameters of the calibration circuits can be partly unknown.
For the measurements in free space, the well-known TRL-
method (Through Reflect Line) (Engen and Hoer, 1979) has
the drawback that its calibration standards are of different
mechanical lengths. For the realization of the line standard
for instance the antennas have to be displaced, as can be seen
in Fig. 3.

Such a variation of the antenna positions might be crit-
ical due to changes of the beam propagation. It is thus
more advantageous to use self-calibration techniques where
the standards are all of equal mechanical lengths as will
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Fig. 1. Setup of the free space measurement system.
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fected by different systematic errors, which are caused e.g.
by transmission losses of the cables or the mismatches of the
antennas, it is necessary to calibrate the setup. For this pur-
pose the whole measurement system can be described with
the help of an error model known from the calibration of
vector network analyzers with four measurement channels,
as shown in Fig. 2.

The error transmission matricesG and H which repre-
sent the systematic errors have to be calculated during the
calibration. It is advantageous to use self-calibration proce-
dures where some parameters of the calibration circuits can
be partly unknown. For the measurements in free space, the
well-known TRL-method (Through Reflect Line) (Engen
and Hoer, 1979) has the drawback that its calibration stan-
dards are of different mechanical lengths. For the realization
of the line standard for instance the antennas have to be dis-
placed, as can be seen in Fig. 3.

Such a variation of the antenna positions might be crit-
ical due to changes of the beam propagation. It is thus
more advantageous to use self-calibration techniques where
the standards are all of equal mechanical lengths as will
be presented in the following. The described methods are
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Fig. 3. TRL-calibration of the free space system

be presented in the following. The described methods are
principally based on calibration standards which consist of
a so-called obstacle network. It will be distinguished be-
tween methods based on tranmissive calibration standards:
LNN (Heuermann and Schiek, 1997), L1L2NN and LN1N2

method (Rolfes and Schiek, 2002), and methods with reflec-
tive standards which might have a weak transmission: LRR
(Rolfes and Schiek, 2003), L1L2RR and LR1R2 method. In
addition, the theory of the reflective methods can be adopted
to the well-known TRM-method (Eul and Schiek, 1991) re-
sulting in a fairly brief derivation.

2 Transmissive calibration methods

The calibration structures of the LNN-, L1L2NN and the
LN1N2-method are all based on transmissive networks.

2.1 LNN method

The LNN-structure consists of an obstacle network which
has to be placed at three consecutive positions in equal dis-
tances as shown in Fig. 4. The obstacle can e.g. be realized
as a dielectric plate.

l l

Fig. 4. Setup of the LNN calibration structures

The calibration structures are described with the help of
transmission matrices with L representing the line element

of length l with the unknown propagation constant γ and Q

standing for the obstacle network.

L =

[

k 0
0 k−1

]

, Q =

[

q11 q12

q21 q22

]

(1)

The obstacles have to be symmetrical (q12 = −q21) and re-
ciprocal (q11q22− q12q21 = 1) and are assumed without loss
of generality to be of the electrical length zero. The calibra-
tion circuits are described by matrices Mi with i = 0, 1, 2, 3
which are known from measurements.

M0 = G−1LLH, M1 = G−1LLQH (2)
M2 = G−1LQLH, M3 = G−1QLLH (3)

G and H are two-ports which represent the systematic errors
of the VNA. During the self-calibration G and H are elimi-
nated in order to determine the unknown line- and obstacle-
parameters. The following equation results i.e. for the matri-
ces M0 and M1, using the similarity transformation of the
trace function abbreviated as tr:

α1 = tr{M1M0
−1} = tr{G−1LLQH(G−1LLH)−1}

= tr{Q} = q11 + q22 (4)

With α2 = tr{M2M1
−1}, α3 = tr{M3M1

−1} and α =
(α3 − 2)(α2 − 2)−1 the unknown parameters are calculable
as follows
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12
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An approximate knowledge of the structures dimensions is
necessary in order to choose the correct solutions.

