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Abstract. In this paper, we study an identification prob-
lem for schematics with different concurring topologies. A
framework is proposed, that is both supported by mathemat-
ical optimization and machine learning algorithms. Through
the use of Python libraries, such as scikit-rf, which allows
for the emulation of network analyzer measurements, and a
physical microstrip line simulation on PCBs, data for train-
ing and testing the framework are provided. In addition to an
individual treatment of the concurring topologies and subse-
quent comparison, a method is introduced to tackle the iden-
tification of the optimum topology directly via a standard op-
timization or machine learning setup: An encoder-decoder
sequence is trained with schematics of different topologies,
to generate a flattened representation of the rated graph
representation of the considered schematics. Still contain-
ing the relevant topology information in encoded (i.e., flat-
tened) form, the so obtained latent space representations of
schematics can be used for standard optimization of machine
learning processes. Using now the encoder to map schemat-
ics on latent variables or the decoder to reconstruct schemat-
ics from their latent space representation, various machine
learning and optimization setups can be applied to treat the
given identification task. The proposed framework is pre-
sented and validated for a small model problem comprising
different circuit topologies.

1 Introduction

Printed circuit boards (PCB) are laminated sandwich struc-
tures of conductive and insulating layers connecting elec-
tronic components to one another that are used in almost
every electronic product nowadays. The designing of PCBs
can, however, be a very challenging task as it often takes a

great deal of knowledge and time to position hundreds of
components and thousands of tracks into an intricate layout
that meets a whole host of physical and electrical require-
ments (Jones, 2004). As such, proper PCB design is an inte-
gral part of value added. There are three important factors to
be considered when designing a PCB: power integrity (PI),
electromagnetic interference (EI), and signal integrity (SI),
e.g., Archambeault and Drewniak (2013), of which will be
the focus of this paper.

The availability of powerful simulation tools supporting
the different phases of PCB design, i.e., generation of a
schematics, placement of components (or modules), routing,
and testing with respect to SI, PI, or EI, is essential for mod-
ern PCB design, e.g., Jansen et al. (2003), Wang et al. (2009).
However, in spite of the accessibility of such methods the
extreme size of the configuration space makes PCB design
still a hard and time-consuming task. For that reason, various
approaches to the application of mathematical optimization
and, particularly, machine learning to support electronics de-
sign have been recently undertaken, see, e.g., Li et al. (2021),
Huang et al. (2021).

Optimization and machine learning are both powerful
problem-solving tools as long as the required type, quality,
and quantity of data can be provided and sufficient – some-
times extensive – computing resources are available, particu-
larly in case of real world problems. While an optimization
method searches for good parameters in the design space by
forecasting the shape of its target (or cost) function to be min-
imized on the configuration space based on its actual state,
the aim of machine learning is to deduce abstract knowl-
edge about a process from a large amount of legacy data. Al-
though a parameter identification task can often immediately
be modeled as an optimization problem, it usually requires
a cost function with some regularity properties to work ef-
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fectively. In contrast, machine learning does not require any
regularity of data, but usually a large quantity of them and has
to be employed in a certain framework to be able to serve to
an identification purpose. Such a framework could be given
by an optimization algorithm in which the machine learning
method takes the role of a surrogate model to speed up the
parameter identification. Hence, the typical machine learn-
ing approaches, clustering, classification, and model learn-
ing via regression, are capable of efficiently supporting a pa-
rameter identification framework. More sophistication is in-
troduced by approaches as reinforcement learning, see, e.g,
Sutton and Barto (2018), where the policy determining an
automated agent’s action is optimized with respect to its in-
fluence on state variables of a system under consideration.

