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Abstract. Signal integrity (SI) is an essential part in assur-
ing the functionality of microelectronic components on a
printed circuit board (PCB). Depending on the complexity
of the designed interconnect structure, even the experienced
PCB developer might be reliant on multiple design cycles
to optimally configure the PCB parameters, which eventu-
ally results in a very complex, time-consuming and costly
process. Under these aggravating conditions, artificial intelli-
gence (AI) models may have the potential to support and sim-
plify the SI-aware PCB design process by building predictive
models and proposing design solutions to streamline the ex-
isting workflows and unburden the PCB designer. In this pa-
per, the Al approach is divided into two separate stages con-
sisting of neural network (NN) regression in the first step and
parameterization of the PCB net structure in the second step.
First, the NN models are applied to learn the relationship be-
tween the electrical parameters and the resulting signal qual-
ity captured by domain-oriented signal features in the time
domain. Second, based on the trained NN models, on the one
hand, the k-nearest neighbor (kNN) method is utilized to se-
lect solution candidates within the feature space, while on
the other hand, genetic algorithms (GA) are applied to di-
rectly optimize the parameters of the interconnect structure.
Moreover, the influence of the simulation abstraction level is
investigated by comparing simulation data originating from
linear and I/O buffer information specification (IBIS)-based
non-linear modeling of the integrated circuit (IC) character-
istics concerning the prediction accuracy and direct trans-
ferability. Finally, transfer learning concepts are evaluated
to exchange learned knowledge representations between the
different modeling of the IC characteristics to improve data
efficiency and reduce computational complexity.

1 Introduction

The various stages of the design of printed circuit boards
(PCB) as well as system integration and handling of physical
couplings are addressed by the different engineers involved.
In this context, ensuring signal integrity (SI) is an integral
part to comply with functional and electromagnetic compat-
ibility (EMC) design constraints at PCB level. For designers
who have little to no experience with SI trying to fulfill these
design constraints is challenging and error-prone.

Artificial intelligence (AI) models may serve as a possible
reference during the PCB design process for designers work-
ing on the selection of the routing structure in the pre-layout
phase. These models are intended to assist them in specifying
signal topologies and routing structures that will affect the SI
of the system. For the realization of Al models, an extension
has to be made with respect to Al-specific data sources and
objects based on a generalized design process for electronic
systems. In the future, Al-supported pre-layout measures will
be used in the specification and design phases. For this pur-
pose, e.g. for the development of an SI concept for upcoming
design tasks, the generalized PCB design process presented
in John et al. (2022) and the extended combined process and
phase model presented in Ecik et al. (2023) are essential. The
generalized approach for the integration of Al models into
the PCB design process is illustrated in Fig. 1 demonstrating
how different Al models might be utilized and combined to
support SI-compliant design decisions. Therefore, the inte-
gration of domain knowledge from experienced PCB devel-
opers is of utmost importance to detect adequate design so-
lutions, support the unexperienced developer and effectively
reduce the number of design cycles.

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.



78 J. Withoft et al.: AT Models for Supporting SI Analysis on PCB Net Structures

Design Solution
| Proposals |

I without SI

with SI |

Design Domain

Integration Invalid Design Knowledge
*>| Pre-Layout Phase (2] Al Modules
o
o
P p e e
T Koo /
—>| Concurrent-Layout Phase & Pawiiw ¥
|
4>| Post-Layout Phase -

Valid Design

Figure 1. Illustration of the generalized procedure to integrate Al-
based SI design support into the PCB design process with consider-
ation of domain knowledge from the experienced SI developer.

Recently, Al or in particular methods from the machine
learning (ML) subdomain have received growing attention in
the realm of electronic design automation (EDA) and PCB
design under SI constraints. Most prominently the predic-
tion and optimization of eye diagram parameters such as eye
height and eye width from parameters of the transmitter, in-
terconnect and receiver has been a main research focus. In Lu
et al. (2018) support vector regression (SVR) and neural net-
work (NN) ML methods were utilized to predict the eye dia-
gram parameters from the specified PCB parameters. Orig-
inating from this initial publication several improvements
with respect to the ML implementations have been achieved.
With respect to the SVR, an active-subspace method has been
proposed in Ma et al. (2020a, b) to improve the algorith-
mic performance. Regarding the NN, methods to improve
the data efficiency such as transfer learning in Zhang et al.
(2019) and semi-supervised learning in Chen et al. (2020)
have been deployed.

