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Abstract. Continuous-time integrators are a central compo-
nent in 16 modulators, in analog computers, and general
analog signal processing. If several integrators are intercon-
nected, scaling plays an important role: In analog computers,
scaling is performed with respect to the machine unit (MU).
In 16 modulators, scaling is performed in such a way that
at maximum input signal the allowable dynamic range of no
integrator is exceeded. In both cases the scaling is a compro-
mise limiting the dynamic range.

For analog computers, it was proposed early on to extend
the dynamic range by hybrid integrators. Here, an analog
range overflow is processed digitally and the analog integra-
tor is reduced to its permissible operating range within the
machine unit interval. While in earlier proposals for hybrid
integrators only the subsequent integrator stage processes the
overflow and works with reduced analog values, our hybrid
integrator can process the overflow directly, with the analog
reset process being continuous-time.

In the case of highly dynamical input signals and tran-
sients, analog overload handling is further improved by a
prediction of the overload that includes the currently applied
input signal in the calculation. For example, with continuous-
time 16 modulators, overload of the analog integrator can
be reliably avoided.

1 Introduction

Analog continuous-time (CT) integrators are a fundamen-
tal building block in analog computers (Howe, 2005), in
continuous-time 16 ADCs (Ortmanns and Gerfers, 2006),
in robust analog controllers (Jin et al., 2022), and many other

analog signal processing circuits. Analog computers are pop-
ular for solving and simulating differential equations, which
usually involves connecting integrators in series, typically
with some sort of feedback loop. The series of integrators
in 16 modulators makes it possible to achieve higher-order
noise shaping and, accordingly, to reduce the quantization
noise in the signal band.

The problem of amplitude scaling will be illustrated in
the following by a spring-mass damper system (Hall and
Kahne, 1970; Ulmann, 2022; Navarro, 1962): Let the system
have a spring stiffness of 60 kg s−2, a damping coefficient
of 3 kg s−1, a mass of 1.5 kg, and an initial displacement of
0.1 m. A Matlab-Simulink model for this is shown in the up-
per part of Fig. 1.

The simulation result of the unscaled differential equation
is shown in Fig. 2a.

It can be seen that ÿ, ẏ, and y are scaled unevenly, i. e., the
dynamic range is not used optimally. To optimize the prob-
lem for the hardware of an analog computer, the amplitude
range of the quantities must be scaled to the machine unit
(MU). In modern discrete analog computers the machine unit
can be e.g. 10 V (Ulmann et al., 2021), so that the amplitudes
of the signals should be as close as possible to the 10 V, but
the 10 V must not be exceeded. For scaling, experience with
the implemented mathematical equation is required, or one
can try to optimize the scaling experimentally. A solution
for scaling to 10 V would be the substitution ÿ⇒

[
2/5 Ÿ

]
,

ẏ⇒
[
15 Ẏ

]
and y⇒ [100Y ]. To scale the model, 1/m, d ,

and s are multiplied by the reciprocal scaling factors. In ad-
dition to that, the integrators must be scaled as well at their
inputs (Fig. 1 below). The simulation of the model scaled to
10 V is shown in Fig. 2b.
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Figure 1. Unscaled (a) and scaled spring-mass damper system (b).

Figure 2. Simulation result of the unscaled (a) and scaled
(b) spring-mass-damper system.

In addition to amplitude scaling, scaling in the time do-
main can also be performed. This is used to adapt the mathe-
matical task to the bandwidth and slew rate of the electronic
circuit components. Time scaling adapts the real time of the
simulated model (also called wall clock) to the simulation or
machine time. Thereby the simulation time can run faster or
slower than the wall clock time.

The hybrid integrator solves the problem of amplitude
scaling. The time scaling is independent of this. However,
very different time constants in a mathematical problem also
lead to problems with amplitude scaling, so that the hybrid
integrator can also be used to an advantage in such cases.

Figure 3. Scaling problem in a single-loop CT 16 modulator.

The operation of scaling in 16 modulators is shown in
Fig. 3, showing a 3rd order modulator with distributed feed-
back and 1-bit quantizer. In the chain of integrators, the am-
plitudes must be scaled down by a factor 1/k towards the
end, as exemplified by the 3rd integrator. There are two main
reasons for this: In the case of the 3rd order modulator, sta-
bility is improved because the gain gq of the linearized 1-bit
quantizer increases and only then the modulator becomes
conditionally stable (see, e.g., Ortmanns and Gerfers, 2006,
Chap. 2.7.4). Another and decisive reason for scaling in 16
modulators is the necessity to limit the signal amplitudes to
the practical dynamic range of the analog integrators.