In any case such algorithms need input data that have to
describe the parameter space properly. This is easy for elec-
tronics components that can be described by several real
numbers, which can be sampled to an input vector. A more
complex approach is required, when concurring topologies
are to be compared, e.g., in the realm of schematics iden-
tification. Using straight forward methods to flatten topol-
ogy descriptions to vectors frequently leads to non connected
configuration spaces, which confront machine learning with
a hard task and require very particular optimization tech-
niques. In case of structures that can be represented by graphs
such as schematics, Graph Neural Networks (GNN, Hamil-
ton, 2020) can help to overcome this issue: Generalizing the
idea of Convolutional Neural Networks (CNN), this class of
algorithms allows for transforming graph related data in a
simpler, so called latent space, thus flattening the complex
information contained in a graph structure. The latent space
representation itself is learned from the input data so that un-
der good conditions a latent space arises whose variables still
represent the important information of the graph. This learn-
ing process is usually achieved by feeding the latent space
data generated from graph related data by the GNN, which
is employed as an encoder in this case, to a decoder that re-
constructs graph related data from latent space data. Train-
ing of the encoder-decoder sequence is simple, because the
graph related input data can directly serve as labels: a perfect
encoder-decoder pair leaves the input data unchanged. Af-
ter training the encoder-decoder sequence, the decoder can
be demounted and any machine learning method (cluster-
ing, classification, or regression) or optimization method can
be applied on the latent space with the encoder mapping
schematics representations into the latent space and the de-
coder reconstructing schematics from information encoded
in the latent space. While applying machine learning on a la-
tent space representation is currently intensively studied, not
much research exists about the usability of latent space rep-
resentations for optimization purposes. A delicate question is
if and under which conditions the latent space representation
will exhibit sufficient regularity for successful application of
mathematical optimization.

This work is devoted to evaluating the potential of math-
ematical optimization and machine learning for automated
design problems whose configuration space comprises var-
ious topologies. A simple problem is chosen as a first ex-
ample to demonstrate the feasibility of different approaches:
microstrip lines connecting an emitter to several receivers
represented by linearized components, have to be arranged
in such a way that a sufficiently good connection is guaran-
teed. As often done in practical applications the quality of the
microstrip line connections are validated via S parameters.
At first, an optimization algorithms due to Nelder and Mead
(Singer and Nelder, 2009) suitable for a directed search in
configuration spaces with low regularity is applied to vari-
ous topological implementations of the network. Their capa-
bility of identifying good designs for the various topologies
are studied for the different individual topologies first. Sub-
sequently, a machine learning framework based on a GNN-
type approach is presented that offers the opportunity of
rapidly providing predictions on the relevant parameters of
a proposed circuit design. Without the trouble of designing
and validating a PCB-network with the particular topology
to be assessed (e.g., using scikit-rf) during the optimization
framework, the machine learning model will provide a fit-
ness value that can then be used in an optimization method.
Finally, the latent space representation achieved by the GNN,
is also directly exploited by an optimization approach using
the GNN as encoder. Hence, the main achievement of this
work is to provide a method that makes design relevant in-
formation hidden in a schematics’ topology assessable for
machine learning and optimization, thus allowing for treat-
ing cross-topology identification problems with standard ma-
chine learning and optimization frameworks.

2 SI issues and measurements

Evolving technology has made it increasingly difficult for
system developers to produce and maintain complete, unim-
paired signals in digital systems (Bogatin, 2004). In order
to generate a signal with good SI, several important issues
like dispersion, reflections, noise, jitter, attenuation/high fre-
quency loss, etc. need be considered (Brooks, 2003). SI can
be measured in the time domain with an oscilloscope or a
reflectometer, and in frequency domain with a spectrum ana-
lyzer. Of great importance for the validation of linear compo-
nents such as transmission lines via frequency domain mea-
surements are S parameters: They describe in general the lin-
ear behavior ofN -port networks, representing ratios between
complex amplitudes of incoming and outgoing waves at the
considered ports for specific frequencies, either measured in
V, A, or even

√
W (representing power waves) with equiva-

lent results. More precise, if an, 1≤ n≤N , denotes the com-
plex amplitude of the incoming wave at the port n, and bn the
outgoing wave, the S parameters are defined via the follow-
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ing matrix representation:
b1
b2
. . .

bN

=

S11 S12 . . . S1N
S21 S22 . . . S2N
. . . . . . . . . . . .

SN1 SN2 . . . SNN



a1
a2
. . .

aN

 (1)

where the Snn are the reflection coefficients at port n, as can
be seen by setting all incoming waves other than an to zero,
and Snm is the transmission coefficient from portm to port n.
If a sending device associated to port m= 1 serves nrec re-
ceiving components, such as, e.g., memory chips, the reflec-
tion coefficient S11 at the receiver and the transmission co-
efficients Sn1, 2≤ n≤N = 1+nrec, between the source and
the nrec ports assigned to the receiving devices provide an in-
formative insight whether the transmitting system (PCB) is
apt for high quality signal transfer.

