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Abstract. In the area of computational electromagnetics
there is an increasing demand for various coupled simula-
tions. One example is the coupling between field and circuit
simulation for the description of electromagnetic devices. In
the context of such couplings, theoretical questions arise as
well. How can a field device be represented as an equiva-
lent multiport circuit element? What is meant by flux link-
age if the considered conductors are not filamentary? What
is meant by inductance if the magnetic media exhibit non-
linear behaviour? These questions and their answers are not
new. However, according to the author’s view, these issues
are not sufficiently addressed in the usual textbooks. The aim
of the paper is therefore to (hopefully) answer the questions
concisely and correctly. The modern language of differential
forms will be employed for this purpose.

1 Introduction

To couple field and circuit descriptions of electromagnetic
devices the terminal currents and terminal voltages must be
properly defined. In the absence of displacement currents the
terminal current of a circuit is well defined by the contour in-
tegral of the magnetic field. However, it is not so clear how
to define the terminal voltage in a time-dependent situation,
since the electric field is in general not conservative. This fact
gives rise to an implicit limitation on the use of voltmeters.
All voltmeters are designed to measure the line integral of the
electric field along the path formed by the connecting leads.
Therefore the voltage between two points has a meaning only
when the path of integration is contained in a region of space
in which the electric field behaves approximately as an elec-
trostatic field (Fano et al., 1960, p. 264). These considera-
tions will be formalised in Sect. 2 and lead to the concept of
the Electromagnetic Circuit Element (ECE).

In Sect. 3, the textbook definition of flux linkage is ex-
tended beyond the case of filamentary conductors. It will be
shown that each pair of an ECE’s terminals associated with a
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conducting path can be assigned a flux linkage. The terminal
voltages can then be related to the terminal currents by a DC
resistance matrix plus the time derivative of the linked fluxes.

Electromagnetic devices often exhibit non-linear be-
haviour due to iron saturation. The usual definition of induc-
tance coefficients breaks down in such situations, because it
crucially relies on the principle of linear superposition. Sec-
tion 4 is devoted to the question how inductance coefficients
can be defined in a way that also accounts for non-linearities.

The modern language of differential forms will be used
throughout this paper. We denote byFp(�) the set of dif-
ferentialp-forms over a domain� and represent the elec-
tromagnetic field quantities by differential forms of various
degree. The electric scalar potentialϕ ∈ F0(�) can be seen

as a 0-form. The electric fieldE ∈ F1(�), the magnetic field
H ∈ F1(�) and the magnetic vector potentialA ∈ F1(�)

are all represented by 1-forms. The electric and magnetic
flux densitiesD ∈ F2(�) andB ∈ F2(�), respectively,
are regarded as 2-forms, while the electric charge density
ρ ∈ F3(�) is represented by a 3-form. Boundary traces
of the fields can be obtained by means of the trace operatort.
All spatial derivatives are expressed in terms of the exterior
derivative d, while∂t denotes the time derivative. Trace and
derivative operators commute with each other.

2 Electromagnetic circuit elements

Under which conditions does an electromagnetic device pro-
vided with terminals behave like a circuit?

To answer this question and to precisely define terminal
currents and voltages we introduce the concept of the Elec-
tromagnetic Circuit Element (ECE), see Munteanu and Ioan
(2001) and the references cited therein. An ECE is a do-
main� whose boundary0 is equipped withn ideal terminal
connectorsS1, S2, . . . , Sn. The terminal connectors and the
complementary insulating surfaceSe form a disjoint partition
of 0,

0 = ∂� = Se +

n∑
k=1

Sk, (1)
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Fig. 1. An Electromagnetic Circuit Element (ECE) is a domain Ω
whose boundary Γ is equipped with n ideal terminal connectors
S1, S2, . . . , Sn. Current can only flow through these connectors,
but not through the insulating surface Se. Moreover, it is required
that there is no magnetic coupling through the boundary.

of Γ,

Γ = ∂Ω = Se +
n∑

k=1

Sk, (1)

where ∂ denotes the boundary operator. To avoid topological
difficulties, we assume that the domain Ω is star-shaped. For
an analysis of the general case see Kettunen (2001).

