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Abstract. The effects of parameters affecting the input
impedance of a power delivery network (PDN) are investi-
gated. It is considered that the size of the power plane and the
number of associated planes in the PCB layout, apart from
the decoupling capacitor, have an effect on the impedance
behavior within a certain frequency range. An artificial neu-
ral network (ANN) is trained using the generated data utiliz-
ing a process to generate suitable input for training a ma-
chine learning (ML) module, which is able to predict the
impedance profile of the PDN. In order to obtain a more ac-
curate prediction, Bayesian optimization is implemented and
the results are compared to commercial power integrity (PI)
software.

1 Introduction

Developing a reliable PDN that provides a constant power
supply for integrated circuits (IC) has become more critical
with the increase in both operating frequencies and current
loads in modern high-performance computing systems. Its
importance does not appear to be shrinking given the con-
tinuing trends toward system integration and supply voltage
reduction. Therefore, PI analysis is an essential part of PDN
design of electronic systems. Typically, the performance of a
PDN is evaluated based on its impedance response as a func-
tion of operating frequency. This is then compared to a target
impedance (TI) to determine if the PDN is performing suf-
ficiently well. The exact solution of this problem is usually
very time consuming and it requires a lot of experience to

obtain a reasonable PDN design in the layout process of the
printed circuit board (PCB).

In recent years, an alternative way to achieve an accurate
and optimized design of PDN that does not violate the TI, in
the academic as well as in the industrial field, are artificial
intelligence (AI) methods that have made it possible to re-
design and optimize the design with little effort in time. The
approach of Schierholz et al. (2019) illustrates the prediction
of TI violation with ANN using a simple board design with
respect to decoupling capacitors (decaps) placement. A deep
learning approach is proposed by Zhang et al. (2021), where
a boundary element method (BEM) is used to predict the
impedance of the arbitrary irregular generated board. Within
a prototype EDA tool package, Choy et al. (2023) implement
deep learning-based real-time impedance prediction and op-
timization of decap selection and placement. In Han et al.
(2022), another approach based on reinforcement learning is
presented for power plane optimization in PDN. A method
for selecting both, decaps and their placement concurrently
is proposed in Han et al. (2021).

However for all the above methods either multiple full-
wave/PI simulations are required throughout the optimiza-
tion process, making the whole process time-consuming, or
non-physics-based methods are used to calculate impedance
at each iteration, resulting in a lack of accuracy in real PCB
design.

In Na et al. (2000), an analytical formulation for model-
ing a plane-pair structure is presented, as well as an exten-
sion for multiple plane pairs that calculates the impedance
matrix at arbitrary ports in the plane. Therefore, in addition
to the decaps, the number of associated planes in the PCB
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structure and the size of the power plane have an impact on
the impedance behavior in a given frequency range. This im-
portant impact can also be expected from the AI modules
supporting the design process. Using two case studies this is
verified in the present paper.

In this paper, we present an approach that generates data
for developing an ANN that not only considers the decaps,
but also incorporates the structure of multiple layers and the
size of the power plane in the development of PDN. These
data are then used to train an ANN and the prediction accu-
racy will be compared to simulated one.

2 Parameters affecting the performance of the PDN
design

Several parameters are involved in the design of a PDN. A
variation of these parameters, the resulting impedance re-
sponse can violate the TI. We will focus on three main
cases and perform simulations using the accurate PI simu-
lator eCADSTAR (ZUKEN, 2022) to discuss the effects of
these parameters on the impedance response.

The first and primary parameter that fixes the PI problem
is to work with decoupling capacitors. The number of asso-
ciated decaps on the PCB and their position must be well
defined to satisfy the PI criterion. A decap can theoretically
(under optimal operating conditions) be treated as a bare
capacitor with purely capacitive properties, however, in the
real design, a capacitor also has some resistive (Equivalent
Series Resistance) and inductive (Equivalent Series Induc-
tance) properties associated with it, which are known to as
parasitic resistance or parasitic inductance (Ott, 2009; Franz,
2013). These characteristics cause a different frequency be-
haviors and can shift the resonance point of the different ca-
pacitors. Therefore, the values of the associated decaps on
PDN efficiency must be taken into account. Practical experi-
ence and simulation experiments do indicate, that the closer
the decaps are placed to the observation point, the greater the
influence on the resulting impedance response.

