
Advances in Radio Science (2004) 2: 57–62
© Copernicus GmbH 2004 Advances in

Radio Science

Computation of the frequency response of a nonlinearly loaded
antenna within a cavity

F. Gronwald, E. Blume, and J. Nitsch

Institute for Fundamental Electrical Engineering and EMC, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2,
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Abstract. We analyze a nonlinearly loaded dipole antenna
which is located within a rectangular cavity and excited by
an electromagnetic signal. The signal is composed from two
different frequencies. In order to calculate the spectrum of
the resulting electromagnetic field within the resonator we
transform the antenna problem into a network problem. This
requires to precisely determine the antenna impedance within
the cavity. The resulting nonlinear equivalent network is
solved by means of the harmonic balance technique. As
a result the occurrence of low intermodulation frequencies
within the spectrum is verified.

1 Introduction

In the framework of EMC analysis of complex systems the
electromagnetic coupling path from EMI-source to EMI-
victim usually is divided into an exterior and an interior prob-
lem (Lee, 1995; Tesche et al., 1997). The interior prob-
lem involves the electromagnetic coupling to an EMI-victim
within a resonator. Its analytic description mathematically is
rather complicated, in particular if electromagnetic coupling
to nonlinear elements is involved. From an EMC engineer-
ing point of view it is important to determine the resulting
frequency spectrum within the resonator. From this it is pos-
sible to estimate potential upset or damage due to the exci-
tation of low-frequency cavity resonances that might occur
after demodulation of an incoming electromagnetic signal at
a nonlinear element.

Nonlinearly loaded antennas in free space already have
been investigated in considerable detail (Sarkar and Weiner,
1976; Liu and Tesche, 1976; Kanda, 1980). A working ap-
proach is to convert the electromagnetic field problem to a
corresponding nonlinear network problem and to solve the
latter one by the harmonic balance technique (Huang and
Chu, 1993; Lee, 2000). The analysis of the nonlinear cou-
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pling problem within a cavity follows, in principle, the same
pattern as the analysis in free space. To properly describe the
electromagnetic coupling the Green’s function of the cavity,
which usually is given in terms of a series, has to be used in
place of the Green’s function of free space. Then it is most
important to use a representation of the cavity’s Green’s func-
tion which is quickly convergent in order to ensure numeri-
cal efficiency and accuracy during its evaluation. This must
be guaranteed for evaluation both close to the source region
and close to a resonance. In the present paper we will use
a specific representation which is based on the Ewald sum
technique (Gronwald, 2003).

The paper is organized as follows: In Sect. 2 we establish
the formulation of the problem and collect some equations.
Sect. 3 focuses on the determination of the equivalent net-
work problem and reviews as solution procedure the reflec-
tion algorithm which is a special case of the harmonic bal-
ance technique (Maas 1988). Results for a specific example
are provided by Sect. 4 and followed by a conclusion.

2 Setup and network formulation of the problem

As a model of a nonlinear electric or electronic component
which is susceptible to an exciting electromagnetic field we
take a nonlinearly loaded dipole antenna which is placed
within a rectangular cavity, compare Fig. 1. We excite the
antenna by an electromagnetic source field and want to cal-
culate the frequency response, i.e., the spectrum of the re-
sulting electromagnetic field that, in turn, is determined by
the spectrum of the resulting antenna current.

To solve this field theoretical problem for the unknown
antenna current we transform it into a network problem. The
Thévenin and Norton equivalent of the dipole antenna are
shown in Fig. 2. They contain the equivalent current source
Ieq(ω) and the equivalent voltage sourceVeq(ω), respec-
tively, that are present at the antenna input terminal and due
to the electromagnetic source field. They also involve the
antenna input admittanceY (ω) and input impedanceZ(ω),
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Fig. 1. Setup of the problem: A nonlinearly loaded antenna is
placed within a rectangular cavity of dimensionslx , ly , lz, and ex-
cited by a known electromagnetic field. The frequency spectrum of
the scattered electromagnetic field needs to be determined.

respectively. We note thatY (ω) andZ(ω) are characterized
not only by the antenna geometry but also by the dimensions
of the rectangular cavity and by the antenna position and ori-
entation within the cavity. To precisely determine the param-
etersIeq(ω), Y (ω), or likewiseVeq(ω), Z(ω), is a demanding
field theoretical task. We will use, as an approximate solu-
tion scheme, the method of moments and take advantage of
the cavity’s Green’s function. Once the equivalent parame-
ters are known we can use standard methods to solve for the
antenna current. The details for the two step procedure

1. determination of the equivalent network parameters by
the method of moments and

2. solving the network problem for the antenna current by
the reflection algorithm

will be given in the following section.