The aim of this paper when dealing with the S parame-
ters is to minimize the reflections as they cause common-
mode interference, meaning that too large reflections reduce
the power provided at the receivers and superimpose the re-
flected interference on the signal (Pupalaikis, 2020). For this
paper, simulations of S parameters produced in the frequency
domain with the Python library scikit-rf (Arsenovic et al.,
2022), which is emulating a spectrum analyzer, will provide
labeling to our design proposals.

3 PCB design with various topologies

In order to comprehend how traces and components are laid
out on the board, a PCB can be visualized as a network em-
bedded in a physical copper-silicon framework where data
must flow from one point to another, making it quite signifi-
cant to analyze and optimize routing topologies to ensure that
SI remains consistent throughout. To present the approach
sketched above, we study a simple problem class covering
several common PCB routing topologies, visualized in Fig. 1,
that are based on the traditional topologies also considered in
Chiu et al. (2018). These topologies are different simple con-
figurations for laying components and the connection lines
between them. Figure 1a displays a star topology, which uses
a central pad or via to link multiple points in a circuit to a
signal source. Meanwhile, Fig. 1d, displays a fly-by topol-
ogy, which is a type of daisy chain connection. The daisy
chain type of topology links multiple components together
in series. A star topology can be useful in order not to impact
the signal by the components as they would in a daisy chain
(Chiu et al., 2018).

The design of a high quality power distribution network
would lead to an analogous consideration. We have also con-
sidered mixed versions of these two routing topologies, in
order to draw further conclusions on the design choice and
open the possibility of more complex topologies being ad-
ditionally integrated in the optimization process. All four
topologies have resistors R0 and R at the extremities with the

Table 1. Geometry and material modeling of microstrip lines.

Parameter Symbol Value

Conductor width WL 229 µm
Substrate height HL 610 µm
Conductor thickness TL 36 µm
Substrate permittivity εL 4.1

receivers linked by the transmission lines TL0 to TL4. High-
lighted in red in Fig. 1 are the predetermined ports P1 to P4
with S parameters labeled by indices n= 2 to n= 5. Our aim
for this paper is the analysis of these chosen topologies and
the minimization of reflections S11 at the emitting port P0 as
well as the maximization and equilibration of transmission
parameters Sn1, 2≤ n≤ 5.

Following Chiu et al. (2018), the receiver’s load is here
simply modeled as a capacitor with a capacitance of C =
11 pF. Indeed, a memory module is mainly seen as a ca-
pacitive load for the PCB’s circuit, where the relevant con-
tribution to its overall capacitance does not come from the
small capacitors used to store individual bits of about 25–
30 fF (Kim, 1995), but from the packaged/off-chip PCB in-
terconnects between the DRAM memories and processors.
For packaged (PoP) interconnects in LPDDR2 memories,
Chandrasekar et al. (2013) give a value between 8 and 20 pF,
which is in accordance with the value used here. As in this
work the general capability of mathematical optimization
and machine learning in case of concurring circuit topologies
is examined, the choice of the underlying technology and
the exact values are of minor importance. In addition, pos-
sible non linearities of modules used in practice are not con-
sidered here. Accordingly, the S parameter analysis, which
is used for circuit validation in this work, does not account
for nonlinearities. For large signal circuit designs, non-linear
IBIS-files provide a more realistic choice, cf. e.g., Gupta and
Chopra (2021).

The microstrip lines used in the four studied PCB topolo-
gies are modeled in the frequency range from 100 MHz to
2.6 GHz via the MLine-command of scikit-rf (scikit-rf team,
2022), see also Jahn et al. (2007). They are defined in terms
of width WL, thickness TL and height HL between ground
plane and conductor comprising a given relative permittivity
substrate with permittivity εL (see Table 1) measured at the
reference frequency fref = 1GHz.

The conductor resistivity is set to ρ = 1.712×10−8�m−1

and the dielectric loss factor is set to 0. A material rough-
ness of 0.15µm is assumed. The lengths of the transmission
lines is subject to optimization in this work (cf. Table 2). Via
the specified material model the frequency depending char-
acteristic impedance Z0 and the transmission delay Td of the
transmission lines are determined via an efficient permittivity
εeff. The frequency depending S parameters of the microstrip
lines can then be determined from these values and employed
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Figure 1. Considered topologies: (a) star topology, (b) first mix of star and fly-by topology, (c) second mix of star and fly-by topology,
(d) fly-by topology.

in the circuit model. More precisely, the quasi-static behav-
ior of the microstrip lines, i.e., at zero frequency, is deter-
mined by the Hammerstad-Jensen model with a thickness
correction of the microstrip. To account for the frequency
dependence (dispersion) of εeff = εeff(f ) the Kirschning and
Jansen model is applied. Furthermore, for broad band dis-
persion, also the Djordjevic Svensson correction is activated
with parameters flow = 1kHz and fhigh = 1THz.