Two other parameters that must be considered are the size
of the power plane and the number of layers in a PCB tech-
nology. Analytical formulas for calculating the impedance
matrix of a solid plane pair and its extension to multiple
planes are presented in relations (4) and (16) of Na et al.
(2000). The detailed derivation of these formulas is clearly
explained in this paper. Based on these relations, modify-
ing the dimensions of the plane and the total number of as-
sociated ground planes changes the impedance characteris-
tics. Since the electrical properties (relative permittivity, con-
ductivity, and loss factor) are considered as fixed in the de-
sign process. Besides the placement of the decaps and their
values, the study of the PCB stackup and plane dimensions
(power/ground) are also relevant for the design purpose. The
change in impedance characteristics requires, therefore, a

Figure 1. Workflow of data generation.

systematic analysis of the influence of the above parameters
on the PDN.

To reduce the complexity of the problem, we consider the
above parameters separately. Therefore, we have defined two
case studies in which the effects of decaps and the stackup
definition are treated independently. These are described in
Sect. 3.1 and 3.2.

3 Workflow to generate data

In the previous section, the most common and important pa-
rameters in the design of a PDN were discussed. To use this
knowledge to build and evaluate an ML module capable of
predicting the impedance curve of a PDN system, some data
is needed to train and test ML algorithm. To perform this task
correctly and automatically, we define a workflow as shown
in Fig. 1. First, we design a PCB in eCADSTAR PCB Ed-
itor and then a batch script to change the parameters to be
analyzed. After that, depending on how much data is needed,
a Python script generates these batch scripts in a repeated
process. Then the simulations are performed in eCADSTAR
PI/EMI Analysis and the impedance data of the simulations
are saved as different CSV files. Based on this workflow and
the definition of the following case studies, the data sets are
generated.

3.1 Case study 1

In this case study, the effect of the decaps is investigated. Not
only the number of involved decaps but also the position of
the decaps in relation to the IC power pin investigated. For
this purpose, an irregular H-shaped board with dimension of
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Figure 2. Test board of case study 1: randomly distributed decaps at
the corners of the board (red-dashed rectangle) as area 1 and random
distribution of decaps around the IC position (green-solid rectangle)
as area 2. The numbered positions from 1 to 52 are used for placing
the decaps.

300× 320 mm2 (W ×H ) as shown in Fig. 2 was designed
with four layers technology (two layers as top and bottom,
one as power and the other as ground) and one IC. The de-
caps can be positioned in the defined grid on the board (the
assigned positions 1 to 52 in Fig. 2). As described in Sect. 2,
the position of the decaps is important in relation to the posi-
tion of the IC. Therefore, we investigated three areas where
the decaps have been placed randomly:

– up to 10 decaps with random distribution at predefined
positions on the corners of the board (area 1),

– up to 10 decaps with random distribution at predefined
positions around the IC of interest (area 2),

– and finally up to 10 decaps are distributed at the 52 pre-
defined positions on the entire top layer of the PCB ran-
domly (area 3).

The positioning of the decaps and their types is as de-
scribed in Table 1 and Fig. 4 of Cecchetti et al. (2020). Three
types of capacitors coded as 1, 2 and 3 with corresponding
values for C, ESL and ESR are:

– Type1 (100 nF, 222 pH, 8.9 m�)

– Type2 (47 nF, 154 pH, 21.4 m�)

– Type3 (22 nF, 142 pH, 25.2 m�).

To determine the placement of the decaps on the board, the
following vector d1 of size 1 by 20 is used for each simu-
lation depending on the number of added decaps and their

Figure 3. Test board of case study 2: Top view of the simulated
PCB (a) and its stackup (b). The size of the PWR plane (red plane),
its position in the PCB structure and the number of GND planes
vary in this case study.

type:

d1 = [e1,e2, . . .,e10︸ ︷︷ ︸
Decap Positions

,e11,e12, . . .,e20︸ ︷︷ ︸
Decap Types

], (1)

ei =

{
Pk,k = 1,2, . . .,52, if 1≤ i ≤ 10
Tj ,j = 1,2,3, if 11≤ i ≤ 20

where Pk is the position of the decap on the board and Tj is
the respective type of decap. Thus, up to 10 decaps with 3
different types could be placed randomly on the board.

