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Abstract. Accurate evaluation of singular potential inte-
grals is essential for successful method of moments (MoM)
solutions of surface integral equations. In mixed potential
formulations for metallic and dielectric scatterers, kernels
with 1/R and∇1/R singularities must be considered. Sev-
eral techniques for the treatment of these singularities will
be reviewed. The most common approach solves the MoM
source integrals analytically for specific observation points,
thus regularizing the integral. However, in the case of∇1/R

a logarithmic singularity remains for which numerical eval-
uation of the testing integral is still difficult. A recently by
Yl ä-Oijala and Taskinen proposed remedy to this issue is dis-
cussed and evaluated within a hybrid finite element – bound-
ary integral technique. Convergence results for the MoM
coupling integrals are presented where also higher-order sin-
gularity extraction is considered.

1 Introduction

Exact solutions of electromagnetic antenna and scattering
problems often rely on integral equations being solved by
the method of moments (MoM) with Galerkin’s method, us-
ing triangular Rao-Wilton-Glisson (RWG) vector basis func-
tions (Rao et al., 1982). In mixed potential formulations for
metallic and dielectric scatterers, the kernels of surface inte-
grals include the Green’s function of free space, as well as
the gradient of Green’s function. Thus, singularities of order
1/R and∇1/R must be considered, whereR=|r−r ′

| is the
distance between observation and source points. Because of
these terms, the surface integrals become singular if a test-
ing point r is near the source element. In order to calculate
the singular surface integrals, special methods must be used,
because numerical integration routines lead to inaccurate so-
lutions. There are many methods that can be used to evaluate
singular potential integrals, such as the Duffy’s transforma-
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tion (Duffy, 1982; Chew et al., 2001) and the singularity ex-
traction method (Wilton et al., 1984; Graglia, 1993; Eibert
and Hansen, 1995).

In Duffy’s transformation, the source triangle is divided
into three subtriangles, with common vertex at the singular
point. Then, the integrals over each subtriangle are trans-
formed into integration over a square. This procedure can-
cels the singularity. Duffy’s transformation has three main
disadvantages. First, it is accurate only for sufficiently reg-
ular triangles. Second, new integration points on the source
integral have to be generated for each integration point on the
testing integral. This increases the computation time. Third,
singularities of order∇1/R cannot be easily evaluated, be-
cause Duffy’s transformation is derived for functions having
a point singularity of order 1/R.

In the singularity extraction method, surface integrals are
regularized by extracting the singular term from the Green’s
function. The inner source integral of the extracted term is
calculated analytically in primed coordinates for specific ob-
servation points. The remaining function is regular and the
outer testing integral can be calculated numerically in un-
primed coordinates. However, after the extraction of the sin-
gular term, the remaining function is not necessarily continu-
ously differentiable, which means that a straightforward ap-
plication of a numerical integration routine may lead to an
inaccurate solution. Further, difficulties in integration may
occur in the case of∇1/R, when the source and test trian-
gles have common points and are not in the same plane. In
particular, after extracting the singularity and calculating the
inner source integral analytically, a logarithmic singularity
remains on the outer testing integral. Therefore, if higher ac-
curacy is required, the testing integral cannot be calculated
by a standard numerical calculation technique.

Yl ä-Oijala and Taskinen recently proposed a remedy to
this issue (Yl̈a-Oijala and Taskinen, 2003). The surface inte-
grals are additionally regularized, by extracting more terms
from the Green’s function and its gradient. The additional ex-
tracted terms are integrated analytically over the source trian-
gle in primed coordinates. The remaining function is at least
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Figure 1. Division into subtriangles. 

Fig. 1. Division into subtriangles.

once continuously differentiable and is integrated over the
testing triangle numerically in unprimed coordinates. Fur-
ther, in evaluating the integrals including the gradient of the
Green’s function, the source integral of the surface compo-
nent of the singular term∇1/R is transformed into a line in-
tegral and the order of integration is being changed. Now, the
inner testing integral is evaluated analytically in unprimed
coordinates and the outer source line integral is evaluated by
a standard numerical calculation technique. By these modifi-
cations logarithmic singularity can be avoided. All singular-
ities are being extracted and calculated in closed form and
numerical integration is applied only for regular and con-
tinuously differentiable functions. In this work, the above
method has been evaluated within a hybrid Finite Element –
Boundary Integral (FEBI) technique, using Combined Field
Integral Equation (CFIE). Convergence results of the MoM
coupling integrals are presented for perpendicular source and
testing triangles with common edge. Using this new method,
convergence of singular integrals is achieved with signifi-
cantly less integration points and, because of this, accuracy,
robustness and computation time of the FEBI technique is
improved.

