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Abstract. Finding a feasible antenna arrangement for multi-
ple input multiple output (MIMO) arrays to serve a specific
purpose is a first crucial step towards a successful MIMO
radar system design. Design methods to synthesize uni-
formly weighted and equidistant MIMO arrays are proposed
and investigated. The methods can be used to gain a design
foundation for 1D or 2D arrays without software tools or pro-
gramming effort. Since the presented approach does not con-
sider electromagnetic fields, electromagnetic full-wave sim-
ulations might be required additionally. The method is based
on sequentially copying and displacing antenna groups with
the help of a number scheme. A nomenclature is proposed
to classify the degrees of freedom in the design procedure.
If the antennas are aligned to a uniform grid, a polynomial
representation of the array can be chosen alternatively. This
method is beneficial when redundancies of a produced array
and where they appear must be analyzed. A new design prob-
lem arises when an array is to consist of only transceiving
antennas, which can be analyzed with polynomial multipli-
cation. One strategy to find a suitable MIMO array consisting
of transceiver elements is given and evaluated.

1 Introduction

Using a multiple input multiple output (MIMO) array in radar
applications can significantly reduce the number of required
physical antennas of a radar system. This reduces the sys-
tem complexity and can have economic advantages. In the
radar domain, MIMO arrays are used in several applications
and fields. Feger et al. (2009) use a non-uniform prototype
MIMO array for far field 2D imaging and show potential ap-
plicability of their design in automotive scenarios. Other ex-

amples are public security scanning (e.g., Gao et al., 2018;
Zhuge and Yarovoy, 2011) or package control (Yanik et al.,
2020), where the penetrability of materials like textiles or
cardboard is exploited. By using individual transmitter (Tx)
and receiver (Rx) channels, each combination of them yields
a full radar return signal. Therefore, the number of required
physical antennas can be reduced. From a model point of
view, a Tx-Rx pair can be modeled as a virtual element (VE).
All antenna pairs of each combination result in a virtual ar-
ray (VA). To analyze a structure of Tx and Rx antennas,
the method of convolution and scaling is commonly used
(Ender and Klare, 2009). However, for the synthesis of a
VA, no straightforward method exists. Generic non-uniform
MIMO arrays are useful to compromise resolution, sidelobe-
levels and element-density in a controllable way. A suitable
non-uniform array can be found by discrete optimization al-
gorithms like particle swarm optimization (Schmid et al.,
2009) or genetic algorithms (Huang et al., 2021). The signal
processing for non-uniform arrays is computationally more
complex in general, since no geometric structure can be ex-
ploited. On the other hand, efficient FFT-based methods can
be used for uniform arrays, e.g. as given by Sheen et al.
(2001) for 3D imaging. A specific type of MIMO arrays are
the ones having equidistant virtual elements without over-
lapping items or gaps. When using uniform MIMO arrays
for near-field imaging, signal corrections might be neces-
sary to achieve the desired reconstruction accuracy (Yanik
and Torlak, 2019). For a radar signal processing algorithm
that fully relies on the virtual antenna concept, these over-
lapping VEs would deliver redundant information and the
physical resources would not be exploited optimally in the
sense of amount of elements. In this paper, a design method
for equidistant MIMO arrays is introduced.
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Figure 1. Virtual antenna resulting from a single Tx-Rx pair.

If the used antenna type is a so-called transceiver (TRx)
(antenna which can act as both transmitter and receiver),
redundant VEs are not avoidable. To analyze this more in-
volved design problem, a polynomial representation of the
design problem is introduced. One possible synthesis pro-
cedure for TRx antennas is described and rated in different
aspects.

The remainder of the paper is structured as follows: Sect. 2
explains the concept of a virtual array and the method of con-
volution and scaling. Section 3 introduces the proposed de-
sign method for equidistant MIMO arrays. In Sect. 4, an ex-
ample design for a 2D MIMO array is shown. Section 5 ex-
plains the polynomial representation and introduces an itera-
tive method to synthesize a MIMO array consisting of TRx
elements. Finally, Sect. 6 concludes the paper and gives an
outlook on future work.

2 Virtual arrays

In this section, the concepts of a virtual antenna and a virtual
array are explained.

