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∗Dedicated to Prof. Dr. K. Rawer on the occasion of his 90th birthday.

Abstract. Basing on model calculations by Roble and Dick-
inson (1989) for an increasing content of atmospheric green-
house gases in the Earth’s atmosphere Rishbeth (1990) pre-
dicted a lowering of the ionospheric F2- and E-regions. Later
Rishbeth and Roble (1992) also predicted characteristic long-
term changes of the maximum electron density values of the
ionospheric E-, F1-, and F2-layers. Long-term observations
at more than 100 ionosonde stations have been analyzed to
test these model predictions. In the E- and F1-layers the de-
rived experimental results agree reasonably with the model
trends (lowering ofh′E and increase offoE and foF1, in
the E-layer the experimental values are however markedly
stronger than the model data). In the ionospheric F2-region
the variability of the trends derived at the different individual
stations forhmF2 as well asfoF2 values is too large to esti-
mate reasonable global mean trends. The reason of the large
differences between the individual trends is not quite clear.
Strong dynamical effects may play an important role in the
F2-region. But also inhomogeneous data series due to tech-
nical changes as well as changes in the evaluation algorithms
used during the long observation periods may influence the
trend analyses.

1 Introduction

The estimation of ionospheric long-term trends is an im-
portant scientific topic for the investigation of possible an-
thropogenic changes in the Earth’s atmosphere. Whereas an
increasing content of atmospheric greenhouse gases (CO2,
CH4, H2O, ...) should cause increasing temperatures near the
Earth’s surface and in the troposphere (Hegerl et al., 1996) in
the strato-, meso-, and thermosphere the temperatures should
be reduced by an increasing cooling due to an enhanced in-
frared radiation of the greenhouse gases into space (Roble
and Dickinson, 1989). Therefore, Rishbeth (1990) and Rish-
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beth and Roble (1992) predicted a shrinking of the iono-
sphere as well as characteristic changes of the maximum
electron densities in the ionospheric E-, F1-, and F2-layers.

Data of ionosonde observations which are regularly de-
rived at many different stations around the Earth since more
than 40 or even 50 years can be used for trend analyses us-
ing different standard parameters. In this paper the following
parameters have been analyzed: the maximum electron den-
sities of different ionospheric layers characterized by their
critical frequenciesfoE, foF1, andfoF2 as well as the height
parametersh′E and hmF2. The height of the maximum
of the F2-layer,hmF2, has been derived from M(3000)F2
ionosonde values using the well-known simple formula de-
rived by Shimazaki (1955).

Most of the data for more than 100 different ionosonde sta-
tions have been selected from CD-ROMs of NGDC, Boulder,
USA, and from WDC-C at RAL, Chilton, UK.

1.1 Data analysis method

In Fig. 1 some examples of long-term variations are shown
usingfoF2 andhmF2 data (noon values for June and Decem-
ber) observed at the station Juliusruh (54.6◦ N, 13.4◦ E) dur-
ing the time period between 1957 and 2002. Both parameters
are characterized by a marked 11-yearly variation caused by
changes of the solar and geomagnetic activity shown in the
lower part of Fig. 1. Here the solar sunspot numberR is
used as an index of the solar wave radiation and the geomag-
neticAp index as a proxy of the fluxes of precipitating high
energy particles. These solar and geomagnetically induced
variations of the plasma parameters are markedly stronger
than possible long-term variations. Therefore, we used the
following algorithm to eliminate these influences.

For monthly mean values at each full hour forX=foE,h′E,
foF1, foF2, orhmF2 a twofold regression equation has been
derived:

Xth = a + b · R + c · Ap. (1)
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Fig. 1. Long-term variation offoF2 andhmF2 for June and De-
cember at noon condition from ionosonde observations at Juliusruh
(54.6◦ N, 13.4◦ E) together with variations of yearly mean values of
solar sunspot numberR and geomagneticAp index.

For the solar activity index also other parameters thanR

can be used (e.g. solar radio flux F10.7), but the final trend
results are not markedly influenced by this choice (Bremer,
2001). The solar and geomagnetically caused part has been
subtracted from the corresponding observed values for each
month and each hour.

1X = Xobs− Xth. (2)

From these hourly data yearly mean1X values have been
estimated for the derivation of linear trends

1X = d + e · year (3)

with the trend parameterb measured in MHz/year or
km/year.

1.2 Experimental trends

Using the method shortly described in Sect. 1.1 the trends of
different parameters observed at the ionosonde station Julius-
ruh (54.6◦ N, 13.4◦ E) are shown in Fig. 2. Both height pa-
rameters,hmF2 andh′E, have significant negative trends (red
curves) in qualitative agreement with the model predictions
of Rishbeth (1990), whereas the critical frequencies,foE,
foF1,foF2, only slightly increase. Their trends are not signif-
icant (black curves). Compared with the strong variability of
the original data shown in Fig. 1 the amplitudes of the long-
term trends presented in Fig. 2 are markedly smaller, thus
demonstrating that a careful elimination of the solar and geo-
magnetically induced variation is necessary to get reasonable
trend results.