By downscaling the signal amplitudes the actually achiev-
able signal-to-noise ratio is reduced. Therefore, attempts
have already been made to both increasing the stability of
the modulator and increasing the dynamic range (Au and Le-
ung, 1997; Shim et al., 2005a, b) by local detection of the
overflow at the individual integrators of the modulator, a sub-
sequent AD conversion of the overflow, and a local negative
feedback directly at the integrator.

Section 2 of this paper reviews the principle of the hybrid
integrator originally designed for analog computers, explains
the basic operation of the hybrid integrator, and presents
its fundamental drawback. In Sect. 3, the hybrid integrator
with CT reset presented in (Killat et al., 2022) is compared
in detail with previous solutions. In Sect. 3.2, a new range
overflow estimation is introduced that optimizes the dynamic
range, especially for transient input signals or use in 16
modulators. In Sect. 4 the operation of the hybrid integra-
tor with CT reset and with overload estimation is illustrated
by examples.

2 First proposals for hybrid integrators

The first approach to hybrid integrators was presented in
Skramstad (1959) and was the starting point of subsequent
work by Wait (1963); O’Grady (1966). At that time, the em-
phasis was on extending the dynamic range for the solution
of differential equations. The devices available at that time
hardly allowed a capacitive reset as proposed in the inte-
grated solution of Bryant et al. (2012). Therefore, the over-
flow from the analog integrator to the digital counter had to
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be realized by a time-continuous compensation in the sub-
sequent hybrid stages of the integrators, which works well
for classical problems like spring-mass-damper systems or
harmonic oscillators due to the negative feedback of the in-
tegrators and is therefore often used as an example for the
functionality of hybrid integrators in papers of that time.

2.1 Hybrid integrator basics

First we describe the basic principle of hybrid integration ac-
cording to Skramstad (1959):

The integrator integrates the input variable X over time t
with initial value Y (0). T is the time constant of the integra-
tor:

Y = Y (0)+
1
T

t∫
0

Xdt (1)

In the hybrid integrator, the integration variable X and the
integral Y are decomposed into an analog and a digital com-
ponent:

X =XD+XA (2)
Y = YD+YA (3)

Thus, the analog and digital components of X are inte-
grated. The initial values are also divided into analog YA(0)
and digital YD(0) components:

Y = YD(0)+YA(0)+
1
T

t∫
0

(XD+XA)dt (4)

The integral over the analogXA and digital componentXD
of X can be decomposed into a sum, an instantaneous term
and an integral over time t . The digital component is inte-
grated in multiples of the time interval1t . The instantaneous
value of the integral in the nth time interval is:

Y = YD(0)+YA(0)

+
1
T

n−1∑
i=1

XD(i)1t +XD(n− 1)τ +

t∫
0

XAdt

 (5)

here XD(i) is the value of XD in the ith time interval. As-
suming that the initial values YD(0) and YA(0) are both 0,
Fig. 4 shows the integral of Eq. (5). The summand with in-
dex i = 0 to n−1 is the Integral 1 in Fig. 4. The second term
XD(n− 1)τ is the instantaneous value of the digital integral
in the time interval [(n− 1)1t,(n− 1)1t + τ ] and denoted
Integral 2 in Fig. 4. The third term, the analog part of the
integral, is Integral 3.

Figure 5 shows the block diagram of the hybrid integra-
tor according to Skramstad (1959). The digital part consists
of two registers R1 and R2. R1 represents the Integral 1,

Figure 4. Contributions to the hybrid integral, following Skramstad
(1959).

that accumulates with each clock, at each time step n1t ,
the value XD(n− 1) from the register R2 and the change
1XD =XD(n)−XD(n− 1). This change is generated by
a window comparator with thresholds ± 1

2 MU (MU, ma-
chine unit). The digital value of Integral 1 is DA-converted
by DAC1, added up with other analog components of the in-
tegral and then fed to the analog output YA of the integrator.
Since YA(t) is supposed to represent the analog part of the
integral without the digital part, DAC1 gets the −MU as ref-
erence for Integral 1.

The value XD(n− 1) of the register R2 is transferred via
DAC2 with+MU as reference to an integrator INT2, which is
periodically reset at the instants n1t . This generates a saw-
tooth voltage representing the instantaneous value of Inte-
gral 2, which is added to the output YA by means of a sum-
mer.