2.1 Single transmitter-receiver pair

In a bistatic radar scenario, Tx and Rx are distinct antennas at
different locations. If the distance R to a target is large com-
pared to the distance d between both antennas, the geometric
relationship can be simplified as shown in Fig. 1. The eleva-
tion angle θ is the same for both Tx and Rx. The total path
Lbi of a plane wave is then

Lbi = R+ (R+ d sin(θ)) . (1)

An imagined monostatic antenna midway between Tx and
Rx leads to the same total pathlength. This relation also holds
for an azimuth angle φ unequal to zero. For a large relative
target distance R, the Tx-Rx pair can therefore be viewed as
a virtual monostatic antenna (Chen and Vaidyanathan, 2009),
a so-called virtual element (VE).

2.2 Convolution and scaling

If several Rx and Tx are used together, they form a MIMO
system. To allow for the separation from different Tx after
reception, the antennas are fed with orthogonal waveforms.
Examples of orthogonal waveform strategies are time divi-
sion multiplex (TDM) (Ender and Klare, 2009) and orthog-
onal frequency division multiplex (OFDM) (Krieger et al.,
2008). Each of the NRx receiver antennas is able to sepa-
rate the target responses from the NTx transmitter antennas.
Therefore, each of the NTx ·NRx combinations results in a
VE, together forming a VA. To analyze the structure of a VA,
the method of convolution and scaling can be used. First, the
Rx and Tx antenna distributions are expressed as continuous
spatial functions FRx and FTx, respectively. These functions
possess Dirac spikes at the positions, where an antenna is
located. Second, as shown in Ender and Klare (2009), the
virtual antenna array is now calculated by convolving scaled
versions of the two functions

FVA(x,y)= FTx(2x,2y)∗FRx(2x,2y), (2)

where (∗) denotes a 2D convolution.

3 Design method for one-dimensional equidistant
arrays

The main focus of this paper is to introduce a simple design
method for an equidistant and equally weighted VA along x.
Such a VA has the form

FVA(x,yVA)=

L−1∑
i=0

1 · δ(x− k · i,yVA) (3)

with size L and a scaling factor k. The overall length of the
VA is k(L−1). The VA forms a grid along x at yVA. Note, that
each element in the sum has a weighting of 1, which means
exactly one Tx-Rx pair contributes to this VE location. To
obtain functions FTx and FRx, a straightforward method is
explained in the following sections.

3.1 Establishment of requirements

In order to generate a regular MIMO array in the required
form of Eq. (3) with size L, the prime factorization of L is
done first. The P prime factors pi ∈ N with the property

L=

P−1∏
i=0

pi (4)

themselves are of course primes and cannot be divided fur-
ther. It is recommended to choose L, such that the prime fac-
tors pi will not get too large. This adds more design flexibil-
ity in the method.
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3.2 Theoretical outline

From this point onwards, a mixed basis number system
will be introduced. Unlike the well-known decimal, binary
or hexadecimal number systems, each digit is assigned its
own basis. The number system will be represented by a W -
element sequence of numbers 〈α0,α1, . . .,αW−1〉, where 〈·〉
denotes an ordered, finite sequence of numbers and αi the
base of the digit at position i, e.g., a three-digit number
with basis 〈4,3,2〉 will have a binary least significant digit.
The most significant digit has base 4 and the one in be-
tween is ternary. Counting in this number system would yield
000,001, 010,011, 020, . . ., 320,321. As seen, the amount
of displayable numbers in such a number system is finite. A
number y in a mixed basis system can be represented as a
concatenation of W symbols in the form

y = d0d1. . .dW−1 ∈ SS, di ≤ αi − 1, (5)

where SS denotes the set of all displayable numbers in a num-
ber system S. The conversion conv(y;S) of an integer y
from a number system S into a decimal z is calculated as

z= conv(y;S)= dW−1+

W−2∑
i=0

di ·

(
W−1∏
j=i+1

αj

)
. (6)

Next, each prime factor is either assigned a subscript t for
Tx or a r for Rx. This can be notated as(
pi← pi,t