3.2 Case study 2

As discussed in Sect. 2, the board structure and the effect
of varying size of the power supply plane are of interest
in the PDN design process. To look at these parameters in
more detail, a simple square board with overall dimensions
of 200×200 mm2 and an IC in the center is considered. Fig-
ure 3 shows the test board and its stackup.

To create different simulations for various stackup and
power plane sizes, we define the following vector d2 of size
1 by 16:

d2 = [x1,y1,x2,y2,x3,y3,x4,y4,Plane1, . . .,Plane8] (2)

where the first 8 elements define the edges of the power
plane, which are changed in 1 mm grid. The second 8 ele-
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Figure 4. Artificial Neural Network (ANN) structure with input,
hidden and output layers. Depending on the case study, the normal-
ized input feature may be different.

ments describe the type of plane, coded as 1 for GND, 2 for
PWR and 0 if no plane is to be considered .

4 Artificial neural network design

A suitable method to approximate a function on a bounded
domain with a certain degree of accuracy is an ANN which
is defined by its layers (including input, some hidden layers,
and output) and neurons. The general structure of an ANN
is shown in Fig. 4. The ANN is implemented by using the
toolkits scikit-learn (Pedregosa et al., 2011) and TensorFlow
(Abadi et al., 2015) using Adam optimizer (Kingma and Ba,
2014).

Based on the procedure in Fig. 1 and the input vector d1
for case study 1, 5001 simulations are created as a training
data set for each predefined area of case study 1. The perfor-
mance of the training is increased by performing a min-max
normalization of the data for the input and output layers (fea-
ture scaling). All simulations are performed with 231 loga-
rithmically distributed points in the frequency range from 1
to 600 MHz. 80 % of the data is used as training data, and the
remaining part is divided equally as test and validation data.
Then, an ANN is trained with the hyperparameters listed in
Table 1.

The mean square error (MSE) is calculated as follows to
determine the accuracy of the trained network:

MSE=
1
N

N∑
i=1

(ŷi − yi)
2 (3)

where N , ŷi , and yi represent the number of data points, pre-
dicted value, and actual value, respectively. The best MSE

Table 1. ANN hyperparameters in case study 1.

Hyperparameter Value

Hidden Layers 2
Neurons 40,40
Batch size 64
Learning rate 0.001
Epochs 300

Table 2. ANN hyperparameters in case study 2.

Hyperparameter Value

Hidden Layers 2
Neurons 78,22
Batch size 32
Learning rate 0.0004
Epochs 400

results of the test data for each of the areas are indicated as
follows: MSEarea1 = 1.31, MSEarea2 = 0.7 and MSEarea3 =

1.28.
For case study 2, by varying the number of layers, size and

position of the power plane in the board structure, 51 840 data
samples are generated in the frequency range of 100 MHz to
1 GHz (since no decap is involved in the design, this fre-
quency range is the one where the planes will affect the
impedance response) with 181 logarithmically distributed
points. The neural network hyperparameters are as shown in
Table 2. The best MSE was calculated as 0.29 this time.

Figures 5 and 6 show the predicted impedance response
compared to the simulated one from a sample of the test data
in case study 1 and 2, respectively. For both cases, the data
shows acceptable prediction of the impedance curve with a
expected impedance profile. The ANN output agrees well
with the capacitive response of the board at low frequencies,
below the first resonance (about 7.6 MHz in case study 1 and
210 MHz in case study 2). Beyond this resonance, the induc-
tive impedance profile is also well predictable.

It is important to mention that the ANN-hyperparameters
used in this section are the optimized ones. The process of
hyperparameter tuning is explained in the next section.