The analog portion of Integral 3 with input XA(t) is inte-
grated and added directly to YA. Assuming that XA(t) cor-
responds to YA(t) of the previous integrator stage, and that
YA(t) is obtained by subtracting the digital part of Integral 2,
Integral 3 is the color-coded area in Fig. 4. It may become
positive or negative. If several hybrid integrators are concate-
nated and fed back, as is the case when solving differential
equations in analog computers, Integral 3 is indirectly mini-
mized in the individual hybrid integrators by keeping YA(t)

small in size by subtracting the digital parts of the total inte-
gral.

2.2 Disadvantage of the previous hybrid integrator

From Fig. 5 it can be seen that the hybrid integrator has no
local feedback, i. e. if YA(t) exceeds± 1

2 MU, this is added to
Integral 1 and the analog output YA(t) is reduced in amount
accordingly, but the value of integrator for Integral 3, i. e.,
the actual analog integrator, is not reduced in amount. The
reduction occurs indirectly when the chain of integrators is
fed back eventually.
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Figure 5. Hybrid integrator block diagram, based on Skramstad (1959).

The operation and efficiency of the hybrid integrator pre-
sented so far is demonstrated in Skramstad (1959); Wait
(1963); O’Grady (1966) on examples with feedback, i. e.,
by means of using differential equations such as ẏ =−y or
−ÿ = y. For general applications in analog computing or in-
strumentation, the previous hybrid integrator does not allow
to constrain the actual analog integral of the hybrid integra-
tor, because a local feedback on the analog integrator com-
ponent is missing.

The issue of a hybrid integrator requiring local feedback is
addressed in Bryant et al. (2012). Here, a partial capacitive
reset of the integrator is performed when a window compara-
tor exceeds its thresholds. The problem is that the reset does
not have an ideal voltage waveform, i. e., the digital portion
of the hybrid integrator does not match the corresponding
analog portion just after the reset signal. While this can be
systematically taken into account in CT-16-modulators by
the Laplace transforms of the feedback DAC, and only influ-
ences the noise shaping, the non-ideal voltage curve in the
switched-capacitor-based reset of the hybrid integrator leads
to errors in the result of an analog computing circuit.

In Tsividis and Guo (2015) it is proposed to avoid a ca-
pacitive reset by reversing the integration direction when a
reference threshold voltage is exceeded. A disadvantage of
this method are the required continuous-time comparators,
which have to detect an overflow of the integrator asyn-
chronously. By reversing the direction of integration, a re-
set can be avoided, but the accuracy of the threshold of the
continuous-time comparators is crucial for the transfer from
the analog integrator to the digital counter.

3 Hybrid integrator with local continuous-time reset

Based on Bryant et al. (2012), a partial reset of the analog in-
tegrator will be realized when the range of the window com-
parator CMP is exceeded. The reset will be realized by a con-
tinuous square wave signal instead of a switched capacitor

Figure 6. New hybrid integrator with local feed back.

circuit. This subsequently requires further compensation to
represent the correct timing characteristics of the integrator
when the digital part of the hybrid integrator switches.

3.1 Operating principle of new hybrid integrator

The improved hybrid integrator with local feedback is shown
in Fig. 6. The corresponding integrals of the analog and digi-
tal parts of the total integral are depicted in Fig. 7. The digital
portion of this total integral, Integral 1, is held in register R1.
This register sums the digital input XD and 1XD and repre-
sents the digital portion YD of the current hybrid value of the
integrator.

The improved hybrid integrator requires three analog in-
tegrators INT1 to INT3, two of which are periodically re-
set by the clock. The integrator INT1 forms the analog In-
tegral 3. Its output is given to a window comparator CMP,
which generates the digital overflow 1XD when the thresh-
olds are exceeded, which is then DA-converted with +MU
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Figure 7. Composition of integral of new hybrid integrator.

as a reference in DAC2 and then negatively fed back to the
analog input of the integrator INT1 for Integral 3. Since the
window comparator directly measures Integral 3 and since
there is negative feedback in the case of digital overflow, this
improved hybrid integrator achieves a constraint on the ana-
log Integral 3 even without arranging the hybrid integrator in
a loop, unlike the solutions shown in Skramstad (1959); Wait
(1963); O’Grady (1966).

The digital overflow results in a linear characteristic of the
reset of Integral 3. However, because the overflow is not yet
stored in the digital output register R1 with the value Inte-
gral 1, the linear reset must be compensated with an opposite
ramp 1XA(τ ) provided by the analog integrator INT2. This
ensures that at each time Y = YA+YD represents the correct
value of the hybrid integral.