)
⊕
(
pi← pi,r

)
∀i ∈ N<W, (7)

where ⊕ denotes a logical exclusive or operation. The se-
quence P is defined as an ordered list of the annotated prime
factors in the form

P =
〈
p0,[t |r],p1,[t |r], . . .,pP−1,[t |r]

〉
. (8)

[t |r] denotes, that either the subscript t or r is chosen for each
element, but not both. Note, that the choice of a particular
assignment as well as the order of the prime factors in P will
influence the inner structure of the resulting VA and should
be chosen in such a way as to design the most feasible MIMO
array. A particular number system S with the ordered prime
factors from Eq. (8) is now considered. It is in the form

S = 〈p0,p1, . . .,pP−1〉 (9)

with P =W . For the Tx and Rx antennas, sets of enumerated
numbers Tx and Rx in the number system of Eq. (9) are cre-
ated respectively. Therefore, the assignment of subscripts t
and r from Eq. (8) is used. For Tx all possible numbers in the
number system are listed, where the digits at locations with
pi,r are zero. For Rx respectively, all possible numbers are
listed of which the digits di are zero, if pi← pi,t . Formally,
this can be written as

Tx =
{
x ∈ SS |pi← pi,r ⇒ di = 0

}
(10)

and

Rx =
{
x ∈ SS |pi← pi,t ⇒ di = 0

}
. (11)

The number of elements in Tx is given by

|Tx| =

L−1∏
i=0

pi←pi,t

pi (12)

and in Rx respectively

|Rx| =

L−1∏
i=0

pi←pi,r

pi . (13)

Each number in Tx is used as a position coordinate for one
transmitter antenna in the MIMO design. In the same way,
the elements of Rx are used as coordinates for the receiving
antennas. A MIMO system can have at most one distinct VE
location for each Tx-Rx pair. Hence, the number of VEs is
limited to |Tx| · |Rx| =NTx ·NRx = L in the design method
introduced here. Therefore, the separation into Tx and Rx
antennas is feasible, as it is capable of producing a MIMO
array according to Eq. (3).

All physical antennas lie on a line parallel to the x-axis at
yTx for Tx and yRx for Rx respectively. Consequently, every
element of the VA is located along y at

yVA =
yTx+ yRx

2
. (14)

The same applies to the x-coordinate for each possible Tx-
Rx pair. The spatial scaling of 1

2 will be irrelevant for the
following argument and will hence be disregarded. Each el-
ement in Tx and Rx determines the x-coordinate of one an-
tenna according to

x = 2k ·conv(d;S), (15)

where k denotes the scaling factor from Eq. (3). The VA re-
turned from the Tx and Rx positions, which are now fully de-
termined, satisfies the required form from Eq. (3). This can
be seen, when the sum of the x-components of Rx and Tx is
performed in the domain of number system S. Any element
a in Tx with symbols ti added to any element b in Rx with
symbols ri yields a decimal result

conv(a;S)+conv(b;S)= tW−1+

W−2∑
i=0

ti

·

(
W−1∏
j=i+1

αj

)
+ rW−1+

W−2∑
i=0

ri ·

(
W−1∏
j=i+1

αj

)

= [t |r]W−1+

W−2∑
i=0
[t |r]i ·

(
W−1∏
j=i+1

αj

)
. (16)
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Table 1. Elements of Tx and Rx for the first example with P1 =
〈2r ,3t ,5r ,2t 〉.

Tx (in S) Tx (decimal) Rx (in S) Rx (decimal)

0000 0 0000 0
0001 1 0010 2
0100 10 0020 4
0101 11 0030 6
0200 20 0040 8
0201 21 1000 30
– – 1010 32
– – 1020 34
– – 1030 36
– – 1040 38

Figure 2. Positioning of Tx (blue squares) and Rx (black triangles)
antennas along a number line originating from P1. The resulting
virtual elements are shown as green circles.

This simplification can be done due to the way, Tx and Rx
are defined. For each digit, either the symbol ti or ri is zero.
When computing the sum in S, no carry events are happening
and through the enumeration, each number in S is reached
exactly once through the combination of each one element
from Tx and Rx. Therefore, the set of all Tx-Rx combinations
yields SS . It follows that a VE for a particular position along
the x-axis is generated from exactly one Tx-Rx pair.

