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Abstract. HPM and UWB pulses are capable of disrupting
signal processing or even destroying semiconductor struc-
tures. Hence, it is useful to estimate the induced voltage lev-
els on printed circuit boards (PCB) in response to different
excitation signals. The considered PCB is integrated within
a missile-like cylindrical structure, called GENEC, and is
equipped with differential sensors to measure the E- and H-
field above the PCB. Standard transmission line theory is ap-
plied to develop a SPICE model that calculates the terminal
voltages at the transmission line loads.

1 Introduction

Experimental HPM/UWB – coupling investigations have
been shown that the circuit response strongly depends on the
incident waveform, the overall system coupling behaviour
and the demodulation capability of the electrical components
themselves. In order to estimate and to model the demod-
ulated circuit response, it is necessary to have knowledge
about waveform and amplitude of the HF voltage signals in-
duced in the printed circuit board (PCB) lines. This knowl-
edge can also help to define an upper electrical fieldstrength
value that mustn’t be exceeded to avoid binary faults (e.g.
logical faults reset faults etc.) and to avoid potential de-
struction effects of components. Furthermore, the knowledge
about the amplitude of the induced voltage levels enable the
possibility to define the degree of hardening measures and
protection elements to keep the voltage level below a certain
maximum threshold value in respect to the required EMC test
standards. The following approach to estimate the induced
voltage waveforms on the PCB combines PCB field measure-
ment and a PCB transmission line model. The advantage of
this procedure is a) the determination of the induced voltage
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Fig. 1. Sensor board.

waveforms in PCB lines is non-interacting with the electri-
cal circuit because the electric and magnetic field above the
PCB will be measured and b) field measurements are in gen-
eral easier to perform than high frequency voltage measure-
ments.

Field coupling to transmission lines is treated in several
papers (Paul, 1994; Leone and Singer, 1999; Erdin et al.,
2001; Tesche, 1997) and the references therein and com-
plete solutions are available for uniform plane excitation.
For a rigorous analysis in a non-uniform field environment,
field solvers have to be incorporated with conventional cir-
cuit simulators. The following proposed approach uses small
(differential) sensors on the PCB to measure the electric and
magnetic fields above the board in the time domain. An ap-
proximate SPICE coupling model is given, where the voltage
probe signals can be directly embedded as voltage controlled
voltage sources. Within the model, different types of loads
can be treated to simulate e.g. the impedance characteristic of
integrated circuits. For convenience, the analysis is restricted
to a lossless, single line over a groundplane. Throughout this
paper the transmission line formulation in terms of the “total
voltage” is used.
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Fig. 2. Transmission line geometry for the model ,,Single-line above groundplane“.

Fig. 3. Transmission line geometry for plane wave excitation.

Fig. 4. Case 1: Induced termination voltageV (0, t) andV (L, t) as response to an EM-plane wave excitation by using a step functionE0(t)

of rise timetr=1 ns(tr∼5×T ).

Fig. 5. Case 2: Induced termination voltageV (0, t) andV (L, t) as response to an EM-plane wave excitation by using a step functionE0(t)

of rise timetr=0.2 ns(tr∼1×T ).

2 Measurement set-up

At first the real circuit board will be replaced with a so called
sensor board of same size and geometry that is equipped with
E- and H-field probes to measure the electric field perpen-
dicular to the PCB groundplane and to measure the mag-
netic field parallel to the PCB groundplane. It also has

connectors to attach all wires leading from and to the cir-
cuit board. The measured probe voltages correspond to the
driving sources in the simple transmission line model. The
transmission line model is completely given in the time do-
main and implemented in PSPICE with the advantage that
any exciting pulse shape and arbitrary load impedances (also
non-linear) can be considered. The sensor board is equipped
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Fig. 6. Sensor board integrated in GENEC body in front of the RADAN-UWB source.

Fig. 7. Incident UWB pulseEinc(t).

with four Edot monopole probes, one Hdot loop antenna and
four distributed 4 cm long microstrip lines (characteristic line
impedanceZC=50 Ohm) on a FR4 dielectric of 1mm thick-
ness. A 50 Ohm termination loadZL on each line and at
both sides is used in this configuration, although other loads
are possible (Fig. 1).

The transmission line model is related to Paul (1994) and
strongly valid only for a lossless single line over groundplane
with L�λ (Fig. 2). However, good results are still achiev-
able, when the rise time of the incident fieldtr is of the order
of the one way transmission line delay timeT .

