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Abstract. Contrast between “normal” and “disturbed” states
of the ionosphere early induced the suggestion to present
ionospheric data with the aid of a “robust” (i.e. outlier-
resistant) statistic, namely, the median instead of the con-
ventional arithmetic mean. K. Rawer, in 1951, defined on
this concept anombre de corŕelation, which proved to be
well resistant to misleading effects of outlier data when an-
alyzing correlations between ionospheric and related data.
Various attempts over many years, however, to extend this
idea towards a robust fitting of regression models to outlier-
contaminated data, remained unsatisfactory. Only a few
years ago, a mathematically correct and unambiguous tech-
nique for robust regression has been reached by Belgian
authors (Rousseeuw and Hubert, 1998), based on the new
paradigm of “maximum data depth”, which is exemplified
here for ionospheric data presentation.

The conventional statistical techniques for presentation
and analysis of data, as they are usually taught at universities,
are based on the assumption that the “statistical scatter” of
data follows a well-balanced, single-humped error distribu-
tion function. Its prototype is the well-known Normal Distri-
bution established by C. F. Gauss one and a half century ago.
In Geophysics, however, we have to deal with various natural
systems which do not behave “normal” in this sense, but are
subject to disturbances by temporary geophysical or solar-
terrestrial events, producing so-called outlier data, i.e. data
which do not fit into the conventional random-error distri-
bution model. Application of conventional statistical proce-
dures to data which are “contaminated” by outliers can lead
to erroneous interpretations and wrong conclusions. Just in
the ionosphere, we typically have always to live with con-
taminated data of this kind, forming indeed a minority but
nevertheless a physically relevant part of our empirical mate-
rial. Consequently, the fathers of world-wide ionospheric re-
search were wise enough to recommend the use of statistics
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which are sufficiently resistant to outlier data, e.g. medians
instead of arithmetic means, and quartile ranges instead of
r.m.s. deviations. In statistical theory, characteristics which
in this way are insensitive to deviations from a basic distri-
bution model are called robust.

Heavy and unwanted misleading effects can happen when
outlier data are involved in a study of correlations of vari-
ous ionospheric data between each other or with other atmo-
spheric or solar predictors. To exemplify this, Fig. 1 (see next
page) shows a plot of daily data of night-time F-region elec-
tron density in dependence on a solar activity index. (The
sample is conveniently selected for its tutorial purpose, but
consists of real data obtained at our ionosonde station Julius-
ruh/Rügen). Its visual impression suggests an obvious ten-
dency of increasing ionisation with increasing solar activity,
just as we should expect it. With high solar activity, however,
there happen ionospheric storm events which drastically re-
duce the electron density. In effect, when we apply the clas-
sical regression procedure of least-square fitting we do not
obtain a significant positive correlation between ionosphere
and solar activity, but seemingly even an indication of slight
negative correlation! Clearly, the shape of the “scatter cloud”
of observed data points is not adequately represented by the
conventionally calculated regression line. This is caused by
the fact that the classical algorithm of minimizing the sum of
squared residuals damages itself since it puts a heavy over-
weight just on the outliers with their large residual values!

It was an idea of Rawer (1951), already half a century
ago, to take advantage of the robust properties of the median
by designing an alternative technique for the test of correla-
tions, in order to avoid the misleading effects of outlier data.
He published it as an annex to a paper in which he com-
pared observations made at two stations: The scatterplot of
the two variables is divided by their medians into four quad-
rants,A, B, C andD (see Fig. 2). If the variables were really
uncorrelated, we evidently have to expect, by virtue of the
definition of medians, that an equal share of the total number
of observations should fall into each of the four quadrants.
On the other hand, if there exists a (positive or negative)
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Fig. 1. Pre-dawn minimum of F2-layer peak electron density
(NmF2), versus solar 10.7 cm radio emission. Daily values in June–
July, 1982, at Juliusruh/R̈ugen ionosonde station. Straight line: Lin-
ear fit according to conventional least-square regression.The Pear-
son correlation coefficient is virtually zero.

correlation, this would express itself by the number of points
in Band C being significantly greater (or smaller, respec-
tively) than those inAandD. Accordingly, Rawer defined
a statistical measure, called by himnombre de corŕelation,
to be calculated from the crosswise ratio of the “point mass”
in B +Cto that inA+D.In our example (Fig. 2) this ratio is
32/26> 1, clearly indicating a positive correlation.