4 Mathematical optimization

4.1 Parameter identification via optimization

The optimization algorithm chosen for this specific example
is the Nelder Mead simplex search, named after the fact that
it starts off with a randomly-generated simplex shape in pa-
rameter space, whose corners are given by n+ 1 parameter
tuples, with n being the dimension of the parameter space.
Consequently, at every iteration, the algorithm proceeds to
reshape and move this simplex towards a more favorable re-
gion in the search space applying the two operations reflect
and shrink (Singer and Nelder, 2009). As mentioned in the
SI section, the target for the chosen example was the mini-
mization of the reflection |S11| at the emitting port through

1
m

m∑
k=1
|S11(p,fk)| +F(p)→min (2)

where

p = (R0,R,L0,L1,L2,L3,L4)
>

is the vector of design parameters to be identified and

F : R7
→ R+0 , p 7−→ F(p)

Table 2. Constraints for optimization.

Resistor at source R0 0M�≤ R0 ≤ 1M�
Resistor R 0M�≤ R ≤ 100M�
Transmission line TL0 5mm≤ L0 ≤ 100mm
Transmission line TL1 5mm≤ L1 ≤ 100mm
Transmission line TL2 5mm≤ L2 ≤ 100mm
Transmission line TL3 5mm≤ L3 ≤ 100mm
Transmission line TL4 5mm≤ L4 ≤ 100mm

is a penalty function quantifying the degree in which design
restrictions (constraints), such as minimum length or positiv-
ity of physical quantities, are violated. Additionally, m de-
notes the sample size in frequency space. The minimization
of the reflection parameter |S11| is demanded in order to min-
imize unwanted emissions due to common mode disruptions.
The design constraints set in this work are listed in Table 2.

Using the Heaviside function H with H(x)= 0 for x <
0 and H(x)= 1, x ≥ 0, they are implemented with the help
of the following penalty function (for notational simplicity
physical units are suppressed):

F(R0,R,L0,L1,L2,L3,L4)=

|R|H(−R)+ |R|H
(
R− 1× 106

)
+ |R0|H(−R0)+ |R0|H

(
R0− 1× 108

)
+
|mink{Lk}− 5× 10−3

|

|mink{Lk}| + 5× 10−3 H
(

5× 10−3
−min

k
{Lk}

)
+ 10 |max

k
{Lk}|H

(
max
k
{Lk}− 1× 10−1

)
(3)
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With this setting of the penalty convergent solutions to fea-
sible parameters (i.e., such parameters that fulfill the con-
straints) could be produced. It is a matter of current work if
the performance of the algorithm can be enhanced by ren-
dering them all continuous by choosing coefficients before
H that assume the value 0 at the switching point and grow
moderately as a function of the respective parameter.

The Nelder Mead algorithm searches for local minima. To
avoid the algorithm getting stuck in a local minimum and to
guarantee a coverage of the whole complex parameter space,
the Nelder Mead algorithm is applied several times with dif-
ferent initial parameters that cover the relevant parameter
space (see the discussion of the solutions below).

4.2 Optimization results

After 500 steps of the Nelder Mead simplex method opti-
mization, four graphs plotting the S parameters, reflection
and transmissions for each port, were produced for each of
the considered topologies. The voltage source in Fig. 1 is
considered as a sending port with S parameters indexed by
m= 1. The receiving ports 1–4 (see Fig. 1) are situated in
front of the capacity loads 1–4, and will be indexed by in-
tegers 2≤ n≤ 5, as the emitting port will be indexed with
m= 1. The quantities to be identified through optimization
are the values for the resistor R0 and R as well as the
lengths for all transmission lines L0 to L4. These are char-
acterized as parameters that minimize the objective function
|S11|+penalty. With a suitable choice of the penalty, the ob-
jective should equal the sought reflection parameter |S11| in
the minimum situation, i.e., the minimum is attained for a
feasible parameter.