Impact of hyperparameter tuning on prediction quality

It is not straightforward to figure out the structure of an ANN
depending on its application. For example, the choice of the
number of hidden layers and neurons on each of them, as
well as some other parameters such as learning rate, batch
size, activation function, etc., may affect the fitting quality.
The consequence is that decreasing or increasing the number
of layers and neurons may decrease the fitting performance
of the ANN or cause an overfitting problem. In particular,
an unfavorable number of layers and neurons may lead to
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Figure 5. Comparison of the ANN prediction in case study 1 and
the impedance simulation results for a sample from the test dataset.

Figure 6. Comparison of the ANN prediction in case study 2 and
the impedance simulation results for a sample from the test dataset.

larger error or unacceptable prediction of the ANN output.
For this reason, we have tried to find an optimal or at least
semi-optimal solution to select the best possible hyperparam-
eter values to achieve a good prediction of the impedance
curves. Among several methods to perform this task in the
Python environment we obtained the optimal hyperparam-
eters by implementing Bayesian Optimization (BO) tuning
using Keras (Chollet, 2015).

For both boards under examination, the effect of BO is de-
termined. We started with an ANN with 3 hidden layers and
2 neurons in the first and third layers and 30 neurons in the
second layer. The batch size= 16 and learning rate= 0.001
have been set for both cases. The MSE values for the first and
second cases are calculated as 1.37 and 1.26, respectively.
After implementing BO, the new MSE values are 0.7 and
0.29 for case 1 and case 2, respectively. In Tables 3 and 4,

Figure 7. Plot of the impact of Bayesian optimization on predic-
tion accuracy for a sample of test data in Case Study 1 compared
to the accurate simulation results. The blue curve shows the ANN
output before hyperparameter optimization when the initial ANN
parameters are not well chosen. In contrast, the red curve shows the
optimized ANN output where curve profile and peak amplitude are
acceptably predicted.

Figure 8. Plot of the impact of Bayesian optimization on predic-
tion accuracy for a sample of test data in Case Study 2 compared
to the accurate simulation results. The blue curve shows the ANN
output before hyperparameter optimization when the initial ANN
parameters are not well chosen. In contrast, the red curve shows the
optimized ANN output where curve profile and peak amplitude are
much better predicted.

the hyperparameter tuning results for both cases are merged
for comparison with the case without BO. The illustration of
the comparison of the initial ANN and with BO tuned ANN
is shown in Figs. 7 and 8 for case study 1 and 2, respectively.
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Table 3. Comparison of the ANN hyperparameters before and after
BO and the resulting MSE in case study 1.

Initial ANN Optimized ANN (BO)

Hidden Layers 3 2
Neurons 2,30,3 40,40
Batch size 16 64
Learning rate 0.0001 0.001

MSEarea2 1.37 0.7

Table 4. Comparison of the ANN hyperparameters before and after
BO and the resulting MSE in case study 2.

Initial ANN Optimized ANN (BO)

Hidden Layers 3 2
Neurons 2,30,3 78,22
Batch size 16 32
Learning rate 0.0001 0.0004

MSE 1.26 0.29

5 Conclusions

To evaluate the performance and predict the input impedance
of a PDN, a process for training and evaluating ML modules
with respect to various parameters (decap values and their
positions, PCB multilayer structure, various power plane
sizes) has been developed. The impedance curve predicted
by ANN matches well with the curve simulated by commer-
cial PI software if suitable ANN hyperparameters are chosen.
To achieve good results, BO tuning offers a fast and accurate
way to obtain a well-trained module capable of predicting
the resonance points and inductive trend of the impedance
profile with acceptable accuracy. Although its accuracy does
not match completely full-wave or other numerical PI simu-
lators, the trained ANN is a significantly faster method com-
pared to commercial PDN software when one wants to per-
form an optimization process, which needs the impedance
response calculation on each iteration. The results obtained
in this work indicate a good possibility to perform optimiza-
tion methods to improve and support PDN designs. One of
these methods is the genetic algorithm (GA). In another pa-
per, this process is published in detail based on the results of
the current paper (Nezhi et al., 2023). Also, the involvement
of reinforcement learning could increase the capability of op-
timization and the accuracy of the supported PDN designs.
Transfer learning and physics-informed ML will be consid-
ered in our future work to improve the applicability of ML
methods in the slight modification of PCB structure.
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