The defining conditions for the ECE refer only to the
boundary of the domain occupied by the device, and not to
its internal structure. There are three boundary conditions,

∃ϕ
Γ
∈ F0(Γ) : tE = − dϕ

Γ
, (2a)

ϕ
Γ

= ϕ
k

= const on Sk, (2b)

tdH = t(J + ∂tD) = 0 on Se. (2c)

The first condition means that the tangential component tE
of the electric field at the boundary can be represented as the
surface gradient of a surface potentialϕ

Γ
. Condition (2a) for-

bids magnetic coupling between the interior and the exterior
of the ECE. In fact,

t∂tB = −tdE = − dtE = ddϕ
Γ

= 0, (3)

so no time-dependent flux can evade the domain. The only
interaction of the ECE with its exterior is accomplished
through its terminals. The second condition (2b) imposes
equipotentiality of the terminals. Finally, (2c) implies that
(conduction or displacement) current can only flow through
the terminals.

Let us define terminal currents ik and voltages uk,

ik = −
∫

Sk

t(J + ∂tD) = −
∫

∂Sk

tH, (4)

uk = ϕ
k
− ϕ

n
, k = 1, . . . , n. (5)

An ECE with n terminals can be considered a system with n–
1 inputs, namely currents ik or voltages uk, and n–1 outputs
– those currents and voltages which are not input quantities.

The terminal Sn has been chosen as ground terminal, un=0.
The input-output relation is, for a given initial state, uniquely
determined. Despite the finite number of inputs and outputs,
the system has an infinite dimension of the state space.

Kirchhoff’s current law is automatically satisfied, since

n∑
k=1

ik = −
n∑

k=1

∫
∂Sk

tH = −
n∑

k=1

∫
Sk

tdH

= −
∫

Γ=∂Ω

tdH = −
∫

Ω

tddH = 0. (6)

Kirchhoff’s voltage law holds trivially, due to the definition
(5). The validity of Kirchhoff’s laws ensures that the ECE
can be coupled with external circuitry as if it was yet another
circuit. The power received by the ECE from some exterior
circuit can be expressed similarly to the case of classical cir-
cuits, as the sum of voltage-current products for all terminals,

pΓ(t) = −
∫

Γ

t(E ∧H) =
∫

Γ

dϕ
Γ
∧ tH

= −
∫

Γ

ϕ
Γ
∧ tdH = −

n∑
k=1

∫
Sk

ϕ
Γ
∧ tdH

= −ϕ
k

n∑
k=1

∫
Sk

tdH =
n∑

k=1

ϕ
k
ik

=
n−1∑
k=1

(ϕ
k
− ϕ

n
)ik + ϕ

n

n∑
k=1

ik =
n−1∑
k=1

ukik. (7)

The ECE boundary conditions are, of course, satisfied only
approximately in practice, and the difference

ε =
∫

Γ

t(E ∧H) +
n−1∑
k=1

ukik (8)

of both expressions for the power gives a measure of the ap-
proximation error. If this error is unacceptably high, one or
more of the conditions (2) are not fulfilled and the domain Ω
cannot be considered as a circuit element.

3 Flux Linkage

The concept of an ECE allowed a precise definition of termi-
nal currents and voltages. As a next step, we will proceed to
the notion of flux linkage. To this end, we consider an ECE
that represents a quasi-stationary magnetic field system. The
fields in Ω shall be therefore governed by Maxwell’s equa-
tions in the form

dH = J, (9a)

dE = −∂tB, (9b)

dB = 0. (9c)

Maxwell’s equations have to be complemented by material
laws. We denote the conducting subdomain by Ωσ , i.e.

σ > 0 in Ωσ ⊂ Ω, σ = 0 in Ω\Ωσ, (10)

Fig. 1. An Electromagnetic Circuit Element (ECE) is a domain
� whose boundary0 is equipped withn ideal terminal connectors
S1, S2, . . . , Sn. Current can only flow through these connectors,
but not through the insulating surfaceSe. Moreover, it is required
that there is no magnetic coupling through the boundary.

where∂ denotes the boundary operator. To avoid topological
difficulties, we assume that the domain� is star-shaped. For
an analysis of the general case see Kettunen (2001).

The defining conditions for the ECE refer only to the
boundary of the domain occupied by the device, and not to
its internal structure. There are three boundary conditions,

∃ϕ
0

∈ F0(0) : tE = − dϕ
0
, (2a)

ϕ
0

= ϕ
k

= const onSk, (2b)

tdH = t(J + ∂tD) = 0 onSe. (2c)

The first condition means that the tangential componenttE
of the electric field at the boundary can be represented as the
surface gradient of a surface potentialϕ

0
. Condition (2a) for-

bids magnetic coupling between the interior and the exterior
of the ECE. In fact,

t∂tB = −tdE = − dtE = ddϕ
0

= 0, (3)

so no time-dependent flux can evade the domain. The only
interaction of the ECE with its exterior is accomplished
through its terminals. The second condition (2b) imposes
equipotentiality of the terminals. Finally, Eq. (2c) implies
that (conduction or displacement) current can only flow
through the terminals.