The inverse problem setting, which initializes with the tar-
get eye performance to find the required electrical parame-
ters, was firstly discussed in the prospect on future work sec-
tion of Lu et al. (2018). In Trinchero et al. (2019) and Roy
et al. (2019) this inverse design was addressed similarly to
the forward model by directly applying SVR and NN regres-
sion approaches, respectively. The inverse problem formu-
lation however, is intrinsically ill-posed as ambiguities and
one-to-many mappings result from the physical relationships
leading to non-unique solutions and inaccuracies in the pre-
dictions. Therefore, procedures to include the forward model
into the inverse regression problem formulation have been
recently developed by Ma et al. (2022), where tandem NNs
are used to integrate the forward model into the process to
improve the inverse predictions.

Alternatively, Kim et al. (2018) and Zhang et al. (2022)
suggested to remain solely with the forward NN model and
then applying an optimization method such as a genetic algo-
rithm (GA) based on this model to find an optimal solution.
However, the simplifying usage of the forward model has to
be compensated by the additional computational complexity
induced by the utilization of an optimization algorithm.
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2 Methodology

In this paper, we present a different approach compared to
the eye diagram-based applications that are widely used in
the literature. Extraction of specific signal descriptive time
domain features enables SI analysis and design support dur-
ing the PCB layout phases. Various common PCB net struc-
tures can be investigated using this generic approach, see
John et al. (2022). Furthermore, a two-stage Al framework
is established. During the first step, NN regression models
are implemented to learn the relationship between the elec-
trical PCB parameters and the defined signal time domain
features in both, forward and inverse direction. Then, during
the second step, the learned representations stored in the NN
models are utilized to parameterize the interconnect structure
and provide design suggestions. In this context, the k-nearest
neighbor (kNN) algorithm is applied as a feature-based pre-
selection method to find solution candidates within a feature
space population as input for the inverse NN model, while
the GA optimizes the PCB parameters directly based on the
forward NN model.

Figure 2 provides an overview of the underlying toolchain
and data flow of the proposed methodology. This includes the
simulation environment for data generation, the data process-
ing and feature extraction to provide learning datasets and
finally the two-stage Al framework. The utilized simulation
environments are LTspice (see Analog Devices, 2021) and
CADSTAR/eCADSTAR (see Zuken, 2021a, b), with only the
latter two capable of reasonably translating I/O buffer infor-
mation specification (IBIS) models for non-linear integrated
circuit (IC) characteristics, while LTspice is limited to linear
IC modeling. The simulation data is then further processed
and the time-domain features are extracted within Python to
generate learning datasets. These features are defined by:
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where E4, Hgcaled, SR and Vi correspond to discrete en-
ergy, scaled entropy, slew rate and maximum voltage, re-
spectively. Also, the variable J is associated with the num-
ber of voltage samples and K with the number of unique
voltage samples, while the variable pj is equivalent to the
voltage amplitude probability density. The created learning
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Figure 2. Illustration of the underlying toolchain and data flow of the proposed approach. The two elements on the left represent the provision
of learning data, while the two elements on the right show the two-stage Al framework.
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Figure 3. [llustration of the forward and inverse mode regression.
Forward mode regression corresponds to the prediction of features
from given electrical parameters, while inverse mode regression
represents the direct opposite i.e. the prediction of electrical param-
eters from given features.
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Figure 4. Illustration of the structure of the implemented NN archi-
tecture with input, output and two hidden layers.

datasets are then applied to the two-stage Al framework in
the next step. In this context, the NN architectures are built
with the Keras library (Chollet, 2015), which is embedded
into the Tensorflow framework (Abadi et al., 2015), while
the kNN algorithms are implemented using the scikit-learn
library (Pedregosa et al., 2011) and the GA is derived from
the pymoo library (Blank and Deb, 2020).

3 Machine Learning Methods
The most important element of the Al framework are the NN

architectures. NNs have been proven to be a suitable tool for
regression tasks to support SI analysis, see Lu et al. (2018)
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and Roy et al. (2019). The implemented NN regression mod-
els realize the prediction of numeric values either in forward
or inverse mode as shown in Fig. 3. The structure of the uti-
lized NN is depicted in Fig. 4 consisting of input, output and
two hidden layers, each with a specified number of neurons,
which hold an adjustable weight and an activation function.
During the training of the NN a certain amount of data ex-
amples corresponding to the batch size are inserted in the
input layer and propagated through the network with its cur-
rent weights to finally compute the loss at the output layer.
For the implemented regression this loss is equivalent to the
mean squared error (MSE) loss:

1 5
MSE = v Z()’i = i) ®)

i=1

where N, y; and y; are associated with the number of data ex-
amples, true value and predicted value, respectively. The loss
is then iteratively minimized by adjusting the neuron weights
using backpropagation and automatic differentiation princi-
ples in the individual training steps also known as epochs.
For further information on the fundamentals of NNs, see
Goodfellow et al. (2016). Finally, this results in a number of
NN hyperparameters, which are summarized in Table 1 for
the implemented NN.