2.2 Extended LNN method

An extension of the LNN method is the L1L2NN method
with either equal or non-equal unknown distances l1 and l2
between the obstacle positions. The advantage of this vari-
ant is that the positioning of the obstacles becomes quite un-
critical, because the obstacles do not have to be placed in
precisely equal distances from each other. The theoretical
derivation of this method is very similar to the one of the
LNN method. Instead of one line matrix L two line matri-
ces L1 and L2 have to be considered in eqs. (2) and (3),
so that with the trace functions β1 = tr{M1M0

−1}, β2 =
tr{M3M2

−1}, β3 = tr{M2M1
−1}, β4 = tr{M3M1

−1}
the line and obstacle parameters can be determined as fol-
lows:
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As already pointed out for the LNN method an approximate
knowledge of the calibration circuits dimension is necessary.

2.3 LN1N2 method

Furthermore the calibration on the basis of two different
transmissive obstacle networks is realizable with the LN1N2

method. The calibration structures for a free space system
are shown in Fig. 5. The two different obstacle networks can

l

Fig. 5. Setup of the LN1N2 calibration structures

be described with the transmission matrices A and B.

A =

[

a11 a12

a21 a22

]

, B =

[

b11 b12

b21 b22

]

(12)

For the determination of the unknown parameters the trace
functions of the measurement matrices of fig. 5 can be writ-
ten as follows:

γa = tr{M1M0
−1} = tr{A} (13)

γb = tr{M2M0
−1} = tr{B} (14)

γab = tr{M2M1
−1} = tr{AB−1} (15)

γal = tr{M3M1
−1} = tr{ALA−1L−1} (16)

γabl = tr{M3M2
−1} = tr{ALB−1L−1} (17)

On the basis of this system of equations the obstacle and line
parameters are calculable similar to the previous solutions
(Rolfes and Schiek, 2002). The calibration standards of the
LN1N2 method have the advantage that only two obstacle
positions are needed instead of three for the LNN method.
The LN1N2 calibration standards require thus less space. In
addition the obstacles can be placed symmetrically around
the focusing area of the antenna-lens setup.

3 Reflective methods

While the previously presented methods have in common
that the obstacles must be transmissive, the following pro-
cedures are based on obstacles either without transmission
or with only a weak transmission. The topologies of the
LRR, L1L2RR and LR1R2 calibration structures are princi-
pally identical to the previous ones. The obstacles can e.g. be
realized as a metal plate. However, in order to reduce multi-
ple reflections it is convenient to reduce somewhat the reflec-
tion coefficient of the obstacle by coating the metal plate with
absorbing material. Due to the lack of transmission the cal-
ibration structures cannot be described on the basis of trans-
mission matrices. Fig. 6 shows a simplified block diagram
of the analyzer setup with the two error two-ports G and H
and the reflection coefficients ρl,i and ρr,i referring to the i
different reflective networks.

G
−1 H

a2,i

b2,i
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� -

�
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a4,i

b4,i

-

�
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ρl,i ρr,i

Fig. 6. Simplified block diagram of the analyzer setup

For the different methods it can be distinguished between
two cases. In the first one, the obstacles are assumed to show
no transmission at all and in the second one, the obstacles
might or might not show a weak transmission. Depending on
the realized calibration structures the appropriate way should
be chosen in order to improve the accuracy. In the following
the LR1R2 method with transmission-free obstacles is pre-
sented.

3.1 LR1R2 method without transmission

For this variant the free space calibration structures consist
of two different reflective obstacle networks which have to
be placed at two positions as shown in Fig. 5. Although
the calibration procedure already works on the basis of four
calibration structures, it is more convenient for the algebraic
derivation to consider one further calibration structure where
the obstacle B is placed on the left position.
The calibration structures are described with the help of the
line parameter k = e−γl and the reflection coefficients ρa

and ρb. Based on the setup in Fig. 5 and 6 the reflection co-
efficients ρli and ρri are defined as follows:

ρl,1 = k2ρa, ρl,2 = k2ρb, ρl,3 = ρa, ρl,4 = ρb (18)
ρr,1 = ρa, ρr,2 = ρb, ρr,3 = k2ρa, ρr,4 = k2ρb (19)