2 CFIE formulation

Consider the problem of electromagnetic scattering or ra-
diation including dielectric and arbitrarily shaped three-
dimensional bodies. According to Huygen’s principle, the
electric and magnetic field can be expressed as a function of
the equivalent current densities on the surfaceS of the scat-
terers and the Green’s function of the electromagnetic prob-
lem. Then, applying the boundary condition of the surface
current densities for observation points on the surfaceS, in-
tegral equations can be derived with unknown quantities the
tangential components of the electric and magnetic field (or
equivalently the densities of the Huygen’s surface currents).

For the equivalent magnetic current densityM=E×n on
S, the Electric Field Integral Equation (EFIE) in mixed po-
tential formulation is derived:

 

 

 

 

 

Figure 2. Triangles for numerical examples. 

Fig. 2. Triangles for numerical examples.
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with r ∈ S′. Likewise, for the equivalent electric current
densityJ=n×H on S the Magnetic Field Integral Equation
(MFIE) in mixed potential formulation is derived:
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with r ∈ S′. Einc, H inc is the incident field,G(r , r ′) =

e−jkR/R is the Green’s function of free space outside the
scatterer,n(r) is the normal unit vector of surfaceS and∇

′

S ·

denotes the surface divergence with respect to the prime co-
ordinates.

The CFIE is the following linear combination of the EFIE
and the MFIE:

Z0(1−α) MFIE+αEFIE=0, (3)

whereα is the combination parameter, with 0≤α≤1, andZ0
is the characteristic impedance of free space. Using CFIE,
the internal resonance problem, which produces incorrect
components in the field solution, can be avoided.

The integral equations are solved by the method of mo-
ments. Within the hybrid FEBI technique, the volume of the
scatterer is modelled with tetrahedrons, which leads to a sur-
face model with triangular elements. The surface currents
are described by RWG functions (Rao et al., 1982) and the
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Figure 3. Convergence of singular terms of EFIE coupling integrals with singularity ∇ 1/R 
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Fig. 3. Convergence of singular terms of EFIE coupling integrals
with singularity∇1/R using the new method with single and dou-
ble singularity extraction, compared with the corresponding values
using the old method.

Galerkin’s method is used for the testing procedure. This
means that the unknown surface currents have the form

JS=

N∑
n=1

inβn, MS=−

N∑
n=1

unβn. (4)

The testing procedure is applied with RWG functions, which
means thatβm=βn. After applying this solution to the inte-
gral equation, various surface integrals must be solved. In the
next section these integrals are presented and several tech-
niques for the treatment of these integrals in singular cases
are reviewed.

3 Singular integral treatments

An application of the MoM with the Galerkin’s method in
order to solve the CFIE using RWG basis functions requires
calculation of the following integrals for the EFIE part:

IEFIE
1 =

∫
S

∫
βm(r) · [βn(r ′)×n(r)]dS, (5)

IEFIE
2 =

∫
S

∫
βm(r) ·

[ ∫
S′

∫
βn(r ′)G(r , r ′)dS′

]
dS, (6)

IEFIE
3 =

∫
S

∫
βm(r)·∇

[ ∫
S′

∫
∇

′

S ·βn(r ′)G(r , r ′)dS′

]
dS,(7)

IEFIE
4 =

∫
S

∫
βm(r) ·

[ ∫
S′

∫
βn(r ′)×∇G(r , r ′)dS′

]
dS. (8)

Similarly, for the MFIE part the following integrals have to
be evaluated:

IMFIE
1 =

∫
S

∫
βm(r) · βn(r ′)ds, (9)

 

 

 

 

 

Figure 4. Convergence of regular terms of EFIE coupling integrals with singularity ∇ 1/R 

using the new method for single and double extraction, compared with the corresponding 

values using the old method. 