Important metrics for the evaluation of the regression per-
formance are the root mean squared error (RMSE), which is
determined by extracting the root from the MSE of Eq. (5),
to measure the actual occurring prediction deviations in the
same order of magnitude as the observed variable and the
R?-Score as defined by:

R it G =307 L i =)’
SN i — 0> YN i 32

denoting the explainability of the regression, where y; is as-
sociated with the mean true value.

To ensure the performance and convergence of the NN,
prior to the training, the input data x and output data y is
normalized according to:

(6)

X — Xmi — i
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Table 1. Hyperparameter setting of the NN.

Hyperparameter Value
Number of Epochs 1000
Optimizer Adam
Batch Size 32
Learning rate n 1x1073
Neurons (Hidden Layer) 32

Activation Function (Hidden Layer) ReLU

Table 2. List of BO-tunable hyperparameters and their lower and
upper tuning limits. Note that each of the hidden layer hyperparam-
eters are individually tuned. The additional hyperparameter dropout
factor realizes a regularization by randomly ignoring a defined per-
centage of neurons during each training epoch.

Hyperparameter Lower Upper
Learning rate n 1x107*  1x10°
Neurons (Hidden Layer) 32 512
Dropout Factor (Hidden Layer) 0 0.8

Activation Function (Hidden Layer) ReLU, Tanh, Sigmoid

Also, the dataset is split into 70 % training, 20 % valida-
tion and 10 % testing data. The NN model is exclusively ex-
posed to the training data for the learning process, while the
validation data is simultaneously utilized to evaluate the per-
formance on unseen data. The testing data is not employed
before the training of the model is completed and is then uti-
lized to evaluate the performance on data that has not been
considered during the whole training process.

In addition to the default hyperparameter configuration de-
noted in Table 1, another configuration based on Bayesian
optimization (BO) for hyperparameter tuning is realized. The
tuning with BO is based on an underlying Gaussian process
regression, which models the MSE loss as the objective func-
tion with the NN hyperparameters as input variables, which
is iteratively minimized by taking previous evaluations into
consideration. For further insights on BO, see Frazier (2018).
The mentioned properties render BO to be superior in terms
of efficiency especially for high-dimensional hyperparame-
ter spaces compared to random or grid search, which roam
the hyperparameter space more blindly and are not equipped
with any form of memory of past evaluations. For the im-
plemented BO, 50 iterations are carried out and the tunable
hyperparameters with their respective tuning limits are rep-
resented in Table 2. The number of epochs and batch size
hyperparameters are not tuned to allow a fair comparison to
the default configuration.

The implemented kNN algorithm is a basic unsuper-
vised ML method, which can be used for feature-based pre-
selection. In collaboration with the inverse NN model this has
proven to be a promising approach for SI design support as
described in John et al. (2022). kNN is a proximity-based ap-
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proach that searches k feature sets, which are distance-wise
the closest to a given feature example within a feature pop-
ulation sampled from a multivariate normal distribution en-
compassing the entire feature space. The features are normal-
ized according to Eq. (7) before application. The kNN algo-
rithm is realized with k set to 5 using the Euclidean distance
metric and the brute force computation method.

Finally, the GA is a search and optimization procedure be-
longing to the class of evolutionary algorithms. In combina-
tion with the forward NN model, GA methods have proven to
be effective in finding optimal SI design solutions as demon-
strated in Kim et al. (2018) and Zhang et al. (2022). By def-
inition, the GA optimization is initialized with a randomly
sampled population of size M, which iteratively goes through
the evolutionary phases of evaluation, selection, crossover
and mutation to eventually minimize a given optimization
objective. The implemented GA is realized with a population
size M of 100 and with Simulated Binary Crossover (SBX),
see Deb et al. (2007). For further information on the underly-
ing GA principles, see Goldberg (1989) as well as Béck and
Schwefel (1993). For the objective functions of the imple-
mented single-target GA the Mean Absolute Error (MAE) as
defined by:

1
MAE= -3 I3 — il ®)
i=1

is chosen as the minimization metric. Fundamentally, there
are two different objectives for the GA, the most simple and
obvious one being the minimization of the MAE distance to a
desired pre-defined feature set. This leads to the optimization
objective O defined by:

min0O; = MAE(F; Ftarget)v ©

where F is the feature vector computed by the NN forward
model and Fge is the desired feature set. Another more
implicit approach is the simultaneous minimization or maxi-
mization of certain features e.g. in this specific case the max-
imization of energy and slew rate, while concurrently mini-
mizing entropy and maximum voltage. This problem defini-
tion is appropriate from a SI perspective as the desired signal
waveforms should have a rather high slew rate and energy to
prevent slowly rising signal slopes, while the maximum volt-
age should be rather low to prevent overshoots. Additionally,
the entropy should also be rather low corresponding to sig-
nals with less information content, which are more similar
to an ideal square wave signal, while high entropy correlates
with overshoot or low slew rate signals, both of which are
suboptimal. This results in the optimization objective O; de-
fined by:

minOy = MAE ([1 — Eq; Hycaled; 1 — SR; Umax];0), (10)

Note that in both instances the features are normalized ac-
cording to Eq. (7).
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Table 3. Applied parameter variation. Note that each parameter is
varied individually and not simultaneously.

Parameter  Values
Ry [1x 10’9,10,15,22,33,47,68] Q
Zp1 [Min. 35 ; Max. 70 ; Step 5] Q2
Ry [1x 10_9,10,15,22,33,47,68,100,150] Q
Zy.2 [Min. 35 ; Max. 70 ; Step 5] Q2
I 100 mm
153 40 mm
4032 data samples

4 Generation of Simulation Data

For the training of the AI models data has been generated us-
ing the LTspice and the CADSTAR simulation environments
based on the far end cluster shown in Fig. 5. The far end clus-
ter operates with a clock frequency of 50 MHz at 3.3 V using
the Texas Instruments SN74AC86 IBIS model for driver and
receiver. Concerning the transmission lines, routing on in-
ner layers (symmetric stripline) was assumed. A parameter
variation as shown in Table 3 was utilized to generate 4032
simulation data samples. Besides the IBIS-based non-linear
simulation in CADSTAR two simulation datasets with linear
IC characteristics have been created in LTspice and CAD-
STAR, respectively, where the voltage as well as rise and fall
times were adjusted according to the IBIS model.

Following the results presented in John et al. (2022),
the parameters for drivers and receivers in AC technology
(ACS86) used there for linear and IBIS-based non-linear mod-
els were also used for this paper. On the one hand, this allows
a detailed comparison with the Al procedures and methods
discussed in John et al. (2022), and on the other hand, the
further use of the database already available there. Further-
more, we expect that in the future complete AC86 SPICE
decks will be available for additional investigations in order
to be able to carry out additional process tests.

5 Application of the Artificial Intelligence Models

Based on the far end cluster topology defined in Fig. 5, differ-
ent simulation data sources with linear and non-linear mod-
eling of the IC characteristics were compared concerning the
accuracy, applicability and transferability of the trained Al
models.

5.1 Neural Networks

NN architectures have been trained in both, the forward and
inverse mode, according to Fig. 3. First, the forward NN
was investigated, whose regression accuracy in predicting the
features from the electrical parameters is shown in Fig. 6.
A consistently high regression accuracy was noticeable for
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Figure 6. Regression performance of the forward NN model with
the BO hyperparameter configuration in terms of true vs. predicted
feature values on the entire dataset.

each of the observed simulation datasets, which is also re-
flected in the regression metrics in Table 4 as testing R*-
Scores above 99 % and invariably small normalized testing
RMSE values below 2 % have been observed. As the default
hyperparameter configuration already provides very accurate
results, the hyperparameter tuning with BO at most only re-
sults in marginal improvements in regression performance.
Second, the inverse NN regression has been examined,
whose regression performance on the entire dataset is ex-
emplary demonstrated for the prediction of R; and Zp ; in
Fig. 7. As expected, the regression performance was evi-
dently impaired by the ambiguity of the non-injective learn-
ing function, whose mapping consists of multiple sets of
electrical parameters corresponding to matching feature set-
tings. However, the color-coded probability density indicates
that a larger proportion of predictions is more accurate, while
the deviating cases are statistically more unlikely. Further-
more, the regression performance depends on the relative in-
fluence of each electrical parameter with respect to the fea-
tures. This observation is evident from the testing metric re-
sults shown in Table 5 with testing R?-Scores ranging from
24 % to 90 % and testing RMSEs in the range between 6 to
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Table 4. R%-Score and RMSE performance metrics of the forward
NN with default and BO hyperparameters based on the entire data.
Note that additionally the testing metrics are denoted in brackets.