The first calibration structure, the thru connection, can be
written in dependence of the transmission matrix L with
M0 = G−1LH. During the self-calibration it is further on
the aim to eliminate the error two-ports G and H in order
to determine the unknown parameters k, ρa and ρb. For this
purpose the error two-port G−1 is described by the following

Fig. 5. Setup of the LN1N2 calibration structures.
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} = tr{B} (14)

γab = tr{M2M1
−1

} = tr{AB−1
} (15)

γal = tr{M3M1
−1

} = tr{ALA −1L−1
} (16)

γabl = tr{M3M2
−1

} = tr{ALB −1L−1
} (17)
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with

β2

5
=

β2 − 2

β3 − 2
=

(k1 − k−1

1
)2

(k2 − k−1

2
)2

(10)

β2

6
=

β2 − 2

β4 − 2
=

(k1 − k−1

1
)2

(k1k2 − k−1

1
k−1

2
)2

(11)

As already pointed out for the LNN method an approximate
knowledge of the calibration circuits dimension is necessary.

2.3 LN1N2 method

Furthermore the calibration on the basis of two different
transmissive obstacle networks is realizable with the LN1N2

method. The calibration structures for a free space system
are shown in Fig. 5. The two different obstacle networks can

l

Fig. 5. Setup of the LN1N2 calibration structures

be described with the transmission matrices A and B.

A =

[

a11 a12

a21 a22

]

, B =

[

b11 b12

b21 b22

]

(12)

For the determination of the unknown parameters the trace
functions of the measurement matrices of fig. 5 can be writ-
ten as follows:

γa = tr{M1M0
−1} = tr{A} (13)

γb = tr{M2M0
−1} = tr{B} (14)

γab = tr{M2M1
−1} = tr{AB−1} (15)

γal = tr{M3M1
−1} = tr{ALA−1L−1} (16)

γabl = tr{M3M2
−1} = tr{ALB−1L−1} (17)

On the basis of this system of equations the obstacle and line
parameters are calculable similar to the previous solutions
(Rolfes and Schiek, 2002). The calibration standards of the
LN1N2 method have the advantage that only two obstacle
positions are needed instead of three for the LNN method.
The LN1N2 calibration standards require thus less space. In
addition the obstacles can be placed symmetrically around
the focusing area of the antenna-lens setup.

3 Reflective methods

While the previously presented methods have in common
that the obstacles must be transmissive, the following pro-
cedures are based on obstacles either without transmission
or with only a weak transmission. The topologies of the
LRR, L1L2RR and LR1R2 calibration structures are princi-
pally identical to the previous ones. The obstacles can e.g. be
realized as a metal plate. However, in order to reduce multi-
ple reflections it is convenient to reduce somewhat the reflec-
tion coefficient of the obstacle by coating the metal plate with
absorbing material. Due to the lack of transmission the cal-
ibration structures cannot be described on the basis of trans-
mission matrices. Fig. 6 shows a simplified block diagram
of the analyzer setup with the two error two-ports G and H
and the reflection coefficients ρl,i and ρr,i referring to the i
different reflective networks.

G
−1 H

a2,i

b2,i

a3,i

b3,i

-

� -

�

DUT
a4,i

b4,i

-

�

a1,i

b1,i

-

�

� -

ρl,i ρr,i

Fig. 6. Simplified block diagram of the analyzer setup

For the different methods it can be distinguished between
two cases. In the first one, the obstacles are assumed to show
no transmission at all and in the second one, the obstacles
might or might not show a weak transmission. Depending on
the realized calibration structures the appropriate way should
be chosen in order to improve the accuracy. In the following
the LR1R2 method with transmission-free obstacles is pre-
sented.