To get more information about mean global trends in the
ionosphere analyses have been extended to data of different
ionosonde stations all around the world. In Fig. 3 the results
of foF1 trends are presented which have been derived from
51 different stations. In the upper part of this figure a his-
togram of the individual trends is shown for significant and
non significant trends. The median trend is marked by an

Fig. 2. Long-term trends of different ionospheric parameters ob-
served at Juliusruh after elimination of the solar and geomagneti-
cally induced variations.

arrow. In the lower part all1X values have been averaged
and a mean trend was estimated. Both mean trend values de-
rived by the two different methods are nearly identical. Also
the estimated mean errors with 95% reliability level (for de-
tails of their estimation see Taubenheim, 1969) are smaller
than the estimated mean values demonstrating that the de-
rived global mean trend values are significant different from
zero.

In Fig. 4 the histograms for all five investigated ionosonde
parameters are shown together with the corresponding me-
dian values marked by arrows. The histograms are charac-
terised by relatively broad distributions, mainly for the pa-
rameters of the F2-region. Figure 4 is an updated version of
a similar picture shown earlier in Bremer (2001). Negative
trends are presented by blue, positive trends by red colour.
The number in brackets describe the number of individual
stations used in the trend analyses. The median trend values
of the histograms are collected in Table 1 together with their
mean error values (Taubenheim, 1969). It can be seen that
only the global mean trends infoE andfoF1 are significant
different from zero with a significance level of more than
95%. For all other cases (h′E, hmF2, foF2) the significance
level is markedly lower (forfoF2: 84%,h′E: 75%, hmF2:
<50%).
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Table 1. Mean experimental trends and error limits (95%) derived from trend analyses for different ionosonde parameters.N is the number
of ionosonde stations used in the estimations of mean trends.

Parameter N Mean trend Error (95%)

F2-region foF2 106 −0.0018 MHz/year ±0.0025 MHz/year
hmF2 87 −0.009 km/year ±0.076 km/year

F1-region foF1 51 0.0027 MHz/year ±0.0011 MHz/year
E-region foE 72 0.0014 MHz/year ±0.0007 MHz/year

h′E 31 −0.040 km/year ±0.070 km/year

Table 2. Mean experimental (exp) trends of different ionospheric parameters and expected changes of these data assuming a doubling of the
atmospheric Greenhouse gases (CO2*2). The model data (mod) are from Rishbeth (1990) and Rishbeth and Roble (1992).

Parameter Mean exp. Trend CO2*2 (exp) CO2*2 (mod)

F2-region foF2 −0.0018 MHz/year −0.36 MHz −0.2 ...−0.5 MHz
hmF2 −0.009 km/year −1.8 km −10 ...−20 km

F1-region foF1 0.0027 MHz/year 0.54 MHz 0.3 ... 0.5 MHz
E-region foE 0.0014 MHz/year 0.28 MHz 0.05 ... 0.08 MHz

h′E −0.040 km/year −8.0 km −2.5 km

From Fig. 4 and the mean results summarised in Table 1
it became clear that the variability of the individual trends
in the F2-region is very strong. Especially thehmF2 trends
differ markedly between the different stations analysed. In
Fig. 5 these individualhmF2 trends are shown in dependence
on latitude and longitude. Negative trends are marked by
blue, positive by red symbols. Full dots represent signifi-
cant trends (>95%), circles non significant trends. Strong
regional differences can be observed e.g. with negative trends
in Central and Western Europe and positive trends in Central
Asia. Also in thefoF2 trends some regional differences oc-
cur, but not so pronounced as in thehmF2 trends.

2 Discussion

Can the mean ionosonde trends shown in Table 1 be ex-
plained by an increasing atmospheric greenhouse effect? To
answer this question the experimental trends have to be com-
pared with model calculations of Rishbeth (1990) and of
Rishbeth and Roble (1992). Their theoretical results have
been derived for a doubling of the atmospheric greenhouse
gases CO2 and CH4. The effective change of the greenhouse
gases during the last 40 years where trends of the ionosonde
data have been investigated is about 20% (Brasseur and de
Rudder, 1987; Houghton et al., 2001). Assuming a linear de-
pendence between the content of the atmospheric greenhouse
gases and the ionospheric effect, the experimental trends
can be extrapolated to a level of doubled greenhouse gases.
These values called CO2*2 (exp) are compared with the cor-
responding model values CO2*2 (mod) of Rishbeth (1990)
and Rishbeth and Roble (1992) in Table 2.