Let us define terminal currentsik and voltagesuk,

ik = −

∫
Sk

t(J + ∂tD) = −

∫
∂Sk

tH, (4)

uk = ϕ
k
− ϕ

n
, k = 1, . . . , n. (5)

An ECE withn terminals can be considered a system withn–
1 inputs, namely currentsik or voltagesuk, andn–1 outputs
– those currents and voltages which are not input quantities.

The terminalSn has been chosen as ground terminal,un=0.
The input-output relation is, for a given initial state, uniquely
determined. Despite the finite number of inputs and outputs,
the system has an infinite dimension of the state space.

Kirchhoff’s current law is automatically satisfied, since

n∑
k=1

ik = −

n∑
k=1

∫
∂Sk

tH = −

n∑
k=1

∫
Sk

tdH

= −

∫
0=∂�

tdH = −

∫
�

tddH = 0. (6)

Kirchhoff’s voltage law holds trivially, due to the definition
(Eq. 5). The validity of Kirchhoff’s laws ensures that the
ECE can be coupled with external circuitry as if it was yet
another circuit. The power received by the ECE from some
exterior circuit can be expressed similarly to the case of clas-
sical circuits, as the sum of voltage-current products for all
terminals,

p0(t) = −

∫
0

t(E ∧H) =

∫
0

dϕ
0

∧ tH

= −

∫
0

ϕ
0

∧ tdH = −

n∑
k=1

∫
Sk

ϕ
0

∧ tdH

= −ϕ
k

n∑
k=1

∫
Sk

tdH =

n∑
k=1

ϕ
k
ik

=

n−1∑
k=1

(ϕ
k
− ϕ

n
)ik + ϕ

n

n∑
k=1

ik =

n−1∑
k=1

ukik. (7)

The ECE boundary conditions are, of course, satisfied only
approximately in practice, and the difference

ε =

∫
0

t(E ∧H)+

n−1∑
k=1

ukik (8)

of both expressions for the power gives a measure of the ap-
proximation error. If this error is unacceptably high, one or
more of the conditions (2) are not fulfilled and the domain�
cannot be considered as a circuit element.

3 Flux linkage

The concept of an ECE allowed a precise definition of termi-
nal currents and voltages. As a next step, we will proceed to
the notion of flux linkage. To this end, we consider an ECE
that represents a quasi-stationary magnetic field system. The
fields in� shall be therefore governed by Maxwell’s equa-
tions in the form

dH = J , (9a)

dE = −∂tB, (9b)

dB = 0. (9c)

Maxwell’s equations have to be complemented by material
laws. We denote the conducting subdomain by�σ , i.e.

σ > 0 in�σ ⊂ �, σ = 0 in�\�σ , (10)
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whereσ is the electrical conductivity. We assume that a lin-
ear Ohm’s law holds in�σ , which can be stated locally as

J = ∗σE. (11)

Herein,∗σ denotes the Hodge operator that is adapted to the
conductivity distribution. In vector notation, Eq. (11) just
meansJ = σE.

Finally, we assume that each terminal connectorSk,
k=1, . . . , n–1 is connected to the ground terminalSn by a
path which is completely contained in�σ . This condition
restricts the topology of�σ in order to simplify the subse-
quent derivations. The restriction could be lifted without sig-
nificantly affecting the main results. For a detailed discussion
about the topological aspects see S. Suuriniemi and Kettunen
(2003).

We don’t give a specific relation betweenB andH , but
have in mind some rather general non-linear magnetic mate-
rial behaviour, with a sufficient degree of regularity, Hantila
(1974).