3.1 LR1R2 method without transmission

For this variant the free space calibration structures consist
of two different reflective obstacle networks which have to
be placed at two positions as shown in Fig. 5. Although
the calibration procedure already works on the basis of four
calibration structures, it is more convenient for the algebraic
derivation to consider one further calibration structure where
the obstacle B is placed on the left position.
The calibration structures are described with the help of the
line parameter k = e−γl and the reflection coefficients ρa

and ρb. Based on the setup in Fig. 5 and 6 the reflection co-
efficients ρli and ρri are defined as follows:

ρl,1 = k2ρa, ρl,2 = k2ρb, ρl,3 = ρa, ρl,4 = ρb (18)
ρr,1 = ρa, ρr,2 = ρb, ρr,3 = k2ρa, ρr,4 = k2ρb (19)

The first calibration structure, the thru connection, can be
written in dependence of the transmission matrix L with
M0 = G−1LH. During the self-calibration it is further on
the aim to eliminate the error two-ports G and H in order
to determine the unknown parameters k, ρa and ρb. For this
purpose the error two-port G−1 is described by the following

Fig. 6. Simplified block diagram of the analyzer setup.

On the basis of this system of equations the obstacle and line
parameters are calculable similar to the previous solutions
(Rolfes and Schiek, 2002). The calibration standards of the
LN1N2 method have the advantage that only two obstacle
positions are needed instead of three for the LNN method.
The LN1N2 calibration standards require thus less space. In
addition the obstacles can be placed symmetrically around
the focusing area of the antenna-lens setup.

3 Reflective methods

While the previously presented methods have in common
that the obstacles must be transmissive, the following pro-
cedures are based on obstacles either without transmission
or with only a weak transmission. The topologies of the
LRR, L1L2RR and LR1R2 calibration structures are princi-
pally identical to the previous ones. The obstacles can e.g. be
realized as a metal plate. However, in order to reduce multi-
ple reflections it is convenient to reduce somewhat the reflec-
tion coefficient of the obstacle by coating the metal plate with
absorbing material. Due to the lack of transmission the cal-
ibration structures cannot be described on the basis of trans-
mission matrices. Figure 6 shows a simplified block diagram
of the analyzer setup with the two error two-portsG andH
and the reflection coefficientsρl,i andρr,i referring to thei
different reflective networks.

For the different methods it can be distinguished between
two cases. In the first one, the obstacles are assumed to show
no transmission at all and in the second one, the obstacles
might or might not show a weak transmission. Depending on
the realized calibration structures the appropriate way should
be chosen in order to improve the accuracy.

The theories of the LRR and the L1L2RR methods have
already been presented in (Rolfes and Schiek, 2003). The
application of the LRR method in a free space system will be
discussed in some more detail in Sect. 5. In the following the
LR1R2 method with transmission-free obstacles is presented.

3.1 LR1R2 method without transmission

For this variant the free space calibration structures consist
of two different reflective obstacle networks which are re-
flection symmetrical and have to be placed at two positions
as shown in Fig. 5. Although the calibration procedure al-
ready works on the basis of four calibration structures, it is
more convenient for the algebraic derivation to consider one
further calibration structure where the obstacleB is placed
on the left position.



22 I. Rolfes and B. Schiek: Measurement of dielectric materials

The calibration structures are described with the help of
the line parameterk = e−γ l and the reflection coefficients
ρa andρb. Based on the setup in Figs. 5 and 6 the reflection
coefficientsρli andρri are defined as follows:

ρl,1 = k2ρa, ρl,2 = k2ρb, ρl,3 = ρa, ρl,4 = ρb (18)

ρr,1 = ρa, ρr,2 = ρb, ρr,3 = k2ρa, ρr,4 = k2ρb (19)

The first calibration structure, the through connection, can
be written in dependence of the transmission matrixL with
M0 = G−1LH . During the self-calibration it is further on
the aim to eliminate the error two-portsG and H in order
to determine the unknown parametersk, ρa andρb. For this
purpose the error two-portG−1 is described by the following
equation withG̃ = G−1:[

b1,i

a1,i

]
= G̃

[
a2,i

b2,i

]
= G̃

[
ρl,ib2,i

b2,i

]
(20)

resulting in a bilinear transformation, also known as Möbius-
transformation, for the measurement valueνl,i :

νl,i =
b1,i

a1,i

=
G̃11ρl,ib2,i + G̃12b2,i

G̃21ρl,ib2,i + G̃22b2,i

=
G̃11ρl,i + G̃12

G̃21ρl,i + G̃22
(21)