Fig. 4. Convergence of regular terms of EFIE coupling integrals
with singularity∇1/R using the new method for single and double
extraction, compared with the corresponding values using the old
method.

IMFIE
2 =

∫
S

∫
n(r)×βm(r) ·

[ ∫
S′

∫
βn(r ′)G(r , r ′)ds′

]
ds, (10)

IMFIE
3 =

∫
S

∫
n(r)×βm(r) · ∇

[ ∫
S′

∫
∇

′

S · βn(r ′)G(r , r ′)ds′

]
ds, (11)

IMFIE
4 =

∫
S

∫
n(r)×βm(r) ·

[ ∫
S′

∫
βn(r ′)×∇G(r , r ′)ds′

]
ds. (12)

The integralsI1 for the EFIE and MFIE part are regular and
can be evaluated numerically, using standard numerical inte-
gration routines without any special treatment. The integrals
I2 and I3 for the EFIE and MFIE parts contain in the in-
tegrand the Green’s function and singularities of order 1/R

must be considered, when the observation point is near the
source point. Finally, the integralsI4 for the EFIE and MFIE
parts contain in the integrand the gradient of the Green’s
function and singularities of order∇1/R must be considered.
There are many methods that can be used to evaluate these
integrals in the singular case, such as the Duffy’s transfor-
mation and singularity extraction method.

3.1 Duffy’s transformation

In this method the source triangle is first divided into three
subtriangles with common vertex at singular point, as shown
in Fig. 1. The inner source integral is then written in terms
of these subtriangles as follows:

I=

∫
S

∫
F(R, r , r ′)

R
ds=

3∑
e=1

1∫
0

1−ξ e
1∫

0

F(ξ e
1, ξ e

2)

R
J (ξ e

1, ξ e
2)dξ e

2dξ e
1, (13)

whereξ e
1 and ξ e

2 are the parametric coordinates of the eth
subtriangle andJ (ξ e

1, ξ e
2) is the corresponding Jacobian. The



96 A. Tzoulis and T. F. Eibert: Review of singular potential integrals

 

 

 

 

 

Figure 5. Relative error of singular terms of EFIE coupling integrals with singularity ∇ 1/R for 
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Fig. 5. Relative error of singular terms of EFIE coupling integrals
with singularity∇1/R for the new method with double extraction
and for the old method, normalized by the corresponding constant
value after convergence.

integral over each subtriangle can be transformed into an
integration over a square by introducing the transformation
ξ e

2=(1−ξ e
1)u. By doing this, we have

I=

3∑
e=1

1∫
0

1∫
0

(1−ξ e
1)

F (ξ e
1, (1−ξ e

1)u)

R
J (ξ e

1, (1−ξ e
1)u)dξ e

1du, (14)

with

R=(1−ξ e
1)

√
q(ξ e

1, u). (15)

The functionq is defined in terms of the coordinateξ e
1 ,

the transformation variableu and the position vectors of the
patch. The numerator (1−ξ e

1) cancels the singular nature of
R.

3.2 Singularity extraction method

In this method, surface integrals are regularized by extracting
a singular term from the Green’s function as follows:

G(r , r ′)=

(
G(r , r ′)−

1

R

)
+

1

R
. (16)

Due to this, the gradient of the Green’s function becomes

∇G(r , r ′)=∇

(
G(r , r ′)−

1

R

)
+∇

1

R
. (17)

The terms in parentheses of Eqs. (16) and (17) are regular and
the extracted term includes the singularity. Applying this ex-
traction to the integralsI2−I4 for the EFIE and MFIE parts,
the inner source integral of the singular extracted term can be
calculated in any case in closed form in primed coordinates
using the formulas in (Wilton et al., 1984; Graglia, 1993;
Eibert and Hansen, 1995). The remaining function is regular
and the outer testing integral is being calculated numerically
in unprimed coordinates. Further, the whole surface inte-
gralsIEFIE

2 andIEFIE
3 of the EFIE part can be calculated in

 

 

 

 

 

Figure 6. Convergence of singular coupling integrals with singularity ∇ 1/R for EFIE, MFIE 

and CFIE, using the new method with double singularity extraction. 