Metric Data™ Default NN BO-NN
Energy E4 [nW]

R2-Score 1 0.9985(0.9984) 0.9992 (0.9991)
R2-Score 2 0.9981 (0.9986) 0.9981 (0.9981)
R2-Score 309991 (0.9971)  0.9995 (0.9978)
RMSE 1 0.8840 (0.8769) 0.6496 (0.6609)
RMSE 2 1.0400 (0.8422) 1.0300 (0.9886)
RMSE 3 0.4841(0.8139) 0.3552 (0.7138)
Entropy Hgcaled [Sh]

R2-Score 1 0.9916 (0.9899) 0.9933 (0.9897)
R2-Score 2 0.9960 (0.9952) 0.9977 (0.9958)
R2-Score 3 0.9970(0.9959) 0.9983 (0.9973)
RMSE 1 0.0050 (0.0054) 0.0044 (0.0054)
RMSE 2 0.0041 (0.0047) 0.0032 (0.0044)
RMSE 3 0.0022 (0.0025) 0.0017 (0.0020)
Slew Rate SR [V ns_l]

R2-Score 1 0.9980 (0.9988) 0.9981 (0.9972)
R2-Score 2 0.9994 (0.9993)  0.9995 (0.9994)
R2-Score 3 0.9977 (0.9975)  0.9989 (0.9987)
RMSE 1 0.0209 (0.0158) 0.0207 (0.0241)
RMSE 2 0.0125(0.0127) 0.0110 (0.0120)
RMSE 3 0.0132(0.0133) 0.0092 (0.0097)
Maximum Viax [V]

R2-Score 1 0.9975(0.9973) 0.9992 (0.9993)
R2-Score 2 0.9982 (0.9983) 0.9989 (0.9986)
R2-Score 3 0.9984 (0.9982) 0.9993 (0.9992)
RMSE 1 0.0211 (0.0209) 0.0122 (0.0110)
RMSE 2 0.0197 (0.0185) 0.0155 (0.0167)
RMSE 3 0.0065 (0.0066) 0.0043 (0.0043)

* 1: LTspice linear, 2: CADSTAR linear, 3: CADSTAR non-linear.

42 Q with R; being predicted with the highest and R, with
the lowest accuracy. The regression performance of the NN
based on the non-linear data has been substantially higher
than for the NN models trained with the linear data. This re-
sult can be explained by the more realistic modeling of the IC
characteristics in the non-linear case. The BO-based hyper-
parameter tuning affects the NN trained with non-linear data
and reduces the RMSE effectively, while at the same time
this effect cannot be observed for the NNs trained with linear
data. However, the stated higher regression performance of
the NN based on the non-linear data is visible for both, the
BO and default hyperparameter configurations.

A second verification of the inverse NN regression has
been performed using a forward remapping as shown in
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Figure 7. Regression performance of the inverse NN model with
the BO hyperparameter configuration in terms of true vs. predicted
electrical parameter values exemplary for the prediction of Ry and
Zy,1. Note that the color-coded density corresponds to the normal-
ized probability density function for each sweeped parameter value.
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Figure 8. Comparison between the features obtained using the
remapping approach based on the inverse NN model and the true
feature values.

Fig. 8. The inverse predicted electrical parameters, which
had been determined based on features resulting from simu-
lation data, have been re-mapped into the feature space once
again utilizing the previously trained forward NN model, see
Fig. 6. The utilization of the forward model instead of res-
imulations has been chosen to prevent long simulation runs
required for the large number of examples. Moreover, the for-
ward NN model has proven to be very accurate in predicting
the features, while also offering direct comparability of the
re-mapped results with the stand-alone forward model. When
comparing the remapping of Fig. 8 with the forward model
of Fig. 6, a degradation in performance is evident, which can
be traced back to the error induced by the inverse NN model.
This is also supported by the quality metrics as the R2-Scores
drop by a few percent and the RMSE values at least dou-
ble throughout the observations. However, the induced error
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Table 5. R?-Score and RMSE performance metrics of the inverse
NN with default and BO hyperparameters based on the entire data.
Note that additionally the testing metrics are denoted in brackets.