3.3 Design examples

To illustrate the working principle of this design concept,
two different examples are shown that generate a VA with
size L= 60. More examples and a more small-step explana-
tion of the method can be found in Holder and Eberspächer
(2022). The prime factors {2,2,3,5} of L can be ordered and
assigned with the subscripts t or r arbitrarily. For the first
run,

P1 = 〈2r ,3t ,5r ,2t 〉 (17)

is chosen. The used number system is S1 = 〈2,3,5,2〉. The
elements of Tx and Rx are given in S and as decimals in
Table 1.

As a second possible assignment,

P2 = 〈2t ,5r ,2t ,3t 〉 (18)

is chosen. The used number system here is S2 = 〈2,5,2,3〉.
The elements of Tx and Rx for this second example are given
in Table 2.

Table 2. Elements of Tx and Rx for the second example with P2 =
〈2t ,5r ,2t ,3t 〉.

Tx (in S) Tx (decimal) Rx (in S) Rx (decimal)

0000 0 0000 0
0001 1 0100 6
0002 2 0200 12
0010 3 0300 18
0011 4 0400 24
0012 5 – –
1000 30 – –
1001 31 – –
1002 32 – –
1010 33 – –
1011 34 – –
1012 35 – –

Figure 3. Positioning of Tx (blue squares) and Rx (black triangles)
antennas along a number line originated from P2. The resulting vir-
tual elements are shown as green circles.

Figures 2 and 3 show the generated distributions of anten-
nas and their VA for the two exemplary assignments of P .
The first distribution, derived from P1 in Eq. (17), has six
Tx antennas divided into three groups of two. The reason for
this structure are the elements 2t and 3t in P1. The second ex-
ample has 12 Tx antennas and reveals a completely different
structure in Fig. 3. The choice of P influences the balance
between the number of Tx and Rx and gives the designer
some freedom about structuring the antennas into groups.
This could be used to meet other design constraints, like a
minimum distance between two receivers or minimum total
space occupation. A smaller number of Tx antennas facili-
tates finding a set of orthogonal waveforms. Lockwood et al.
(1996) created several MIMO arrays of same size to compare
their radiation pattern and beamforming capabilities. How-
ever, the uniform MIMO arrays in the paper are just given as
examples without any claim about completeness or source.
Therefore, a nomenclature is introduced in the following sec-
tion to properly classify the possible arrays.

3.4 Nomenclature

In the previous sections, a design method for equidistant
and equally weighted MIMO arrays was introduced. The
designer has two degrees of freedom when deciding for a
sequence P of subscripted prime factors: The order of the
prime factors and their individual assignment to Tx (t) or Rx
(r). To classify this design freedom, a nomenclature is pro-
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posed. The chain of characters

[T |R]x0 [T |R]x1 . . .[T |R]P−1 (19)

uniquely identifies a MIMO array. The letter R or T deter-
mines, whether this prime factor is assigned to r or t . The
subscripts xi give the number system S. Adjacent digits with
the same assignment can be accumulated in one digit with
a base corresponding to the product of the individual bases,
e.g. the subsequence R3R2 will result in the same virtual ar-
ray asR2R3 orR6. To avoid this ambiguity, each basis should
be accumulated such that T and R appear in an alternating
fashion. So, the array descriptor T2T2R5R3T3 should be con-
verted to T4R15T3 to increase readability. In favor of gener-
ality, arrays with only one Tx or one Rx can be notated as
TnR1 or RnT1 respectively. Although strictly speaking they
are not MIMO arrays.

3.5 Shifting lemma

Independent of the designed array, shifting all Rx by a spatial
vector sRx or all Tx by sTx does not affect the structure of the
VA. Tx and Rx positions (encoded as a vector p = (x,y)T

here)

p′Rx,i = pRx,i + sRx; p′Tx,j = pTx,j + sTx (20)

are each shifted by an offset vector. The VA itself is just dis-
placed by the arithmetic mean of sTx and sRx since the result-
ing position

p′VA;i,j = pVA;i,j +
sTx+ sRx

2
, (21)

of the VE is shifted by the same amount for each i < NRx
and j < NTx.