3 Solution procedure

3.1 Method of moments within a rectangular cavity

There are two standard integral equations which can be used
to determine the current on a linear wire antenna. These
are Pocklington’s equation and Hallén’s equation (Nakano,
1996). For the following we choose Hallén’s equation in fre-
quency domain with time dependency exp(jωt).

We consider a straight dipole antenna which is aligned
with the x-axis and position its center atx=lx/2. To ex-
plicitly write down Halĺen’s equation requires to explicitly
specify the electromagnetic source field. For the method of
moments procedure this specific choice is not really impor-
tant since it merely determines the inhomogeneous part of
the corresponding algebraic system of equations which nor-
mally poses no computational difficulties. The important and
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Fig. 2. Equivalent network formulation of the problem in Fig. 1.

demanding element of the calculation is the computation of
the homogeneous part, i.e., the matrix elements of the alge-
braic system, and this does not involve the electromagnetic
source.

We choose as excitation a slice generator that is charac-
terized byEq

x (x)=V0δ(x−lx/2). If furthermore a thin-wire
approximation is employed it is found that Hallén’s equation
acquires the form∫ L/2

−L/2
GA

cavxx(x, x′)I (x′)dx′
=

−
j

η

(
A cos(k(x −

lx

2
)) +

V0

2
sin(k|x −

lx

2
|)
)

, (1)

with GA
cavxx the xx-component of the vector potential’s

dyadic Green’s function of the cavity. The symbolη de-
notes the intrinsic impedance of the surrounding medium,
η=

√
µ/ε, and the wavenumber is given byk=ω/c. Since

we have in mind to solve Hallén’s equation within a
lossy cavity we will pass to a complex wavenumber via
k→k(1−j/(2Q)), whereQ denotes the quality factor of the
cavity. The integral extends over the length of the antenna
which is denoted byL and the antenna radius is denoted by
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ρ. In Eq. (1) the unknowns are the current distributionI (x)

and the integration constantA. These unknowns are to be
determined by the method of moments.

It was shown (Gronwald, 2003) thatGA
cavxx can be written

in the form of a specific ray-mode representation,

GA
cavxx = GA

cavxx1︸ ︷︷ ︸
mode part

+ GA
cavxx2︸ ︷︷ ︸

ray part

(2)

where

GA
cavxx1 =

µ

8lx ly lz

∞∑
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7∑
i=0
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k2
0−k2

4E2
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(
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, (3)

GA
cavxx2 =

µ

8π
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m,n,p=−∞

7∑
i=0

Axx
i ×

[
exp(jkRi,mnp)erfc(Ri,mnpE + jk/2E)

Ri,mnp

+

exp(−jkRi,mnp)erfc(Ri,mnpE − jk/2E)

Ri,mnp

]
. (4)

Here the coefficientAxx
i is defined by

Axx
i =

{
+1 , i = 0, 3, 4, 7
−1 , i = 1, 2, 5, 6

. (5)

The lengthRi,mnp represents the distance between a source
at r ′

= (x′, y′, z′) and its mirror sources to an observation
point atr = (x, y, z). It is given by

Ri,mnp =

√
ρ2 + (Xi + 2mlx)2 + (Yi + 2nly)2 + (Zi + 2plz)2, (6)

with

Xi =

{
x − x′ , i = 0, 1, 2, 3
x + x′ , i = 4, 5, 6, 7

, (7)

Yi =

{
y − y′ , i = 0, 1, 4, 5
y + y′ , i = 2, 3, 6, 7

, (8)

Zi =

{
z − z′ , i = 0, 2, 4, 6
z + z′ , i = 1, 3, 5, 7

. (9)

The componentsk0x , k0y , andk0z are defined by the vector
k0 according to

ko := (k0x, k0y, k0z) := (mπ/lx, nπ/ly, pπ/lz) , (10)
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Fig. 3. Absolute value of the input impedance of a dipole antenna
within a rectangular cavity. It was obtained by the method of mo-
ments as described in the text. The peaks correspond to resonances
of the cavity.

andE denotes an adjustable parameter. Finally, we intro-
duced in (4) the complementary error function erfc(z).