Observing the evolution of the objective value |S11| +

penalty during Nelder Mead iterations for all four considered
topologies in Fig. 2, one notices that low values for the fre-
quency average of |S11| are quickly achieved, namely already
at the 100th iteration, and the objective value seems to con-
verge for all considered topologies. The high values attained
between the 30th and the 80th iteration result from the penal-
ization of constraint violations which fade out in the further
iteration process. The results in Fig. 2 allow to conclude that
the Nelder Mead iteration finds a local minimum of the ob-
jective function, and, hence, of |S11| (as constraint violations
can be excluded in the optimum situation). To exclude the
existence of better solutions in an other part of the configu-
ration space that has not been reached by the iteration, the
optimization process has been repeated several times with a
couple of different initial values assuring a good coverage of
the configuration space. So far, no better results for the fre-
quency average of |S11| could be found.

Figure 3 shows the frequency depending S parameters
achieved for the first two considered topologies (a) and (b)
while Fig. 4 plots the parameters for the last two considered
topologies (c) and (d) in Fig. 1. These plotted frequency re-
sponses are further supported by Table 3 showing the mini-

Figure 2. Objective |S11| + penalty after each iteration of the opti-
mizer for all topologies.

mal values achieved by the optimization. One can see from
the figures displayed in Fig. 3 and the corresponding param-
eters representing the optimum configurations displayed in
Table 3 that |S11(f )| is efficiently reduced close to 0 for
lower frequencies. The equality of |S11| and |S11| + penalty
implies that no constraint violations occur for the determined
optimum values. It is notable that the 4 transmission param-
eters |S21| to |S51| stay constantly at the same value 0.25.
The equality of the reflection parameters in the optimum sit-
uation is self evident for the star topology, but remarkable
for the mixed topology (b), as this feature has not explicitly
been demanded during the optimization process. However,
the magnitude of the reflection coefficient |S11| significantly
increases with rising frequency from approximately 0.01 at
f = 100MHz to more than 0.22 at f = 2.6GHz. The pure
star topology exhibits transmission curves slightly closer to
each other for the various receiving ports at higher frequen-
cies.

The behavior of the mixed topology (c) plotted in Fig. 4 on
the right is similar to those of (a) and (b) with the exception
that the average reflection is higher and that the transmission
parameter |S51| falls under the course of the reflection pa-
rameter |S11|, while the other three transmission parameters
achieve higher values than in the cases (a) and (b) over 0.3.
For high frequencies, |S21| grows even further.

A completely different picture is seen for the topology (d),
plotted in Fig. 4 on the left: In contract to the three first
topologies, |S11| surpasses here the reflection parameter for
the topologies (a), (b), and even (c) for low frequencies, but
shows a better high frequency behavior, as it does not in-
crease with higher frequency. The constant behavior over the
whole considered frequency range in these cases is a remark-
able feature that supports the feasibility of a fly-by topology
for high frequency applications. The transmission parame-
ters show quite different behavior, although they all assume
uniformly high values over the frequency range. If these vari-
ations are to be reduced, an extension of the objective func-
tion enforcing more similar transmission coefficients can be
implemented.
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Figure 3. Transmission- and reflection parameters after optimization of topology (a) and (b).

Figure 4. Transmission- and reflection parameters after optimization of topology (c) and (d).

The method presented in this section and the subsequent
results were additionally constructed with a second optimiza-
tion algorithm due to Powell (1971). For topology (d) where
less variation in the course of the transmission parameters
has been witnessed in the best configuration found, the re-
sults achieved are similar to the Nelder Mead optimization
and principally display a lower objective value obtained with
longer computing time.

5 Machine learning

Machine learning (ML) is capable of learning patterns from
legacy data by fitting a model, see, e.g., Zhou (2021). It is
a well regarded predictive analytics tool, capable of process-
ing massive amounts of legacy data to automatically identify
patterns, learn from the data and, thus, make predictions. One
significant advantage of ML is how fast it is during the online
phase. However, the identification of good designs through
ML requires a particular setting. The strategy followed in ML
is the minimization of the loss function, which measures the

discrepancy of the predicted outcome to measured or simu-
lated values.