Such a bilinear transformation is generally defined as,

xj =
C1yj + C2

C3yj + C4
(22)

where the two variablesxj andyj correspond to the mea-
surement valueνl,i and the unknown calibration standard pa-
rameterρl,i and the constantsC1, . . . , C4 represent the error
two-port parameters. Concerning the two-portH a similar
equation can be found:[

a4,i

b4,i

]
= H−1

[
b3,i

a3,i

]
= H−1

[
b3,i

ρr,ib3,i

]
(23)

With H−1
= M0

−1G−1L Eq. (23) can be rewritten in depen-
dence ofG̃:

M0

[
a4,i

b4,i

]
=

[
a′

4,i

b′

4,i

]
=G̃L

[
b3,i

ρr,ib3,i

]
=G̃

[
kb3,i

ρr,ik
−1b3,i

]
(24)

In this way, another bilinear transformation in the error
two-port parameter̃G results withρ̃r,i = k2ρ−1

r,i .

νr,i =
a′

4,i

b′

4,i

=
G̃11kb3,i + G̃12ρr,ik

−1b3,i

G̃21kb3,i + G̃22ρr,ik−1b3,i

=
G̃11k

2ρ−1
r,i + G̃12

G̃21k2ρ−1
r,i + G̃22

=
G̃11ρ̃r,i + G̃12

G̃21ρ̃r,i + G̃22
(25)

On the basis of the measurement of four reflection co-
efficients, four equations of the type of Eqs. (21) and
(25) result, so that the unknown error two-port parameters
G̃11, G̃12, G̃21 andG̃22 can be eliminated. This can be per-
formed with the help of the cross ratio

(y1 − y2)(y3 − y4)

(y1 − y4)(y3 − y2)
=

(x1 − x2)(x3 − x4)

(x1 − x4)(x3 − x2)
(26)

which generally holds for a bilinear transformation as given
in Eq. (22). A set of equations can thus be constructed, which
only depends on the unknown reflection coefficientsρa and
ρb and the unknown line parameterk in dependence of the
measurement valuesνj as e.g.:

v1 =
(νr,3 − νr,4)(νl,3 − νl,4)

(νr,3 − νl,4)(νl,3 − νr,4)

=
(ρ̃r,3 − ρ̃r,4)(ρl,3 − ρl,4)

(ρ̃r,3 − ρl,4)(ρl,3 − ρ̃r,4)
=

(ρa − ρb)
2

(1 − ρaρb)2
(27)

v2 =
(νl,3 − νr,3)(νr,1 − νl,1)

(νl,3 − νl,1)(νr,1 − νr,3)
=

k2

ρ2
a

·
(1 − ρ2

a)2

(1 − k2)2
(28)

v3 =
(νl,4 − νr,4)(νr,2 − νl,2)

(νl,4 − νl,2)(νr,2 − νr,4)
=

k2

ρ2
b

·
(1 − ρ2

b)2

(1 − k2)2
(29)

v4 =
(νl,3 − νr,3)(νl,2 − νl,4)

(νl,3 − νl,4)(νl,2 − νr,3)
=

ρb(ρ
2
a − 1)(k2

− 1)

(ρa−ρb)(k2ρaρb−1)
(30)

After some algebraic manipulation the following equa-
tions for the determination of the line parameter and the re-
flection coefficients result:

ρa = −
w3

2
±

√
w2

3

4
− 1, ρb =

ρa − w1

1 − w1ρa

(31)

k2
=

v4(ρa − ρb) − ρb(ρ
2
a − 1)

v4(ρa − ρb)ρaρb − ρb(ρ2
a − 1)

(32)

with

w2
1 = v1, w2

2 =
v2

v3
, w3 =

w2(1 − w2
1) − (1 + w2

1)

w1

3.2 The LR1R2 method with a weak transmission

This algorithm is based on the description of the obstacle
networks with pseudo-transmission matrices. According to
Fig. 6 the measurement matrix can be defined as follows,