Since the domain� is star-shaped, the fields in� can be
represented without topological difficulties by means of the
potentials,

B = dA, E = − dϕ − ∂tA. (12)

In �, the line integral of the electric field is in general de-
pendent on the path of integration. If we relate the surface
potentialϕ0 ∈ F0(0) to the potentialϕ ∈ F0(�) by

ϕ
0

= tϕ, (13)

then the magnetic vector potential has to obey the boundary
condition

∂t tA = − dtϕ − tE = − dϕ0 − tE = 0. (14)

We consider two different states (say 1 and 2) of the system,
and find

d(ϕ
1
∧ J 2) = ϕ

1
∧ dJ 2 + (dϕ

1
) ∧ J 2

= −(E1 + ∂tA1) ∧ J 2. (15)

The first term drops out due to the solenoidality dJ = 0 of
the current density. We integrate Eq. (15) over� and use
Stokes’ theorem to obtain∫

0

tϕ
1
∧ tJ 2 = −

∫
�

(E1 + ∂tA1) ∧ J 2. (16)

Proceeding along the same lines as in Eq. (7) reveals∫
0

tϕ
1
∧ tJ 2 =

∫
0

ϕ
0,1

∧ tdH 2 = −

n−1∑
k=1

u1,ki2,k. (17)

We introduce the vector of currentsi=
(
i1, . . . , in−1

)T
∈

Rn−1 and the vector of voltagesu=
(
u1, . . . , un−1

)T
∈ Rn−1.

From Eqs. (16) and (17) we receive

uT1 i2 =

∫
�

(E1 + ∂tA1) ∧ J 2. (18)

Since Eq. (18) holds for arbitrary states 1 and 2 of the sys-
tem, we may equally well swap the indices and subtract the
resulting equations from each other, yielding

uT1 i2 − uT2 i1 =

∫
�

E1 ∧ J 2 − E2 ∧ J 1

+

∫
�

∂tA1 ∧ J 2 − ∂tA2 ∧ J 1. (19)

Since Ohm’s law (11) induces a symmetric bilinear form,

E1 ∧ J 2 = E1 ∧ (∗σE2) = E2 ∧ (∗σE1) = E2 ∧ J 1,

(20)

the first integral in Eq. (19) drops out and we are left with the
reciprocity theorem

uT1 i2 − uT2 i1 =

∫
�

∂tA1 ∧ J 2 − ∂tA2 ∧ J 1. (21)

Let us in a first step consider stationary DC states,∂t = 0.
DC currents and voltages shall be denoted by capital letters.
By exploiting once again the linearity of Ohm’s law, we are
able to express the current densityJ as a multilinear function
of the terminal currents,

J =

n−1∑
k=1

τ kIk = τT I . (22)

Note thatτ k ∈ F2(�) is the current density in the system
when the DC current through terminalSk equals 1 Amp and
all other currents equal zero. The current will return through
the ground terminalSn, which is ensured by the topological
prerequisite about�σ . From Eqs. (11), (18), (22), and the
property∗σ∗σ = 1 we find

UT1 I2 =

∫
�σ

E1 ∧ J 2 =

∫
�σ

∗σJ 1 ∧ J 2

= IT1

(∫
�σ

∗σ τ ∧ τT
)

I2. (23)

We define the resistance matrixR ∈ R(n−1)×(n−1) according
to

R =

∫
�σ

∗σ τ ∧ τT , (24)

whereR = RT . Since Eq. (23) holds for arbitrary DC states
I2, we can conclude

U = R I . (25)

Armed with these results we proceed to a more general con-
sideration, where state 1 is an arbitrary state (no index), while
state 2 is a stationary DC state (index 0). In this case, Eq. (21)
reduces to

uT I0 − UT0 i =

∫
�σ

∂tA ∧ J 0. (26)
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2

1i1

R · i1
u1

dψ(A)

dt

ψ(A)

Fig. 2. Equivalent circuit diagram for a simple ECE with two termi-
nals. The ECE represents a quasi-stationary magnetic field system.

It is sufficient to restrict the integration over the conducting
subdomain�σ . By using Eqs. (22) and (25) we find

uT I0 =

(
iTR +

∫
�σ

∂tA ∧ τT
)

I0. (27)

Since this holds for arbitrary DC statesI0, we conclude

u = R i +

∫
�σ

∂tA ∧ τ = R i + ∂tψ(A) (28)

with thegeneralised flux linkage

ψ : F1(�) → Rn−1
: A 7→ ψ(A) =

∫
�σ

A ∧ τ . (29)

This is the main result of the section. For the case of a simple
ECE withn=2 terminals, Eq. (28) reads

u1 = R i1 + ∂tψ(A), ψ(A) =

∫
�σ

A ∧ τ , (30)

and can be represented by an equivalent circuit diagram as
shown in Fig. 2.