5.1 Graph representation

Numerous issues in electronics design can be formalized via
graphs. As also represented in Fig. 5, circuit schematics can
seamlessly be interpreted as weighted graphs and, thus, ben-
efit from the opportunities offered by machine learning al-
gorithms that are capable of operating with graph structures
such as graph neural networks. To represent a schematic as a
formal graph, the intersections of conducting connections are
represented as nodes and the building elements are specified
as weights assigned to the edges lying between the nodes.
For simple elements, such as considered in this work, these
weights take the from of frequency depending complex num-
bers. For more complex circuit elements, more complex data,
e.g., describing non-linear behavior, are also possible. An
electronic network can already be defined by the scikit-rf li-
brary, where a particular data structure is provided to repre-
sent all electronic components and their connections. How-
ever, as evidenced in Fig. 5, the internal data representation
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Table 3. Minimized optimized values.

Component Unit Top (a) Top (b) Top (c) Top (d)

Resistor at source R0 � 78.89 78.1 69 50.5
Resistor R k� 162.7 340 150 234.5
Transmission line L0 mm 5 5.5 11.3 31
Transmission line L1 mm 5.58 5 5 5
Transmission line L2 mm 5.1 10.9 5.6 35.4
Transmission line L3 mm 6.1 5.1 7.1 16.8
Transmission line L4 mm 8.2 7.9 5 10.6
Reflection |S11| (average) 0.108 0.109 0.139 0.106
Objective |S11| + penalty 0.108 0.109 0.139 0.107

employed by scikit-rf is rather complex and, thus, not con-
venient as a data structure for further processing with the
aim to deliver graph information to a machine learning (or
optimization) framework. As such, through the use of the
Python library Networkx (Hagberg et al., 2008), a complex
network can be manipulated into a clearer representation af-
ter its creation, so that the resulting structures and connec-
tions are ready to be studied by a chosen learning model.

While GNN libraries allow for direct operation on data in
such a graph representation, we opt in this work for trans-
ferring the Networkx representation of a schematic further
into a two dimensional image format to be able to apply the
tremendous wealth of algorithms tailored to treat data in im-
age form directly (see, e.g. Ji et al., 2021). The choice of
this approach, which represents in some sense a particular
construction method for GNNs, offers the opportunity to cus-
tomize the applied machine learning algorithms to our partic-
ular needs rather than working in a too narrow environment.

To transform the Networkx representation of the given
schematics into the realm of image data, it is noted down
as an adjacency matrix A= {aik}ik , where each node of the
graph is related both to a row and a column of the graph.
Consequently, each matrix entry represents a possible edge,
where rows are considered as starting nodes and columns as
terminating rows. An entry aik 6= 0 indicates that there is an
edge starting at node i and terminating at node k. To capture
the electronic components linked to the individual edges, the
corresponding material values (e.g. complex impedance val-
ues etc.) can be stored in the respective positions. This sort of
representation of an electronic network assumes the form of
an image with the individual entries representing color val-
ues of a pixel. As a consequence, the well understood and
rich theory of image processing via convolutional neural net-
works (see, e.g., Ji et al., 2021) applies to these represen-
tations of schematics, and the autoencoder methods estab-
lished for image processing can be transferred to construct
latent space representations for schematic, on which machine
learning and optimization frameworks can subsequently be
implemented.

Figure 5. Graph representation of the star topology (cf. Fig. 3)
through the Python libraries scikit-rf (Arsenovic et al., 2022) and
NetworkX (Hagberg et al., 2008).

5.2 Flattened network representation

With the preparations from the preceding subsection, com-
plex electronic networks are ready to be modeled or opti-
mized by algorithms directly working on their graph rep-
resentation. Figure 6 provides a proposal of an electronic
design automation (EDA) framework where an encoder-
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Figure 6. Encoder learning framework for the graphs.

decoder structure (autoencoder) is employed as well as a re-
gression and classification deep neural network: The encoder
transforms a weighted adjacency matrix, as defined above,
into a vector of defined size d , while the decoder transforms
a vector of size d again to an adjacency matrix. The goal of
training the encoder and the decoder is to determine a flat-
tened representation of the adjacency matrices, i.e. the la-
tent space (here, the vector space Rd ), that can easily serve
as input to machine learning and optimization methods and
that contains as much relevant information of the adjacency
matrices as possible despite the immense dimensional reduc-
tion.