M i =

[
b′

1,i b′′

1,i

a′

1,i a′′

1,i

]
1

a′

4,ib
′′

4,i −a′′

4,ib
′

4,i

[
b′′

4,i −a′′

4,i

−b′

4,i a′

4,i

]
(33)

where the primes indicate from which side of the setup the
generator signal is fed in. The determinant1m = a′

4,ib
′′

4,i −

a′′

4,ib
′

4,i might become zero without any transmission. The
reflective structures can thus not be described on the basis
of transmission matrices. They have to be represented by
pseudo-transmission matrices. These pseudo-transmission
matrices are constructed by multiplying the measurement
matrices with the determinants1maj , 1mbj , j = 1, 2. The
resulting finite part of the matrix is named̃M i .

M1 =
1

1ma1
M̃1 ⇒ M̃1 = G−1L1ma1AH (34)

M2 =
1

1mb1
M̃2 ⇒ M̃2 = G−1L1mb1BH (35)

M3 =
1

1ma2
M̃3 ⇒ M̃3 = G−11ma2ALH (36)

M4 =
1

1mb2
M̃4 ⇒ M̃4 = G−11mb2BLH (37)
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adjustable mirror

absorber

Fig. 7. Realization of the Match for the right antenna.

The product of the determinant and the obstacle transmission
matrix is called pseudo-transmission matrix. With the gen-
eral relation between a transmission matrixT and the scat-
tering parametersS11, S12, S21, S22

T =
1

S21

[
S12S21 − S2

11 S11
−S11 1

]
(38)

the pseudo-transmission matrices can be written as follows:

1ma1A = A1 =
1

µf a1

[
µf a1µra1 − ρ2

a ρa

−ρa 1

]
(39)

1mb1B = B1 =
1

µf b1

[
µf b1µrb1 − ρ2

b ρb

−ρb 1

]
(40)

1ma2A = A2 =
1

µf a2

[
µf a2µra2 − ρ2

a ρa

−ρa 1

]
(41)

1mb2B = B2 =
1

µf b2

[
µf b2µrb2 − ρ2

b ρb

−ρb 1

]
(42)

The calibration structures can thus be described on the ba-
sis of 11 parameters:µf a1, µra1, µf b1, µrb1, µf a2, µra2,
µf b2, µrb2, ρa , ρb andk under the condition of symmetry:
Sa,11 = ρa = Sa,22, Sb,11 = ρb = Sb,22. With the reci-
procity condition it follows:

Sa,21 = 1maiµf ai = Sa,12 =
µrai

1mai

, i = 1, 2 (43)

Sb,21 = 1mbiµf bi = Sb,12 =
µrbi

1mbi

, i = 1, 2 (44)

and thus
µrai

µf ai

= 1m2
ai,

µrbi

µf bi

= 1m2
bi, i = 1, 2 (45)

µf a2 =
1ma1

1ma2
µf a1, µf b2 =

1mb1

1mb2
µf b1. (46)

In order to determine the unknown parameters the following
trace equations are constructed eliminatingG andH:

β1 = tr{M̃1M0
−1

} = tr{A1} (47)

β2 = tr{M̃2M0
−1

} = tr{B1} (48)

β3 = tr{M̃3M0
−1

} = tr{A2} (49)

β4 = tr{M̃4M0
−1

} = tr{B2} (50)

β5 = tr{M̃2M0
−1M̃1M0

−1
} = tr{A1B1} (51)

β6 = tr{M̃4M0
−1M̃3M0

−1
} = tr{A2B2} (52)

β7 = tr{M̃3M0
−1M̃1M0

−1
} = tr{A2LA 1L−1

} (53)

β8 = tr{M̃3M0
−1M̃2M0

−1
} = tr{A2LB1L−1

} (54)

β9 = tr{M̃4M0
−1M̃1M0

−1
} = tr{B2LA 1L−1

} (55)

β10 = tr{M̃4M0
−1M̃2M0

−1
} = tr{B2LB1L−1

} (56)

With Eqs. (47) and (48) the following relations for the reflec-
tion coefficientρa andρb result:

ρ2
a = −β1µf a1 + 1m2

a1µ
2
f a1 + 1 (57)