Metric Data™ Default NN BO-NN
Ry [2]

R2-Score 1 0.8213(0.7599) 0.8187 (0.7561)
R2-Score 2 0.8375(0.7883) 0.8504 (0.8002)
R2-Score 3 09197 (0.8913) 0.9422 (0.9084)
RMSE 1 9.18 (10.04) 9.24 (10.12)
RMSE 2 8.75(9.43) 8.40 (9.16)
RMSE 3 6.15 (6.76) 5.22(6.2)
Ry [€2]

R2-Score 1 0.2764 (0.2804) 0.2892 (0.2789)
R2-Score 2 0.4247 (0.4060)  0.5269 (0.5204)
R2-Score 3 0.2562(0.2390) 0.4284 (0.2863)
RMSE 1 39.32 (41.05) 38.97 (41.10)
RMSE 2 35.06 (37.30) 31.79 (33.52)
RMSE 3 39.86 (42.22) 34.94 (40.89)
Zp,1 [$2]

R2-Score 1 0.4556 (0.4361) 0.4463 (0.4069)
R2-Score 2 0.4575(0.4326) 0.5623 (0.4749)
R2-Score 3 0.6217 (0.5510)  0.7860 (0.7212)
RMSE 1 8.45 (8.73) 8.52 (8.95)
RMSE 2 8.44 (8.75) 7.58 (8.42)
RMSE 3 7.05 (7.79) 5.30 (6.14)
Zyp (€]

R2-Score 1 04217 (0.3339) 0.3788 (0.2806)
R2-Score 2 0.4943 (0.4678) 0.5079 (0.4595)
R2-Score 3 0.6296 (0.6340) 0.7530 (0.6705)
RMSE 1 8.71 (9.57) 9.03 (9.95)
RMSE 2 8.15 (8.55) 8.04 (8.62)
RMSE 3 6.97 (7.09) 5.69 (6.73)

*: LTspice linear, 2: CADSTAR linear, 3: CADSTAR non-linear.

seems to be acceptable especially compared with the direct
inverse NN results obtained in Fig. 7 and under the aspect
that the forward model achieved a very high accuracy. The
second verification of the inverse NN regression therefore
provides a first assessment on how much the prediction er-
ror of the electrical parameters will affect the features and
therefore also the predicted signal behavior.

Based on the feature settings of Table 6, the inverse NN
model has been tested using real application cases by ana-
lyzing the voltage waveforms resulting from the predicted
electrical parameters shown in Table 7. These voltage wave-
forms are visualized for each of the three cases and for each
of the three considered simulation datasets in Fig. 9. These
show a distinctive behavior for each case, while also match-
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Figure 9. Voltage waveforms resulting from the electrical param-
eters predicted by the inverse NN based on the feature settings of
Table 6.
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Figure 10. k = 5 voltage waveforms resulting from the application
of the KNN-NN combination based on the feature settings of Ta-
ble 6.

ing the expected signal shape. This confirms the suitability of
the inverse NN model within a typical use case. Minor over-
shoots can be observed for the best case of the models trained
with the linear datasets, which is most certainly caused by the
inferior regression performance in comparison to the model
trained with the non-linear dataset.

5.2 k-Nearest Neighbor

The kNN algorithm has been applied for a feature-based pre-
selection based on the cases of Table 6 and was then coupled
with the prediction of the inverse NN. The resulting voltage
waveforms for each of the cases and simulation datasets are
demonstrated in Fig. 10. The voltage waveforms show a dis-
tinctive behavior matching the expectations for each case and
a very similar behavior for each of the k signals per case.
Only small deviations for the best case of linear datasets are
observable, which is in accordance with the stand-alone ap-
plication of the inverse NN in Fig. 9. In general, the volt-
age waveforms confirm the quality of the proposed combined
kNN-NN approach.

To further evaluate the portability between the linear and
non-linear data using the proposed kNN-NN method, the di-
rect application has been taken into consideration. There-
fore, the electrical parameters resulting from the kKNN-NN
approach, which were entirely determined based on the lin-
ear data, have been extracted and resimulated with non-linear
IC characteristics. The result is shown in Fig. 11 and demon-
strates how the kKNN-NN approach deployed with linear data

Adyv. Radio Sci., 21, 77-87, 2023
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Table 6. Feature settings for three defined cases and considered simulation data sources.