Fig. 6. Convergence of singular coupling integrals with singular-
ity ∇1/R for EFIE, MFIE and CFIE, using the new method with
double singularity extraction.

closed form, if the test and source integrals coincide (Eibert
and Hansen, 1995).

Difficulties in this approach may arise due to the follow-
ing two reasons: First, after the extraction of the singular
term from the Green’s function, the remaining function in
the parentheses of Eq. (16) has a discontinuous derivative at
R=0. This discontinuity means that a straightforward appli-
cation of a numerical integration routine for the testing inte-
gral may lead to an inaccurate solution. Second, difficulties
may occur in the case of∇1/R (integralsI4 for EFIE and
MFIE part), when the source and test triangles have common
points and are not in the same plane. In particular, although
it is possible to calculate the inner source integral of the ex-
tracted singular term∇1/R analytically using the formulas
in (Graglia, 1993), a logarithmic singularity still remains on
the outer testing integral. Therefore, if higher accuracy is re-
quired, the testing integral cannot be calculated by a standard
numerical calculation technique.

The above difficulties can be avoided by applying the sin-
gularity treatment recently proposed by Ylä-Oijala and Task-
inen (Ylä-Oijala and Taskinen, 2003). In order to avoid the
discontinuity of the remaining function in the parentheses
of Eq. (16), an additional term can be extracted from the
Green’s function as follows:

G(r , r ′)=

(
G(r , r ′)−

1

R
+

k2

2
R

)
+

1

R
−

k2

2
R. (18)

Due to this, the gradient of the Green’s function becomes

∇G(r , r ′)=∇

(
G(r , r ′)−

1

r
+

k2

2
R

)
+∇

1

R
−

k2

2
∇R. (19)

Now the terms in parentheses of Eqs. (18) and (19) have a
continuous derivative atR=0 and calculation of source and
testing integrals of this terms can be done easily with stan-
dard numerical procedure. The two extracted terms, i.e. the
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Figure 7. Bistatic-RCS of thin-coated metallic sphere. 

Fig. 7. Bistatic-RCS of thin-coated metallic sphere.

second and third term of RHS of Eqs. (18) and (19), respec-
tively can be integrated analytically over the source triangle
in primed coordinates for all integralsI2−I4 using the formu-
las presented in (Graglia, 1993) and (Ylä-Oijala and Taski-
nen, 2003). The formulas for analytical integration presented
in (Yl ä-Oijala and Taskinen, 2003) are iterative and general,
allowing extraction of any number of terms from the singular
kernel and integration of these terms over the source triangle
in closed form.

Thereafter, the last term of Eqs. (18) and (19) can be inte-
grated numerically over the testing triangle in unprimed co-
ordinates for all integralsI2−I4, because the outer integrand
for this term is regular. The testing integral of the second
term of Eq. (18) can be as well calculated numerically in un-
primed coordinates for integralsI2 andI3 of the EFIE and
MFIE part, because the outer integrand for this term is reg-
ular, too. The problem is to calculate the testing integral of
the second term of Eq. (19), because in the outer integrand of
this term a logarithmic singularity remains when the source
and testing triangles have common points and are not at the
same plane. This singularity exists in integralsI4 of the EFIE
and MFIE part. In particular, for analytical calculation of
the source integral of the term∇1/R in primed coordinates
the gradient is being divided into normal and surface com-
ponents and the integral of the surface component over the
source triangle is transformed with Gauss theorem into a line
integral, which means that∫
S′

∫
∇

1

R
dS′

=

∫
S′

∫
∇n

1

R
dS′

+

∫
∂S′

u(r ′)
1

R
dl′. (20)

Now, according to Eqs. (30)-(32) in Graglia (1993) the an-
alytical expression of the line integral in the above equation
has a logarithmic term, which causes the logarithmic singu-
larity in the outer testing integral. Note that the same loga-
rithmic singularity exists as well in the integralsI4 when ap-
plying the single extraction of Eq. (16). In order to avoid this
singularity, according to (Ylä-Oijala and Taskinen, 2003), af-

 

 

 

 

 

Figure 8. Magnitude of the electric current density of a cavity-backed patch on a metallic 

cone. 