ρ2
b = −β2µf b1 + 1m2

b1µ
2
f b1 + 1 (58)

From Eqs. (47) to (50) it can be derived:

µf a2 =
β1

β3
µf a1 , µf b2 =

β2

β4
µf b1 (59)

For the obstacle parameterµf b1 it can be found:

µf b1 =
m5µf a1(1 − 0.5β1µf a1)

m1µf a1
2 + m2µf a1 + m3

(60)

m1 = 1m2
a1β1(β8/β3 − β2)− 0.5β1(β7/β3−β1)(β1β2 − β5)

m2 = −β1m3 + 0.5β2m5

m3 = β8β1/β3 − β5

m5 = β7β1/β3 − β2
1 + 21m2

a1

and for the line parameterk the equation results:

(k − k−1)2
=

m5µ
2
f a1

−1 + β1µf a1 − 1m2
a1µ

2
f a1

(61)

After some algebraic manipulation a quadratic equation for
the obstacle parameterµf a1 can be derived:

m8µ
2
f a1 + m9µf a1 + m10 = 0 (62)

m6 = β10β2/β4 − β2
2 + 21m2

b1

m7 = m51mb1 − m61ma1

m8 = 0.25β2
1m5m7 + 0.5β1β2m1m5 + m2

1

m9 = m5(β1(0.25β2
1m6 − m7 + 0.5β2m2) − β2m1)

+2m1m2

m10 = m5(β1(−1.25β1m6 + 0.5β2m3) + m7 − β2m2)

+m2
2 + 2m1m3

The unknown parameters of the LR1R2-method can thus be
calculated within the self-calibration procedure. In order to
choose the correct solution, an approximate knowledge of the
geometrical dimensions is necessary. Besides this solution
on the basis of five calibration structures a further solution
based on only four structures is also possible.

4 TRM-method

Based on the setup in Fig. 6, the theory of the reflective cal-
ibration methods without transmission can be transfered to
the well-known TRM-method. The calibration standards of
the TRM method consist of a reflection with the reflection
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Fig. 8. Error-corrected scattering parameters of the material accord-
ing to the TRL (blue line) and the LRR method (red line).

Fig. 9. Measured permittivity and permeability.

coefficientρ and of a match with the reflection coefficientδ

which is supposed to converge towards zero. One possible
realization of the match in a free space system, based on a
mirror and an absorber, is depicted in Fig. 7.

With the bilinear relations of Eqs. (21) and (25) where the
measurement matrixM0 corresponds to the T-standard and
k equals one, because the T-standard is supposed to be of
length zero, the following cross relation can be written with
ρl,1 = ρr,1 = ρ for the R-standard andρl,2 = ρr,2 = δ for
the M-standard:

v =
(νl,2 − νl,1)(νr,2 − νr,1)

(νl,2 − νr,1)(νr,2 − νl,1)
=

(δ − ρ)(δ−1
− ρ−1)

(δ − ρ−1)(δ−1 − ρ)

=
(δ − ρ)(1 − δρ−1)

(δ − ρ−1)(1 − δρ)
(63)

With δ = 0 for the match the very compact solution for the
reflection coefficientρ results:

v = ρ2 (64)

5 Experimental results

Measurements were performed with a free space system in
a frequency range from 10 GHz to 14 GHz. Some measure-
ment results for a polyamide probe (P6, thickness: 4.2 mm,
size: 50 cm× 50 cm) are shown in the following.

In Fig. 8 the error-corrected scattering parameters calcu-
lated according to the TRL in comparison to the LRR method
are depicted. Both methods show a good agreement. Based
on the measured scattering parameters the calculated permit-
tivity is depicted in Fig. 9.
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6 Conclusion

Different methods for the calibration of vector network an-
alyzers are presented. The calibration structures are princi-
pally based on obstacle networks with either transmission, no
transmission or only a weak transmission. All methods have
in common that the calibration structures are all of equal me-
chanical length. They are thus well suited for the implemen-
tation in a free space system for the determination of ma-
terials dielectric properties at microwave frequencies. The
robust functionality of the methods is confirmed in measure-
ments.
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