4 Example design for a two-dimensional array

The concept of continuously building up antenna groups
through digit assignment can also be implemented for the
case of a 2D MIMO. In order to create a regular MIMO ar-
ray in two dimensions, one could either make use of a square
grid or a hexagonal grid. A comparison is given by Wagner
et al. (2018). Dahl et al. (2017) investigated fractal design
approaches on a hexagonal grid, which as well are structured
methods to design MIMO arrays of arbitrary size. In this pa-
per, a square grid is used to enable the use of fourier based 3D
imaging algorithms (Sheen et al., 2001). For this, the method
introduced in the previous section is applied to the vertical
and horizontal direction separately. A more practical exam-
ple is shown using a 80 GHz radar chip.

The goal is to create a 2D MIMO array with the AWR2243
radar transceiver IC from Texas Instruments Incorporated
(2020). The chip operates from 76 GHz up to 81 GHz using
the FMCW principle. It has three Tx and four Rx channels

Figure 4. 2D MIMO array design example. Tx positions (blue
squares), Rx positions (black triangles) and resulting VA (green cir-
cles).

suitable for MIMO operation. Additionally, multiple chips
can be coherently cascaded to operate with an even larger
number of antennas. In this example, three chips are used to
create an effective size 9× 12 MIMO array. To get an array
size of Lx = 12 and Ly = 9, the pattern R2T3R2 is used in
horizontal and T3R3 in vertical direction. As the produced
MIMO array is intended for direction of arrival (DOA) es-
timation (Chen et al., 2010), a maximum scaling factor of
k = λ/4≈ 3.8 mm (at center frequency) is allowed theoret-
ically, in order to avoid aliasing. As shown by Zhuge and
Yarovoy (2011), this constraint can be relaxed for radar sys-
tems with very high fractional bandwidth. The scaling fac-
tor k ≈ 2 mm is defined through Eq. (15) since the availible
bandwidth is low. The result is shown in Fig. 4. The shift-
ing property from Eq. (21) is used obtain a symmetric design
with a common centroid layout. The next step would be to
design a patch antenna and to place it at the positions for Rx
and Tx. The microstrip routing to the three chips should then
be convenient, as the Tx antennas are already clustered in
groups of three.

A drawback of this placement choice is that Rx and Tx an-
tennas are close together in the middle row. Populated with
patch antennas, this small physical distance would lead to
unwanted crosstalk. Alternatively, Tx and Rx could be sep-
arated on the circuit board as shown in Fig. 5 by using the
shifting property. This leads to larger overall space require-
ments, but helps reducing crosstalk. Another solution could
be to increase the scaling factor k, if the application can im-
plicitly rule out ambiguities from aliasing by design.
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Figure 5. Spatially expanded version of the 2D MIMO array design
example. Tx positions (blue squares), Rx positions (black triangles)
and resulting VA (green circles) are shown.

4.1 Analysis of published arrays

Numerous other publications already proposed MIMO ar-
rays, which can be created with this method. Zhuge and
Yarovoy (2012) are using a 2D array (R2T3R2 in both verti-
cal and horizontal direction) as a reference for sparse MIMO
near-field imaging investigations. Ender and Klare (2009)
use an ARTINO type MIMO array in the form T2R44T16,
which is installed along the wings of an aeroplane. Another
example is a slightly stretched version of a T2R16T8 array
(Herschel et al., 2016) for a passenger security system.

5 The usage of transceiver antennas

This section describes the special case when TRx antennas
are used instead of distinct Tx and Rx. First, an alternative
view to convolution and scaling, namely polynomial multi-
plication is introduced.