A few years later, I proposed a slight amendment of this
definition, facilitating its smooth transformation into the con-
ventional Pearson correlation coefficient when the observed
data approach the “classical” two-dimensional normal distri-
bution (Taubenheim, 1958).

It can be easily understood, that this “quadrant technique”
proposed by Rawer provides a measure of correlation which
is well outlier-resistant, i.e. “robust”, for the analysis of
disturbance-contaminated ionospheric data. Moreover, it is
quick and easy to perform, and permits a Chi-square-test
of significance according to the usual standards of statistical
analysis.

When we analyze correlations, however, our final aim is
not only to prove the existence of a correlation between ob-
served quantities, but to incorporate it in predictive mod-
els. That means we have to strive for a regression algorithm
which is robust as well, in order to be safe of unwanted ef-
fects like that found in our example. Curiously enough, this
task turned out to be more difficult than expected. Various at-
tempts to it were published and discussed in the course of the
past decades, but in general they proved not fully satisfactory
under the demands of mathematical strictness and numerical
practicability. Only very recently, a few years ago, a solution
of this important problem has come up, which appears both

Fig. 2. Same data as in Fig. 1, but divided into quadrants, according
to Rawer (1951).The number of points in quadrants B + C is greater
than in A + D, indicating a positive correlation.

mathematically correct and well practicable. Here I cannot
go into the details of the theory behind it, but I want to draw
in brief your attention to it.

The starting-point is a new statistical paradigm of data
depth, which has been introduced in the late 1990s by Amer-
ican statisticians (see, e.g. Liu et al., 1999). In brief, the
notion of “depth” means how “deeply embedded” is a point
in the scatter cloud of a givenn-dimensional data sample (in
other words, how comprehensively this point is “surrounded”
by the given data cloud). After this definition, it is immedi-
ately plausible that the point located at maximum depth in a
1-dimensional sample is just our well-known median. Sim-
ilarly, there exists a point of deepest location in any 2-, 3-,
or higher-dimensional sample as well. Data depth is a ro-
bust statistic, i.e. it is resistant to outliers and insensitive to
assumptions about the shape of the distribution functions of
the variables.

For the problem of robust correlation and regression, a
breakthrough came when Rousseeuw and Hubert (1999),
working at the University of Antwerp, extended the paradigm
of data depth by defining a robust “regression depth”, which
in a similar sense characterizes how deep a regression line
is “embedded” (or “nested”) in the scatter cloud of a data
sample. Consequently, the best regression fit is then ascribed
to a line which is located at maximum regression depth in
the scatter cloud. This is the line which takes, so to say,
the “most balanced” position within the surrounding data.
The authors proved that the paradigm of regression depth can
not only be applied to 2-dimensionaly(x) regression, but to
higher dimensional regression as well.
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Fig. 3. Same data as in Fig. 1, but divided into thirds L, M, R,
according to Hubert and Rousseeuw (1998). The straight CAT-line
which “cuts all 3 thirds” represents maximum “regression depth”.

For the construction of a regression line which well ap-
proximates maximum depth in a 2-dimensional scatter plot,
Hubert and Rousseeuw (1998) have given a rather efficient
algorithm, which can be outlined here in short as follows
(see Fig. 3): Divide theN data of the sample along the ab-
scissa into three equal parts, ofN/3 data points each, labelled
“Left” ( L), “Middle” (M), and “Right” (R ), and draw a first
tentative (zero-order) straight regression line which cuts the

scatterplot into 3×2 fields, three above (+) and three below
(-) this line. Then improve the position of the regression line
by an iterative procedure, until finally in each of the com-
bined fieldsL+

∪ M+, M+
∪ R+, L−

∪ M−,andM−
∪ R−,

an equal number ofN/3 data points is found. The iterative
procedure in general converges rather rapidly. The result-
ing regression line is called the “CAT-Line”, because it cuts
all 3 thirds of the sample. It can be proven that the CAT-
line takes the “deepest possible” position of a straight line in
the sample. Obviously, it represents a (robust) 2-dimensional
generalization of the (1-dimensional) median.

We see that the CAT-line in our example (Fig. 3) character-
izes the correlation between the ionosphere and solar activity
in a much more plausible way than with the classical least-
square regression displayed in Fig. 1. As we have already
recognized that robust statistics are the appropriate tool for
the analysis and empirical modeling of disturbed ionospheric
data, we can now state that with this robust regression a long-
wanted progress has been achieved on a way which was vi-
sualized by K. Rawer several decades ago.
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