F LTspice linear ‘ CADSTAR linear ‘ CADSTAR non-linear
eature

OS* LSR* BC* | OS* LSR* BC* | OS* LSR* BC*
Energy E4 [nW] 237 136 211 | 247 135 191 | 200 126 171
Entropy Hgcaleq [Sh] 0.60 0.60 037 | 0.62 0.64 0.36 | 0.60 0.64 0.52
Slew Rate SR [Vns~™!] 240 030 1.46 | 2.45 031 132 | 1.70 026  0.79
Maximum Viax [V] 4.98 3.02 330 | 520 3.02 330 | 3.77 3.02 330

* OS: Worst Case — Overshoot; LSR: Worst Case — Low Slew Rate; BC: Best Case.

Table 7. Electrical parameters predicted by the inverse NN based
on the feature settings of Table 6.

Data®  Parameter NN Prediction
0s® LSrR® Bcb
1 R [2] 1 64 17
1 R (2] 4 64 21
1 Zo.1 (2] 41 47 39
1 Zo2 (9] 70 38 66
2 R [Q] 0 68 13
2 R, [Q] 0 150 3
2 Zo.1 (2] 41 35 35
2 Zo2 (9] 70 35 70
3 R [2] 6 68 36
3 R, (2] 0 80 0
3 Zo.1 (9] 70 36 59
3 Zo2 (9] 70 37 70

2: LTspice linear, 2: CADSTAR linear, 3: CADSTAR
non-linear. ® OS: Worst Case - Overshoot, LSR: Worst Case
— Low Slew Rate, BC: Best Case.

[— Best case =~ —— Worst case: Overshoot = Worst case: Low slew raten

CADSTAR linear param.

LTspice linear param.

Vic2 [V]

Figure 11. k = 5 voltage waveforms simulated with non-linear IBIS
models, but parameterized with the KNN-NN combination based on
the linear datasets and the feature settings of Table 6.

can be directly applied to perform accurate SI analysis with
respect to non-linear IC characteristics for the investigated
topology.

In alternative investigations, the kNN algorithm has been
initialized similarly to the GA optimization objective defined
in Eq. (10) by setting the energy and slew rate features to the
maximum and entropy and maximum voltage features to the
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Figure 12. k = 5 voltage waveforms resulting from the application
of the KNN-NN combination with a feature setting analogical to O».
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Figure 13. Convergence of the GA over its generations with average
and best fitness MAE objective values shown for the CADSTAR
linear dataset. Similar convergence behavior has been observed for
the other two datasets also.

minimum normalized value i.e. one and zero, respectively.
The resulting voltage waveforms of this kNN initialization
with subsequent inverse NN coupling are shown for each of
the simulation datasets in Fig. 12. The practical applicabil-
ity of this approach is proven as the parameterized designs
generally exhibit SI-aware behavior. Only for the linear data
sources some overshoot behavior is visible, which is consis-
tent with previous results.

5.3 Genetic Algorithms

The GA has been applied to select the optimal electrical pa-
rameters within the feature space based on the forward NN
model using the two optimization objectives defined in the
Egs. (9) and (10) with F et equivalent to the best case fea-
ture settings of Table 6. For both objectives, the duration
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Figure 14. Voltage waveforms resulting from the electrical param-
eters optimized by the GA based on the objectives O and O;.

Table 8. Electrical parameters optimized by the GA based on ob-
jective O and objective O».

Data* Obj. Ry[Q] Ry[Q] ZoiI[Q] Zo,I[Q]
1 0, 20 67 41 70

0, 24 19 42 70
2 0, 26 46 39 70
2 0, 23 0 35 70
3 0, 13 71 41 45
3 0, 36 0 57 70

*: LTspice linear, 2: CADSTAR linear, 3: CADSTAR non-linear.

of the GA was below 30s on a common hardware setup.
The convergence history of the algorithms is shown for the
CADSTAR linear dataset in Fig. 13. It is visible that con-
vergence to a minimum value sets in for both objectives. As
expected, the final MAE converges to zero for the first objec-
tive, which implies that the distance to the defined best case
feature setting embedded into the design space is effectively
minimized. For the second objective, a larger residual error
remains as the objective can only partly be fulfilled. Due
to the physical background of the optimization problem, the
possible solution space is limited to valid parameters within
the design space. The concurrent optimization of objective
O, forbids that each feature can be completely maximized
or minimized, as this would lead to non-physical solutions,
which are intrinsically not allowed. Therefore, the residual
MAE indicating the average absolute deviation from the de-
sired target remains above 25 %. The voltage waveforms
resulting from the optimized electrical parameters demon-
strated in Table 8 are shown in Fig. 14. SI-aware designs
have been observed throughout the objectives as well as the
different data sources, which validates the usability of the
proposed GA method for design optimization tasks.