The following SPICE model is used to calculate the in-
duced voltageV (L, t) andV (0, t) at the termination loads
ZL and Z0 of a microstrip line with the line parameters
lengthL, thickness of dielectrich and the characteristic line
impedanceZC :

v(L, t) + ZC i(L, t) = [v(0, t − T ) + ZC i(0, t − T )]

+ [vF (t − T/2) + ZC iF (t − T/2)] × p(t)

v(0, t) − ZC i(0, t) = [v(L, t − T ) − ZC i(L, t − T )]

− [vF (t − T/2) − ZC iF (t − T/2)] × p(t)

with the convolution functionp(t) = rect(t/T ) and the one-
way transmission line delayT =L/v with v=c0/(εr, eff)

0.5.

The driving source voltagesvF und ZC×iF are propor-
tional to the derivatives of the electric fieldE⊥ perpendicu-
lar to the groundplane and the magnetic fieldB parallel to
the groundplane and perpendicular to the line axis:

vF (t) ≈
A

KB

vB(t); vB(t) = KB ·
dB

dt

iF (t) ≈ −
A

vZCKEεr

vE(t); vE(t) = KE ·
dE⊥

dt
.

The voltage signalsvB(t) andvE(t) are the measured probe
voltages,KE undKB the corresponding antenna factors and
A is the cross section areaL ·h. For frequencies smaller than
2.5 GHz, the probe voltages are proportional to the deriva-
tives of the measured fields.

For model verification purpose, the transmission line is ex-
posed to a plane wave excitation and the results will be com-
pared with a FDTD model (Fig. 3).

The following line parameters are used: L=3 cm, h=1 mm,
w=1.5 mm, εr=4.7, ZC=54 Ohm, ZL=Z0=50 Ohm. The
electric fieldE is given asE(t)=−E0(t)eθ with the angle
of incidencesφ=45◦ andθ=90◦. The time functionE0(t)

is a step function with rise timetr and amplitude 1 V/m.
Figures 4 and 5 show the comparison between the proposed
transmission line SPICE model and the FDTD model for the
casetr=1 ns (tr∼5×T ) and for the casetr=200 ps (tr∼T ).
In both cases good agreement can be noticed.

After the proposed PCB transmission line coupling model
was verified with FDTD for uniform plane wave excitation,
the sensor PCB was placed in a non-uniform field environ-
ment by integrating it in the generic missile system GENEC.
The results of the model were compared with a direct line
voltage measurement at the PCB. Figure 6 shows the sen-
sor board integrated in the GENEC frame and GENEC body.
The coupling paths into the GENEC system are mainly via
the attached wings and wing slots. The whole system was
excited with an UWB-pulse delivered from a RADAN pulser
with attached TEM horn antenna. The incident electric field
is vertically polarised parallel to the wing axis at broadside
excitation. Figure 7 shows the electric fieldstrength of the
incident pulse measured with a D-Dot probe. All signals
are recorded with a Tektronix oscilloscope of 4 GHz analog
bandwidth.
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Fig. 8. MP4 – monopole sensor voltage responsevE(t) and H-dot loop voltagevBy(t).

Fig. 9. Terminal voltageV0(t) of line L8 calculated with the SPICE model at 50 Ohm load and measured terminal voltageV 0(t) of line L8
at 50 Ohm load.

According to the coordinate system given in Fig. 1, the
electric field of the monopole MP4 and the magnetic field
of the loop sensor in y-direction was recorded by using an
external trigger signal. Figure 8 shows the measured probe
voltagesvE(t) andvBy(t) as response to the incident UWB-
pulse (Fig. 7).

Now, we calculate the induced voltage at the 50 Ohm ter-
minal of line L8 on the sensor PCB (Fig. 1) by using the
proposed SPICE model. Because line L8 is orientated in
z-direction, we use the magnetic field in the y-direction to
calculate the forcing functionsvF (t) andZc · iF (t) with the
same line parameters as given in the example before. After
convolution with the rect-functionp(t), we can implement
the forcing functions as voltage controlled voltage sources in
the SPICE model.

Figure 9 left shows the result of the L8-line terminal volt-
ageV0(t) calculated with the SPICE model. For comparison,
the result of the direct line measurement L8 is depicted on the
right with good agreement to the SPICE model.

3 Conclusions

The proposed PCB coupling model for a single line over
groundplane uses both, a) measurement data of the electric
and magnetic field above the board to determine the forcing
functions and b) an approximate time-domain SPICE model
for electrically short lines similar to (Paul, 1994). Although,
we can not expect exact results, the examples show a good

approximation achieved with minor effort. This is in many
cases enough to estimate the coupled voltages on equivalent
boards with similar dimensions and geometry. Furthermore,
all the advantages of the time domain SPICE model can be
used to treat nonlinear load impedances.
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