Fig. 8. Magnitude of the electric current density of a cavity-backed
patch on a metallic cone.

ter the source integral of the surface component of the singu-
lar term∇1/R is transformed into a line integral, the order
of integration is being changed.

For the EFIE part, the remaining term of integralIEFIE
4 ,

which produces the logarithmic singularity after applying the
singularity extraction of either Eq. (17) or Eq. (19), has the
form

IEFIE
4 =

∫
S

∫
(r−p) ·

∫
S′

∫
(r ′

−q)×∇
′
1

R
dS′

 dS. (21)

wherep is the position vector of the free vertex of the testing
triangle andq is the position vector of the free vertex of the
source triangle. Note that in the above equation the identity
∇(1/R)=−∇

′(1/R) has been used. Replacing(r ′
−q) by

(r ′
−r)+(r−p)+(p−q) and separating the normal and sur-

face derivatives, Eq. (21) can be written as

IEFIE
4 =

∫
S

∫
(r−p) ·

(p−q)×

∫
S′

∫
∇

′
n

1

R
dS′

 dS

+

∫
S

∫
(r−p) ·

(p−q)×

∫
S′

∫
∇

′

S

1

R
dS′

 dS. (22)

The source integral of the normal derivative is calculated
analytically in primed coordinates, using Eq. (26) in Graglia
(1993). In the singular case, i.e. when the testing and source
triangles are not in the same plane and they have common
points, the surface gradient term is dominant and numerical
integration of the normal component over the testing trian-
gle can be done with reasonable accuracy. As said before,
the analytical formula for the source integral of the surface
gradient term in Graglia (1993) includes a logarithmic ex-
pression, which causes the logarithmic singularity when try-
ing to evaluate the testing integral of the surface gradient
term numerically. To avoid this, after using the Gauss the-
orem to translate the integral of the surface gradient over the
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Figure 9. Imaginary part of the electric current density of a cavity-backed patch on a metallic 
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Fig. 9. Imaginary part of the electric current density of a cavity-
backed patch on a metallic cone.

source triangle into a line integral, the order of integration is
changed and the surface component of Eq. (22) can be writ-
ten as

IEFIE
4surf=

∫
S

∫
(r−p) ·

(p−q)×

∫
∂S′

u(r ′)
1

R
dl′

 dS

=

∫
∂S′

[
(p−q)×u(r ′)

]
·


∫
S

∫
(r−p)

R
dS

 dl′; (23)

where∂S′ is the boundary of the source integral andu(r ′) is
the outer unit vector normal to∂S′. Now, the inner testing
integral is calculated analytically in unprimed coordinates
using the formulas in (Yl̈a-Oijala and Taskinen, 2003). In
those formulas the logarithmic term is cancelled. As a result,
the outer source line integral has a regular integrand and al-
lows numerical integration in primed coordinates. Hence, by
considering the normal and surface gradients separately and
changing the order of integration, the logarithmic singularity
on the outer testing integral can be avoided.

The same procedure can be applied to the integralIMFIE
4 of

the MFIE part. Here, the remaining term of integralIMFIE
4 ,

which produces the logarithmic singularity, after applying
the singularity extraction of either Eq. (17) or Eq. (19), has
the form

IMFIE
4 =

∫
S

∫
[n(r)×(r−p)] ·

∫
S′

∫
(r ′

−q)×∇
′
1

R
ds′

 dS.(24)

Applying the above procedure leads to following surface
component of Eq. (24):

IMFIE
4surf =

∫
∂S′

[
(p−q)×u(r ′)

]
·

n(r)×
∫
S

∫
(r−p)

R
dS

 dl′

−

∫
∂S′

u(r ′) · n(r)


∫
S

∫
|r−p|

2

R
dS

dl′. (25)

Note that due to the cross product with the normal unit vec-
tor of surface S the last term of Eq. (25) must also be cal-
culated. The inner testing integral of this term is calculated
analytically in primed coordinates in (Ylä-Oijala and Task-
inen, 2003) and the outer source line integral has a regular
integrand and can be calculated numerically in primed coor-
dinates.