The direct portability between linear and non-linear data
has been evaluated for the utilization of the GA method also.
Therefore, the electrical parameters resulting from the GA
optimization based on linear data, see Table 8, were extracted
and resimulated with non-linear IC characteristics. The re-
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Figure 15. Voltage waveforms simulated with non-linear IBIS mod-
els, but parameterized by the GA optimization based on the objec-
tives 01 and Oj.
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Figure 16. MSE training loss over epochs development during the
transfer learning process with different data fractions compared to
the training with non-linear data from scratch. Note the logarithmic
scaling of the y-axis in case of the forward NN.

sulting voltage waveforms are shown in Fig. 11 and validate
that the GA based on linear data can be directly applied to
provide accurate SI analysis with respect to non-linear IC
characteristics for the investigated topology.

5.4 Transfer Learning

The transfer learning concept, which is also known as fine-
tuning, offers another option to ensure portability between
the NN architectures trained with linear and non-linear data.
The implemented transfer learning has been applied based on
a NN pre-trained with the CADSTAR linear dataset, which
was then fine-tuned with 100 epochs of the non-linear data.
Moreover, the transfer learning applications were applied
with various fractions of data such as 10 %, 30 %, 50 %, 75 %
and 100 %, which have been randomly sampled from the
original dataset. Figure 16 shows the MSE loss over epochs
development of the transfer learning process for the forward
and inverse mode regression. It is apparent that with data
fractions of 50 % and above, the convergence was acceler-
ated resulting in a lower loss after 100 epochs for both, the
forward and inverse mode regression, compared to the train-
ing from scratch. This is due to the learned knowledge rep-
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resentations contained in the pre-trained NNs. Compared to
the training from scratch with a data fraction of 30 %, the
training MSE loss of the forward transfer learning was at
least on a par and the inverse transfer learning was slightly
impaired. Finally, for the transfer learning with a fraction of
10 % the amount of data apparently falls below the threshold
of required data quantity as the MSE training loss was sig-
nificantly higher compared to the from scratch trained model
for both, the forward and inverse transfer learning. Overall,
the application of transfer learning between linear and non-
linear IC characteristics entails significant simplifications of
the data generation and training processes. The fine-tuning
on an existing model that has been trained based on linear
data enables savings of at least 50 % during the data genera-
tion with non-linear IC characteristics, which then also effec-
tively reduces training complexity and computation times.

6 Conclusions and Future Work

The two-stage Al framework presented in this paper has been
validated to support the application in the PCB design pro-
cess with respect to linear and non-linear data. SI-compliant
designs were obtained using the forward NN in combination
with a GA for optimization as well as the inverse NN in com-
bination with the kNN algorithm. The different data sources
only affected the performance with respect to the inverse NN
as the regression accuracy was significantly improved when
utilizing the non-linear data. In this context, the NN hyper-
parameter tuning with BO also had a significant impact in
further improving the regression performance, which is in
contrast to the other results, where the impact of hyperpa-
rameter tuning with BO was marginal at best. Furthermore, it
has also been shown that for the investigated application the
designs parameterized using the Al framework based on lin-
ear datasets can be successfully applied to provide SI design
support valid for the non-linear IC characteristics also. Al-
ternatively, the transfer learning capabilities of the NNs have
been evaluated for fine-tuning of the models trained with lin-
ear data using different fractions of non-linear data. These
investigations showed that at least 50 % of the training data
can be saved to achieve the same or even improved regression
performance.

Future research may incorporate the application of the
presented Al framework to technologies from the DDR-
SDRAM class such as DDR3/4/5 with much shorter rise- and
fall times operating at higher clock frequencies and lower
voltage levels to investigate the portability and adaptability
of the developed AI models. In particular, the transfer of the
developed AI models for different component technologies
into practice-oriented Al modules (deployment) will be an
important subject. In this context, the further integration of
SI constraints will be of great importance, especially con-
sidering the timing and resulting skew characteristics of the
signals, which also requires a more differentiated examina-
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tion of the feature selection. Furthermore, the constraint in-
tegration during the parameterization stage may include fea-
ture weighting and multi-objective optimization methods to
provide customization to the developer’s needs. In the end,
combining the forward and inverse NN models in the first
Al stage as well as different parameterization methods such
as kNN and GA in the second Al stage within an iterative
process may yield synergy effects resulting in significant im-
provements of the framework.
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