As to be seen from the data shown in Table 2 in
the E-region the experimental and theoretical trend val-

ues agree qualitatively with a lowering of the heighth′E
and an increase offoE. However the experimental trends
are markedly stronger than the model values. The de-
rived positivefoE trend is also in general agreement with
rocket mass spectrometer measurements of the ion density
ratio [NO+]/[O+

2 ]in the E-region (Danilov and Smirnova,
1997). The observed negative trends of [NO+]/[O+

2 ]cause in-
creasing electron densities and therefore increasingfoE val-
ues as the dissociative recombination coefficient of NO+ is
markedly larger than that of O+2 .

The agreement of the mean experimental and model trends
in the F1-region is surprisingly good as to be seen in Table 2.

Also in the F2-region the agreement between the experi-
mental and model trends seems to be quite reasonable look-
ing at the data in Table 2. However, the variability of the
individual trends at different stations is very strong, and the
derived mean trends are not statistically significant different
from zero as can be seen in Table 1. Especially the variabil-
ity of the hmF2 trends is very pronounced. Therefore, the
agreement between model and experimental data is more ac-
cidental. The reason of the strong variability in the F2-region
is not quite clear. After Fig. 5 there seem to be regional dif-
ferences which could be caused by dynamical effects in the
plasma of the F2-region. Such strong regional differences of
thehmF2 trends have also earlier been detected by other au-
thors using a more limited data volume (Ulich and Turunen,
1997; Bremer, 1998; Bencze at al., 1998). From satellite
observations (Keating et al., 2000) it is known that the ob-
served long-term neutral density reduction near 350 km al-
titude is in good agreement with model calculations of an
increasing greenhouse effect (Akmaev, 2002). That means
that the possible greenhouse effect in ionospheric data series
is superposed by unknown dynamical processes which are
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Fig. 3. Mean globalfoF1 trend deduced from world wide ionosonde
observations. Upper part: Histogram of individual trends with me-
dian trend marked by an arrow. Lower part: Mean trend deduced
from individual trends after elimination of solar and geomagnetic
influences.

more important for the variability of the ionized component
than for the neutral gas at F2-region heights.

Another reason of differences between trends of (partly
neighbouring) stations may be caused by technical changes
during the long ionosonde observation periods or by changes
of the evaluation algorithms (one possible effect could be
caused by changes from manual scaling to automatic scal-
ing of the ionosonde observations). In Fig. 6 some examples
of hmF2 data series are shown with discontinuities. Similar
examples can be found in Bremer (2001) forh′E observa-
tions.

Taking into account the above mentioned increase of 20%
of the greenhouse gases during the last 40 years, the dou-
bling of the greenhouse gases would be expected for a time
period of about 200 years. That means the different iono-
spheric parameters will change by the CO2(exp) values of
Table 2 during the next 200 years. Therefore, the expected
mean changes of the different ionospheric parameters are not
essential for practical purposes and have not to be consid-
ered in practical prediction models e.g. for ionospheric HF
propagation.

Fig. 4. Histograms of different ionospheric parameters (foF2,hmF2,
foF1, foE, h′E) from world wide ionosonde observations. The me-
dian values are marked by arrows. The number of ionosonde sta-
tions used in the trend analyses are given in brackets.

3 Conclusions

Using data of world wide long-term ionosonde observations
trends have been estimated for different characteristic iono-
spheric parameters in the E-, F1-, and F2-regions. The fol-
lowing conclusions can be given for the most important me-
thodical, practical and scientific aspects:

– Long-term ionosonde data series have carefully to be
checked concerning their homogeneity. Discontinuities
caused by different technical changes can markedly in-
fluence the results of trend analyses.

– The solar and geomagnetically induced variations of the
ionospheric parameters are essentially stronger than the
long-term trends.

– The long-term trends are unimportant for practical iono-
spheric prediction models. In such models the influence
of the solar variability is the most important external
factor.

– The trends in the E-region (lowering ofh′E, increase
of foE) are in qualitative agreement with an increasing
greenhouse effect. However, the experimental trends
are stronger than the model results.
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Fig. 5. Trends ofhmF2 observations at different ionosonde stations in dependence on latitude and longitude. Positive trends: red, negative
trends: blue, significant trends: full dots, non significant trends: circles.

Fig. 6. Examples of individualhmF2 trends after elimination of the
solar and geomagnetic influences with discontinuities which could
be caused by technical changes.

– The mean trend in the F1-region (increase offoF1)
agrees quite well with model results of an increasing
greenhouse effect.

– Due to a large variability of the individual trends in the
F2-region no significant global trends could be derived
for foF2 andhmF2. Therefore, the relatively reasonable

agreement between the mean global experimental and
model results is accidental. The regional differences of
the trends hint to an unknown dynamical process which
superpose a possible greenhouse effect in the F2-region.
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