In the next section, convergence results of the coupling in-
tegrals with singularity∇1/R are presented, using the above
method within a hybrid FEBI technique with the CFIE. Fur-
ther, numerical results of the bistatic-RCS of a thin-coated
metallic sphere and of the surface currents of a cavity-backed
patch on a metallic cone are presented.

4 Numerical results

The numerical treatment proposed by Ylä-Oijala and Task-
inen has been applied in a hybrid FEBI technique, using
the CFIE. The convergence of coupling integrals with sin-
gularity∇1/R has been calculated with this new method for
various integral equations (EFIE, MFIE, CFIE) and for both
the single extraction of Eq. (16) and the double extraction of
Eq. (18). The computations have been made for the triangle
combination (1, 2) of Fig. 2. These triangles lie perpendicu-
lar within a tetrahedron and have a common edge.

First, the value of the EFIE coupling integrals with sin-
gularity ∇1/R given in Eq. (8) has been calculated with the
new method for single and double singularity extraction and
for various integration points. The convergence of this inte-
gration is compared with the corresponding values using the
old method, where only one term is extracted and integrated
analytically over the source triangle and Gaussian quadrature
is applied for the remaining outer testing integral. The results
of this comparison are shown in Fig. 3 for the singular terms
and in Fig. 4 for the regular terms of the coupling integrals.
Note that the value of the regular terms of the coupling inte-
grals with the old method is the same with the corresponding
value with the new method and single extraction, because in
both cases singularity was extracted by the same way and
surface integrals were calculated numerically with the same
routine.

It can be noticed that the coupling integrals converge faster
with the new method for both singular and regular terms.
Especially for the singular terms, after only a few integra-
tion points the coupling integrals using the new method have
reached a constant value for single extraction, as well as a
constant value for double extraction. These constant values
are different because of the additional extracted term. Note
that the integral value with the old method converges to the
constant value of the new method with single extraction, be-
cause in both cases the same singularity extraction has been
used.
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The two constant values (for single and double extraction)
after convergence can be used as a reference for the rela-
tive error of the value of the coupling integrals with the old
method and with the new method and double extraction re-
spectively, as shown in Fig. 5. It can be seen that the relative
error for both methods becomes less by increasing the inte-
gration points, but with the old method this error still has a
significant value after a lot of integration points. With the
new method the relative error vanishes after only a few inte-
grations points.

Next, convergence of the singular terms of the coupling in-
tegrals with singularity∇1/R has been compared for EFIE,
MFIE and CFIE (withα=0.5), using the new method with
double singularity extraction. The results of this compari-
son are shown in Fig. 6. It can be seen that for all integral
equations using the new method the coupling integrals con-
verge very fast and with about the same number of integra-
tion points.

Finally, the calculated bistatic-RCS of a thin-coated metal-
lic sphere using the new singularity treatment within a hybrid
FEBI technique with CFIE is shown in Fig. 7. The metallic
kernel has a diameter ofD=10λ and the lossy thin layer a
dielectric constant ofεr=2.5−0.05 j. The magnitude of the
electric current density of a cavity-backed patch on a metallic
cone forf =1.105 GHz is shown in Fig. 8. The appropriate
imaginary part of the current density is shown in Fig. 9.

5 Conclusions

In this work, several techniques for the treatment of singu-
lar integrals for MoM solutions of surface integral equations
have been reviewed. Especially for the integrals with singu-
larity ∇1/R a recently proposed method by Ylä-Oijala and
Taskinen has been considered in detail, because of its capa-
bility to avoid effectively logarithmic singularity for those
integrals. This method has been evaluated within a hybrid
FEBI technique using CFIE where also higher-order singu-
larity extraction was applied. The advantages of this method
have been shown in convergence results for the singular case,
where two triangles are not at the same plane and have com-
mon points. It was found that the coupling integrals with sin-
gularity ∇1/R converge faster using the new method. Fur-
ther, it can be noticed that the higher-order extracted terms
from the singular kernel additionally regularize the coupling
integrals. Because of this, accuracy, robustness and compu-
tation time of the FEBI technique is improved.
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