The benefit of the ray-mode representation (3), (4) is its
quick convergence in both the source regionr→r ′ and close
to resonance. This feature is typical for this kind of repre-
sentation (Felsen, 1984). The number of terms required for
convergence can be of orders of magnitude smaller as com-
pared to a standard mode or ray representation (Gronwald et
al., 2002).

The solution of Halĺen’s equation (1) yields the current
distribution on the dipole antenna within the cavity (Gron-
wald, 2003). From this the input impedanceZ(ω) or input
admittanceY (ω) can directly be obtained sinceVeq(ω) al-
ready is given by the exciting slice generator. In Figure 3 we
show as an illustration the input impedance of a 1m dipole
antenna which is contained within a cavity of dimensions
7m×6m×3m and constant quality factorQ=1000. The di-
mensions correspond to a real life mode-stirred chamber, as
it is installed at the University of Magdeburg, for example.

3.2 Reflection algorithm

The nonlinear network of Fig. 2 can mathematically be de-
scribed within the framework of the harmonic balance tech-
nique. For a solution of the corresponding harmonic balance
equations the reflection algorithm can be used (Kerr, 1975;
Maas, 1988). The reflection algorithm is similar to the Berg-
eron method (Magnusson et al., 2001) and imitates a turn-on
process where the source is switched on at a specific mo-
ment. In order to have a dynamical process that, hopefully,
will settle after some time into a stable state of the network,
one introduces a fictitious, ideal transmission line between
the linear and the nonlinear subcircuit of Fig. 2, compare
Fig. 4. The transmission line is supposed to not alter the
steady state properties of the complete nonlinear circuit. This
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Fig. 4. The reflection algorithm conceptually requires to insert an
ideal transmission line between the linear and nonlinear subcircuit.
After the turning on of the sourceVeq(ω) there will be an incident
wavevi(t) which propagates along the transmission line towards
the nonlinear load. The wave will interact with the nonlinear load
and, subsequently, form a reflected wavevr (t) that travels back to-
wards the linear subcircuit. There it will be reflected again to form a
new incident wave that propagates towards the nonlinear load. The
process continues until a steady state is reached.

implies that its length must be an integer number of wave-
lengths of the exciting frequencies. In the case of two excit-
ing frequenciesf1 andf2 with corresponding wavelengths
λ1 andλ2, respectively, it follows that the wavelengths must
fulfill λ1/λ2=n2/n1 for some integersn1 andn2.

The reflection algorithm is established by the following
steps:

1. We first calculate the initial incident wavev0
i (t). If the

impedance of the ideal transmission line, which, inci-
dentally, is real, is denoted byZC the initial wave will
be of the form

v0
i (t) =

|Veq |ZC cos(ωt + θ)√
|Z|2 + Z2

C

, (11)

θ := arctan
( Im(Z)

Re(Z)+ ZC

)
. (12)

In case of two exciting frequencies the incident wave is
a superposition of two such contributions.

2. The propagation along the transmission line is ideal and
does not change the waveform. At the nonlinear load
we need to solve a nonlinear equation for the current

i0(t) = f (v0
i (t), i

0(t)) . (13)

The explicit nonlinear equation is determined by the
nonlinear load, of course.

3. Now the reflected wave is constructed in accordance to
usual transmission line theory. This yields

v0
r (t) = v0

i (t) − ZC i0(t) . (14)
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Fig. 5. Real part of the input impedanceZ(ω). It characterizes the
antenna-cavity configuration of the specific example described in
the text.

4. To describe the subsequent reflection at the linear sub-
circuit we need to Fourier transformv0

r (t) to find its
sampled frequency componentsṼ 0

r (ωk). Then the new
incident wave is given by,

v1
i (t) = v0

i (t) +
1

2

K∑
k=−K

0ωk
Ṽ 0

r (ωk) exp(jωkt) , (15)

where the reflection coefficient0ωk
follows from

0ωk
=

Z(ωk) − ZC

Z(ωk) + ZC

. (16)

One should note that(
0ωk

Ṽ 0
r (ωk)

)∗

= 0ω−k
Ṽ 0

r (ω−k) (17)

sinceZ(ω−k)=Z∗(ωk) and thus0ω−k
=0∗

ωk
. Also we

have Ṽ 0
r (ω−k)=(Ṽ 0

r (ωk))
∗ since these Fourier coef-

ficients have been obtained from a real time signal.
Therefore, the updated time signal in Eq. (15) is a real
function, as well.