5.1 Polynomial multiplication

The concept of polynomial multiplication is not only appli-
cable to TRx antennas, but also distinct Tx and Rx, as in
Sect. 3. If Tx and Rx antennas are located on a uniform
grid with a defined zero-location, the VA can also be cal-
culated via polynomial multiplication. The set of Tx anten-
nas is therefore expressed as a polynomial t (x). A coeffi-
cient ci is either 1, if a transmitter antenna is present at
this grid point or 0, if not. From the example in Fig. 2,
t (x)= 1+x+x10

+x11
+x20

+x21 would be returned, while

r(x)= 1+ x2
+ x4
+ x6
+ x8
+ x30

+ x32
+ x34

+ x36
+ x38

would describe the Rx positions.
The occuring exponents show where Tx antennas are lo-

cated. The same applies to Rx yielding a second polynomial
r(x) with binary coefficients dj . The VA is now computed
via polynomial multiplication as

v(x)= t (x) · r(x)=

deg(t (x))∑
i=0

deg(r(x))∑
j=0

cidjx
i+j , (22)

where deg(·) denotes the degree of a polynomial. The expo-
nent of a term in v(x) indicates the position of the VE while
the corresponding coefficient shows, how many Tx-Rx pairs
contribute to it. As for the convolution method, the VA has to
be spatially scaled by 1

2 . However, the scaling is not relevant
for analyzing the structure of the VA.

5.2 Structured approach for TRx MIMO arrays

If instead of dedicated transmitters and receivers,
transceivers are used, the initially proposed methology
still works but leads to more redundancy. When each
antenna is used as Tx and Rx (TRx), there is no difference
between Tx and Rx anymore. This can be understood with
the thought, that the sets Tx and Rx now consist of the set
unions

T ′x =R′x = Tx ∪Rx (23)

of the initial sets.
The obtained VA from a given regular antenna layout can

be represented as the result of a polynomial multiplication.
Since the antennas are indistinguishable, t (x)= r(x)= a(x)
holds, where a(x) denotes a polynomial encoding of the TRx
positions. Given that the VA is now calculated as

v(x)= (a(x))2. (24)

It can be seen from any TRx structure with NTRx ≥ 2 an-
tennas, that redundancy is now implicitly present. The VA
originated from two TRx antennas has the form

v(x)=
(

1+ xk
)2
= 1+ 2xk + x2k (25)

for an arbitrary positive integer k. The value 2 in the cross-
term coefficient shows, that this structure already contains
redundancy as two VEs overlay each other at this position.

Let a TRx array with polynomial a(x) have degree n. This
means the rightmost TRx element is at position n and the
highest nonzero term of a(x) is xn. Assume that the result-
ing VA does not have any gaps, i.e. vi ≥ 1 for i ∈ [0,2n]
holds for the coefficients vi of v(x). Now consider an ex-
tended TRx array, which is composed of a(x) and a shifted
copy of a(x). It has the form ae(x)= a(x)+x

2n+1
·a(x). The

resulting extended VA has the form

ve(x)= (ae(x))
2
= a(x)2 ·

(
1+ 2x2n+1

+ x4n+2
)
. (26)
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Figure 6. Coefficients of the polynomials a(x)= 1+ x and v(x)=
1+ 2x+ x2 for Niter = 1 in Algorithm 1.

Since a(x)2 covers all VE positions from zero up to 2n, the
second and third term fully cover the positions ranging from
2n+ 1 to 4n+ 1 and from 4n+ 2 to 6n+ 2, respectively. By
copying and shifting the existing structure, the VA can be
extended to three times the original length. This step can
be cascaded several times to build up a large VA. The fol-
lowing iterative procedure illustrates this: The first iteration
starts with a single TRx antenna represented by a polynomial
a0(x)= 1 of degree zero. Algorithm 1 shows the procedure
to get the TRx MIMO array.

Algorithm 1 Iterative method to design a TRx MIMO array.

a(x)← 1
n← 0
for i from 1 to Niter do
ae(x)= a(x)+ x

2n+1a(x)
a(x)← ae(x)

n← 3n+ 1
end for

Figures 6 and 7 show the results forNiter = 1 andNiter = 2
of Algorithm 1. Note that the coefficients of a(x) are shown
at stretched positions to visualize the scaling effect, when
the VA is generated. Figures 8 and 9 show the coefficients
for Niter = 3 and Niter = 4, respectively. It can be observed
that the coefficients get larger over the iterations. While the
number of TRx doubles, the MIMO array length is multiplied
by three for each iteration.