Several ways exist to train such encoder-decoder frame-
works. A very practical way is to consider a sequence con-
taining an encoder directly followed by a decoder and to
supply a large number of adjacency matrices. The output of
the sequence – again being formally an adjacency matrix –
is then compared with the input matrix itself, which is also
taken as label here, with respect to a suitable metric. In this
way, the encoder - decoder sequence is trained to reconstruct
identity matrices via a detour through the latent space. After
this training, the trained encoder and the trained decoder can
be used separately to map adjacency matrices into the latent
space and vice-versa. Figure 7 shows on the right hand side
the representation of an input graph fed to an autoencoder
(from above: scikit-rf representation, adjacency matrix) and

Figure 7. (b, d) representation of an input graph fed to an autoen-
coder (from above: schematic, scikit-rf representation, adjacency
matrix). (a, c) its counterpart reconstructed by the trained autoen-
coder.

on the right hand side the reconstruction from the trained au-
toencoder. Matrix entries are coded as colors.

To construct a GNN, the encoder can be connected up-
stream to a classifier or a regression model (see Fig. 6). When
being trained by adjacency matrices representing schematics
the downstream ML method only sees latent space data on
which it operates. Such a framework can, on one hand, be
applied as a quick computable surrogate model in the context
of a mathematical optimization procedure (regression model)
or, on the other hand, support the classification between suit-
able and unsuitable designs. On the other hand, optimization
problems can directly be treated on the latent space. The de-
coder is then required to reconstruct the encoded schematics
to obtain objective function values from circuit simulation.

Furthermore, advancing beyond a classification or labeling
problem provided by a GNN, a reinforcement learning algo-
rithm would provide continual assessment and corresponding
modification of designs through the employment of an agent
– an approach well regarded for the considered situations or
problems (Sutton and Barto, 2018). Most significantly, this
proposed framework would allow for the comparison and
validation of new topologies, learning from the graphs that
have already been tested.

In this work, the simple structure of the considered PCB
topologies allow for restrictions to quite basic ML designs
for the employed encoder-decoder frameworks, because pa-
rameter sets are small and filtering and regularization steps
can be carried out adhoc. Consequently, advanced designs
using pooling layers or even stochastic techniques such as
in variational autoencoders (e.g., Zhai et al., 2018) are post-
poned to subsequent studies.
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Figure 8. Training and test of the encoder-decoder sequence on ad-
jacency matrices.

5.3 Machine learning on the latent space

As visualized in Fig. 6, once a graph representation has been
constructed for each topology, establishing information of all
the aforementioned electronic components and their connec-
tions were established, a workflow for the manipulation and
lowering of the complexity of the data serving as an input
to a learning algorithm is applied. An encoder and a suit-
able decoder are defined mapping information, such as ad-
jacency matrices of the graphs, to a latent representation of
this data and vice-versa. This latent representation is a lower-
dimensional compression of the input data onto the latent
space, while still maintaining the most important features. A
variable d is defined for the dimension of the encoding space.
As first simple test version, an encoder with two dense fully
connected layers, the first one possessing the dimension of
the array the adjacency matrices has been flattened to while
the second one possesses the size of the dimension d of the
latent space, and a “ReLU” activation function, as well as the
corresponding decoder are implemented. In this setting, the
latent dimension is set to d = 17. The decoder is meanwhile
constructed of one dense layer with 289 neurons, a ”ReLU”
activation function, and, an additional reshaping layer in or-
der to reconstruct the original data. Figure 8 shows the model
loss of the encoder-decoder sequence while learning the la-
tent representation (blue curve) on a sample of 1152 adja-
cency matrices. The model is compiled with the “Adam” op-
timizer and mean squared error (MSE) loss function is used
for training with the input data. The loss function is reduced
dramatically already in the first epochs. In addition, the test-
accuracy is plotted in Fig. 8 in red. Showing a similar decay
to the training curve, the test curve shows no indication of
over-fitting.

Subsequently, the trained encoder is used separately to
turn further input data (adjacency matrices) to the latent

Figure 9. Training and test loss for S parameter prediction via re-
gression.

space representation, and this latent representation is then fed
to train a simple deep neural network that is to serve as a re-
gression model. The purpose of this combination is to predict
accurately the averaged value of |S11| over the considered
frequency range, i.e., the objective function considered in the
previous chapter for optimization. In contrast to the previ-
ously outlined situation, in this case the combination encoder
neural network has been trained as one unit. It is believed
that a two step approach might be more efficient, which is
being currently investigated. The neural network model has
two dense layers of 128 and 64 neurons respectively. Figure 9
plots the training loss (blue curve), which indicates the learn-
ing of latent data, against the test data (red curve). The labels
for the supervised learning process are gained via S parame-
ter computation with scikit-rf for the considered circuits. The
weights of the encoder are not chanced during this learning
process.