5. Now we return to step 2, withv0
i (t) replaced byv1

i (t),
until the process has converged. After convergence we
read off the spectrum of the currenti(t) through the
nonlinear load which equals the antenna current at the
input terminals.

4 Example

We now consider, as an example, a specific configuration:
We choose a rectangular cavity of dimensionslx=ly=lz=2m
with its center at position (1, 1, 1)m. As quality factor we
take the fixed valueQ=1000. We further assume a dipole
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Fig. 6. Imaginary part of the input impedanceZ(ω) of the antenna-
cavity configuration.
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Fig. 7. The exciting signalv0(t)=1V(sin(2πf1t)+ sin(2πf2t))

which is applied to the input terminals of the nonlinearly loaded
antenna.

antenna of lengthL=0.15 m and radiusρ=10−3 m which is
aligned with thex-axis and has its center atx=1 m. They-
andz-coordinates of the antenna are set to 1 m. For this an-
tenna the real and imaginary part of the input impedance, as
calculated by the method of moments, is displayed in Fig. 5
and Fig. 6, respectively.
As nonlinear load we choose a diode withv−i-characteristic

i(t) = isat
(
exp(v(t)/vc) − 1

)
, (18)

where isat=10 nA andvc=25 mV. The antenna is excited
by a slice generator with frequenciesf1=500 MHz and
f2=600 MHz of amplitudeV0=|Veq|=1 V. This signal is
shown in time and frequency domain in Fig. 7 and Fig. 8,
respectively.
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Fig. 8. SpectrumṼ0(f ) of the signalv0(t) in Fig. 7, as obtained
by a Fast Fourier Transform with 512 sample points. Displayed
are the sampled values which, incidentally, have the same physical
dimension as the original signal.
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Fig. 9. Resulting spectrum of the antenna current after 15 itera-
tions. Further iterations within the reflection algorithm only lead to
minimal changes.

With these specifications we can enter the reflection algo-
rithm and calculate the initial incident wavev0

i (t) according
to Eqs. (11), (12), where we have chosenZC=50�. We note
that according to transmission line theory the voltage at the
nonlinear load, i.e., the voltage at the end of the transmission
line, is given by 2v0

i (t)−ZC i0(t). Therefore, the nonlinear
equation to be solved in the second step, compare (13), ex-
plicitly reads

i0(t) = isatexp
(
(2v0

i (t) − ZC i0(t))/vc − 1
)
. (19)

After having solved Eq. (19) for the currenti0(t) it is trivial
to calculate the reflected wavev0

r (t). To construct the new
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incident wave according to Eq. (15) we use a Fast Fourier
Transformation ofv0

r (t) with 512 sample points.
As can be expected, alreadyv0

r (t) contains intermodula-
tion frequencies. The subsequent reflections exhibit satisfac-
tory convergence towards a specific spectrum of the antenna
current. In Fig. 9 the spectrum obtained after 15 iterations
is shown. Apart from numerical noise the intermodulation
frequencies at 100 MHz, 200 MHz, 300 MHz, and 400 MHz
clearly appear.

5 Conclusions

We have demonstrated how to calculate the frequency spec-
trum of a nonlinearly loaded thin-wire antenna if excited
within a rectangular cavity. In view of EMC analysis the
results imply the following: In general, high frequency sig-
nals can couple through small apertures into resonating envi-
ronments that act like cavities. In the presence of nonlinear
elements these signals can generate, in turn, low intermod-
ulation frequencies that might coincide with a cavity’s res-
onance frequency. The type of intermodulation frequencies
is determined, in the first place, by the type of the exciting
signals and the type of nonlinearity. Our simulations have
indicated that, apart from a minor shift due to the damping
within the resonator, properties of the cavity are not reflected
in the position of the spectral components. However, they are
reflected in their amplitudes.

It is important to note that the resulting spectrum of
Fig. 9 relates to the antenna current. From this current
the corresponding electromagnetic field can be calculated
after weighting with the cavity’s Green’s function and
integration along the antenna. It is at this point where the
cavity’s resonances can lead to a major amplification of the
electromagnetic coupling since, at resonance and depending
on the quality factor of the cavity, the cavity’s Green’s
function will become dominant if compared to the situation
of free space.
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