Compared to the number approach of the previous sec-
tions, there are fundamental differences: The redundancy for
TRx arrays does increase with the Niter, whereas the number
approach was designed to not permit redundancy at all. In ex-
change, the TRx arrays rely on strictly repeating structures,

Figure 7. Coefficients of the polynomials a(x)= 1+x+x3
+x4 and

v(x)= 1+2x+x2
+2x3

+4x4
+2x5

+x6
+2x7

+x8 forNiter = 2
in algorithm 1.

Figure 8. Coefficients of the polynomials a(x) and v(x) for Niter =
3 in algorithm 1.

which lowers the hardware complexity. If the spacing is not
feasible inside one iteration, one could always use a smaller
shift between the two subarrays to get ae(x). For the itera-
tion, the alternatively produced a(x) from the previous itera-
tion could be used without problems. Additionally, the physi-
cal size of the VA coincides with the extent of TRx antennas.
For the number system approach, this is never the case.

For a selection of N antennas, the theoretical maximum
size L for a regular VA without gaps is N ·(N+1)

2 for TRx el-
ements. If the antennas are distinct transmitters or receivers,
it is N2

4 . So roughly half of the size is achieved compared to
TRx for largeN . While the number system approach reaches
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Figure 9. Coefficients of the polynomials a(x) and v(x) for Niter =
4 in Algorithm 1.

Figure 10. Block diagram of a module using 4 TRx.

this limit asymptotically, the outlined approach for TRx ele-
ments still has room for improvement.

5.3 Design example

One significant benefit of the approach followed is the result-
ing modularity of the system. To demonstrate this advantage,
a conceived design example is presented in this section. Con-
sider a modular system design, where 16 TRx are used in four
modules with four antennas per module. They are operating
at a center frequency of 200 GHz. To achieve a sampling den-
sity of λ/2 of the VA at the center frequency, the minimum
distance between two TRx is set to 1.5 mm. The transmitter
of each TRx can be deactivated to be operated as a receiver
only. With only one active transmitter at a time, TDM could
be easily realized. Figure 10 shows an outline of such a sub-
module. It has four TRx antennas arranged in a grid of five
with a void element in the middle. Note that this is exactly
the obtained structure for Niter = 1 in Algorithm 1, shown in
Fig. 7.

Figure 11. Block diagram of a module using 4 TRx.

These modules are now placed onto a carrier frame with
an arrangement as shown in Fig. 11. First (corresponding to
iteration 3 in Algorithm 1) the second module is placed with
four units of free space next to the leftmost one. This struc-
ture is copied again at the right side. Note, that the free space
in the middle is only 10 units wide. However, according to
Algorithm 1, it should be 13. It was reduced here to meet an
overall maximum length constraint of 60 mm. The resulting
VA is therefore reduced in size from 81 to 75. Being able to
reduce the shifting distance during one iteration is another
benefit of this approach, which increases the flexibility dur-
ing the design process.

6 Conclusions

In this paper, two design methods for creating uniform and
equidistant MIMO arrays for 1D and 2D applications were
introduced. A nomenclature to classify the degrees of free-
dom in the first method was proposed. Based on a design
example for a 2D MIMO array, the versatility of this method
was demonstrated. This was underlined by already published
designs of other authors, which all could be created with
the introduced design method. As a special case, a design
method with TRx antennas was introduced and compared.
It was shown that redundant virtual elements are implicitly
present in this case.

On the other hand, the examples also highlighted limi-
tations of the methods. Design goals and constraints like
the physical size of an antenna (and therefore the minimum
spacing) or routing constraints are not implicitly considered.
Moreover, the special interest of the authors lies in the ap-
plication of a MIMO structure for near-field imaging. Zhuge
and Yarovoy (2011) point out that array factors are position
dependant and more complex to determine in a near field sce-
nario, which will be considered in future work. Removing
the constraint of equal weighting in the VA, one could ei-
ther choose to design redundant arrays (L <NVE), sparse ar-
rays (L >NVE) or a combination of both. Both options will
be considered in the near future, investigating the effect of
an array choice on the realisability and performance of the
radar. Especially, the use of a non-convex optimization algo-
rithm lies in the interest of the authors. Another aim of the
authors is to find a more elegant and flexible way to design
TRx MIMO arrays. A non-trivial two-dimensional extension
of the introduced TRx method must be found as well.
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