Equation (28) completely determines the terminal be-
haviour of the ECE and can be used as a starting point for
the coupling of field and circuit descriptions. Be aware that
Eq. (28) does not relate to a decomposition of the received
power (Eq. 7) into Ohm’s losses, and power converted into
field energy. The second term may relate to losses as well.
Think of Fig. 2 as the equivalent circuit diagram of a short-
circuited transformer. In this caseR reflects the resistance of
the primary winding. The dissipated power in the secondary
winding is transmitted via the field and contained in the term
i ∂tψ(A).

The evaluation of the flux linkage (Eq. 29) becomes
straightforward if we have to deal with filamentary conduc-
tors, because in this case the filaments define the paths of
the current. For a single filamentC which bounds a surface
F we haveτ = δC , whereδC is a singular 2-form which

is localised along the contourC. The coefficients of such
forms can be represented in terms ofδ-distributions. For suf-
ficiently smooth 1-formsω we have∫

�

ω ∧ δC =

∫
C

ω. (31)

The expression (29) for the flux linkage therefore reduces to

ψ(A) =

∫
�

A ∧ δC =

∫
C

A =

∫
F

B. (32)

Equation (32) is of course the usual textbook definition of the
flux linkage. For obvious reasons, mappingsFp(�) → R
are calledde Rham’s currents, see de Rham (1984).

4 Inductance and energy

The definition of inductances will allow us to set up a finite-
dimensional state space model of the system. Since the ECE
considered so far has an infinite dimension of the state space,
we can conclude that it is not possible to define inductances
without further restrictions.

Suppose that Eq. (22) is valid not only for DC currents,
but even for all time-dependent currents,

J =

n−1∑
k=1

τ kik = τT i. (33)

This can be enforced by requiring that all conductors are of
the filamentary type and that�σ contains no loops. The lat-
ter condition eliminates situations such as the short-circuited
transformer, whose secondary winding would be otherwise
invisible from a DC point of view.

Then, given a statei, the current densityJ (i) is uniquely
determined by Eq. (33). This in turn determines a unique
vector potentialA(i), flux densityB(i) and fieldH(i), pro-
vided there is no hysteresis. These quantities depend oni,
but not on the rate of change ofi. They will be subsequently
regarded as forms defined on�× Rn−1. This is reflected in
the notation by explicitely writing the argumenti. The exte-
rior derivative w.r.t. the state spaceRn−1 will be denoted by
δ.

Plugging the vector potentialA(i) into Eq. (29) yields the
flux mapping

ψ̃ : Rn−1
→ Rn−1

:

i 7→ ψ̃(i) = ψ
(
A(i)

)
=

∫
�σ

A(i) ∧ τ . (34)

For the differential of the flux mapping we have by definition

δψ̃(i) =

∫
�σ

δA(i) ∧ τ ≡ L(i) δi, (35)

where the elements ofδψ̃(i) can be seen as 1-forms over the
state space. It follows that

L(i) =

(
Llk(i)

)
=

(
∂ψ̃l

∂ik

)
∈ R(n−1)×(n−1). (36)



S. Kurz: Flux linkage and inductance 43

The elements of the matrix (36) are calledincremental in-
ductances, Demerdash and Nehl (1999). If we consider a
trajectory i(t) in state space, then the exterior derivativeδ
can be expressed by pullback asδ = ∂t ∧ dt . From Eqs. (28)
and (35) we thus derive

u = R i + L(i) ∂t i. (37)

The incremental inductance matrixL(i) relates the time
derivative of the currents to the induced voltages.

From Stokes’ theorem in state space we conclude∫ i

0
δψ̃(i) = ψ̃(i)− ψ̃(0), (38)

the integral being path independent. We take advantage of
this freedom, and connect the points 0 andi in state space by
a straight line. This results in

ψ̃(i) = Lψ (i) i + ψ̃(0), (39)

Lψ (i) =

∫ 1

0
L(λi)dλ. (40)

The elements of the matrix (40) are calledapparent induc-
tances, Demerdash and Nehl (1999). The apparent induc-
tance matrixLψ (i) relates the currents to the flux linkages.
Note that the usual definition of inductance coefficientsL

ψ
lk

as “flux linkage of terminal #l divided by terminal current
#k” breaks down in a non-linear situation, because it relies
on the pinciple of linear superposition. For linear systems,
Lψ=L follows immediately from Eq. (40).