The here presented results are preliminary, in the sense that
the research of suitable hyper-parameter values is still subject
to research.

5.4 Optimization in latent space

After training of the autoencoder, its decoder part can trans-
form the lower-dimensional representation, in our case that
of the latent space, into the original space approximately re-
constructing the original input data. This feature can be ex-
ploited to have the Nelder Mead (or any other optimization
method) run on the latent space. As part of the objective func-
tion, the decoder will be evoked whenever an objective value
for a data point in the latent space is required. Inside the ob-
jective function, some regularization has to be applied to the
decoded adjacency matrices, which is done by a simple pro-
jection step in the simple examples considered here. Alterna-
tively, a very efficient, yet slightly less accurate scheme can
be obtained by using annotations to the original data as labels
for the corresponding latent space data and identifying a ma-
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chine learning surrogate model for the target function on the
latent space. For a sufficient amount of more complex data,
the autoencoder can be augmented to a more flexible device,
e.g., by incorporation of a pooling layer. While the frame-
work has been built up so far, the presentation and analysis
of first results represents work in progress. This comprises
the discussion of delicate questions concerning the regular-
ity of the objective function as a function of the latent space
and its implications for the efficiency of the optimization.

6 Conclusions

A framework to assist to the modeling, classification, and
identification of PCB designs involving different topologi-
cal approaches is proposed. As a first application of the pro-
posed method, reduction of reflections on simple electronic
networks is studied. The underlying idea of the approach is
to break down the relevant information hidden in the network
structure to a flattened latent space via an encoder-decoder
structure. After this variant of graph neural networks has
been trained by sufficiently many PCB schematics represen-
tations, the encoder and decoder can be employed separately
to transfer PCB related data into the latent space, where they
can be processed via standard machine learning and opti-
mization frameworks, and, from there, back into a network
representation.

In this work, we analyzed the building blocks of the frame-
work sketched above separately with the help of a small prob-
lem involving various circuit topologies, i.e., star-topologies,
fly-by-topologies, and hybrid variants of them. These build-
ing blocks comprise an optimization setup that has been ap-
plied in a first step to each considered topology layout. In do-
ing so, we could show that the Nelder Mead simplex search
is an example of a feasible optimization method that can be
applied on a flattened data structure. It came out that the con-
sidered simple model problem comprises sufficient features
to be studied in a cross-topology approach: While for the
star-like topologies a superior low-frequency behavior, i.e.,
much lower reflection at the input port, could be achieved
via optimization, the fly-by type topologies offered a more
stable high frequency behavior with the optimum reflection
parameter being nearly independent of the frequency. Hence,
it came out that the complexity of the considered topologies
is manageable and the Nelder Mead optimization is efficient
for the considered PCB topologies.

A second achievement demonstrated in this work is an au-
toencoder framework that maps after training weighted ad-
jacency matrices of circuits of various topology into a latent
space in such a way that the relevant topology information is
maintained. This framework shall be employed in two ways:
The encoder will be used as upstream component for a simple
classification or regression algorithm. Here a first example
could be presented. The established regression model allows
for determining S parameter information for circuits of var-

ious topologies without the need of explicitly constructing
the circuit first. Used as a surrogate model in an optimization
framework, such a regression model yields a relevant gain in
efficiency. The other intended application of the proposed au-
toencoder is as a downstream component to an optimization
algorithm operating on the latent space. Here, it serves as a
component in the objective function of the optimizer.

With this paper and the optimization and machine learn-
ing methods studied within, we provide a reference for fu-
ture applications in which different topologies can directly be
compared. The focus will be on integrated and automatized
schemes to treat various complex approaches in one frame-
work. The proposed application of graph neural network will
be followed in further studies, where the benefits of encoder-
decoder structures using convolutional neural networks will
be further analyzed. Particularly more advanced techniques
such as variational autoencoders will be considered. Further
points of subsequent studies are the setups of parameter iden-
tification frameworks on the latent space, such as the use of
machine learning models as surrogate models in an optimiza-
tion method or a reinforcement learning process.
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