To arrive at an expression for the energy, let us consider
the 1-form

ω = iT δψ̃(i) = iT L(i)δi =

n−1∑
k=1

ωk δik, (41)

ωk =

n−1∑
l=1

ilLlk(i), (42)

ω ∈ F1(Rn−1), and compute its exterior derivative

δω =

n−1∑
k=1

∑
m<k

(
∂ωk

∂im
−
∂ωm

∂ik

)
δim ∧ δik. (43)

Taking into account

∂ωk

∂im
= Lmk +

n−1∑
l=1

il
∂Llk

∂im
= Lmk +

n−1∑
l=1

il
∂2ψ̃l

∂ik∂im
,

∂ωm

∂ik
= Lkm +

n−1∑
l=1

il
∂Llm

∂ik
= Lkm +

n−1∑
l=1

il
∂2ψ̃l

∂im∂ik
,

we obtain

δω =

n−1∑
k=1

∑
m<k

(Lmk − Lkm)δim ∧ δik. (44)

On the other hand, from Eqs. (33), (35) and (41) we receive

ω = iT
∫
�σ

δA(i) ∧ τ =

∫
�σ

δA(i) ∧ J (i)

=

∫
�

δA(i) ∧ dH(i)

=

∫
�

δ dA(i) ∧H(i)−

∫
0

δtA(i) ∧ tH(i)

=

∫
�

δB(i) ∧H(i) = δW(i). (45)

The boundary integral in the second last line vanishes in the
light of the boundary condition (Eq. 14). In Eq. (45), the
magnetic field energy

W : Rn−1
→ R : i 7→ W(i) (46)

stored in the domain� has been introduced. We combine
Eqs. (41) and (45) into

ω = iT L(i)δi = δW(i). (47)

Poincaŕe’s lemma in connection with Eq. (44) yields

0 = δ
(
δW(i)

)
= δω =

n−1∑
k=1

∑
m<k

(Lmk − Lkm)δim ∧ δik,

(48)

thusL = LT . Not only the incremental inductance matrix,
but also the apparent inductance matrix is symmetric, due to
the definition (40). The symmetry of the inductance matrices
turns out to be the integrability condition that connects the
differential δW(i) to the magnetic energyW(i) by Stokes’
theorem ∫ i

0
δW(i) = W(i)−W(0), (49)

such that the integral is path independent. By using Eq. (47)
and proceeding along the same l ines as in Eqs. (39) and (40)
we end up with

W(i) =
1

2
iT LW (i) i +W(0), (50)

LW (i) =

∫ 1

0
2λL(λi) dλ, (51)

yet another symmetric inductance matrix which relates the
currents to the stored energy. In generalL(i) 6= Lψ (i) 6=

LW (i). This fact is not always adequately emphasised in the
literature. Only for linear magnetic systems all three matrices
become identical.

5 Conclusions

In this paper, some issues arising from the coupling of field
and circuit descriptions of electromagnetic devices have been
addressed. Not only terminal currents and voltages, but
also flux linkages can be unambiguously defined, such that
Eq. (28) holds. The determination of the generalised flux
linkage follows a simple recipe:
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– Select a pair of terminals which can be connected by a
path that lies completely within�σ .

– Impress a DC currentI0 and record the resulting nor-
malised DC current densityτ = J 0/I0.

– The flux linkage in an arbitrary time-dependent situa-
tion is calculated by projecting the vector potentialA

ontoτ , Eq. (29). In vectorial notation, this becomes

ψ(A) =

∫
�σ

A ·
J 0

I0
d�. (52)

To introduce inductances, we have assumed a finite dimen-
sional state space, with the terminal currents as state vari-
ables. This can be achieved by admitting filamentary con-
ductors only. In practice, the conductors will have a finite
thickness, such that skin and proximity effects occur. These
effects have not been included in the definition of the induc-
tances. Such effects would render the inductance matrices
dependent not only on the currents, but also on the rate of
change of the currents in a complicated manner.

The most basic inductance matrix is the incremental induc-
tance matrixL , whose coefficients are obtained by the rule
“derivative of the fluxes w.r.t the currents”, Eq. (36). This
definition does not rely on the principle of linear superposi-
tion. Two other inductance matrices, namelyLψ andLW ,
can be constructed by integration, Eqs. (40) and (51), respec-
tively. All inductance matrices are symmetric and, apart from
linear magnetic systems, different from each other. The ap-
propriate matrix has to be selected, as the case may be com-
putation of induced voltages, flux linkages or magnetic field
energy.
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