If a digital overflowXD is present at the input of the hybrid
integrator, it will only be taken into account in the following
clock cycle of the register for Integral 1 and must therefore
be DA-converted with DAC1 and then fed to the sum YA with
integrator INT3 to obtain the correct total integral Y at any
time.

Figure 7 shows the composition of the integral. Integral 1
is identical to the previously shown hybrid integrator. Inte-
gral 2 in the improved hybrid integrator no longer has the cur-
rent analog represented value of XD(n)τ , but only the value
1XD(n)τ , which certainly simplifies the scaling of the sum-
mation. To obtain the correct instantaneous value for a digital
input quantity, the digital input XD must be integrated anal-
ogously and fed to the analog output component YA(t). This
component corresponds to Integral 4.

The analog output YA(t) consists of three signals, In-
tegral 3, the sawtooth shaped compensation of the time-
continuous reset with1XA(τ ), and the analog representation
of the digital input of Integral 4. Integral 3 and 1XA(τ ) are
smaller in magnitude than the machine unit (MU). Integral 4
also has a sawtooth shape, but can exceed 1 MU and reach
XD(t)1t at its peak. If YA(t) must be explicitly generated
with a summer and represented as a voltage, the fraction rep-

resented by Integral 4 limits the dynamic range. However, if
the hybrid integrator is followed by another stage with a hy-
brid integrator, the three components of YA(t) are fed into the
following analog part of the hybrid integrator via separate re-
sistors, so that the dynamic range is not limited, because the
sum signal YA(t) does not occur explicitly as a voltage. In-
stead the sum is formed by the summer circuit of the follow-
ing analog integrator.

Figure 8 shows the signal waveforms of the hybrid inte-
grator.

First we consider the left side of Fig. 8 where a con-
stant input signalXA(t) is present. The analog integrator sig-
nal

∫
XA(t)dt reaches a maximum of 1

2 MU (with MU= 1)
and then integrates back to zero level. To obtain the cor-
rect value of the analog component

∫
XA(t)dt +1XA(τ ) in

the time domain from t = 1 to t = 2 in the presence of the
continuous-time reset, the value XD(n) from register R2 is
AD-converted and integrated with INT2 and then added to
the analog integral as a ramp signal 1XA(τ ). Without this
ramp signal 1XA(τ ) the value of the total integral in the
phase of the continuous-time reset would not represent the
correct value, as shown by the hypothetical waveform of∫
XA(t)dt +6XD(1. . .n− 1) in the lower part of Fig. 8.
On the right side of Fig. 8 the input signal is switched

off at t = 2.5 and again at t = 3.5. The final values of the
total integral are

∫
XA(t)+XD(t)dt = 1.25 and 1.75. The

comparator CMP switches at t = 1 and, if the input signal
is present until t = 3.5, again at t = 3 (red mark). There-
fore the digital sum signal

∑
XD(1. . .n− 1) first reaches the

value 1 and then the value 2. The final values of the analog
part

∫
XA(t)+1XA(τ ) are +0.25, and −0.25 respectively.

If comparator threshold is 1
2 MU, the analog part of the inte-

gral can also take the opposite sign with respect to the input
signal.

3.2 Improve dynamics with overload estimation

The values of the thresholds of the window comparator are
not 1 MU, but 0.5 MU, as it is the case in previous integrators
and in the hybrid integrator presented here. These are chosen
for two reasons: First, the magnitude of the analog integral is
kept minimal, even though the analog integral may change
sign with respect to the input signal in this case (Fig. 8),
which is not a disadvantage. Second, the analog integrator
output follows with a delay in the case of time-varying input
signals, so that an overload would also only be detected with
a certain delay. Due to the reduced threshold, an overload can
be avoided even with delayed detection.

Further improvement of the dynamic characteristics are
possible if, as in the case of the overload estimation (OLE)
circuit used in Shim et al. (2005a), the integrator takes into
account not only the actual analog integrator output, but also
the value currently present at the integrator input for detect-
ing the overflow from the analog to the digital component of
the integrator.
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Figure 8. Signal characteristics with the new hybrid integrator.

Figure 9 shows an improved version of the hybrid integra-
tor, where the analog input XA(t) is scaled by a gain factor
for the overload estimation (OLE) GOLE and is added to the
Integral 3=

∫
XA(t)dt and then fed to the window compara-

tor CMP. The window comparator has adjustable thresholds,
usually smaller than the machine unit MU. The advantages of
predicting analog integrator overflow are particularly evident
in the improved dynamic behavior of the CT 16 modulator
with hybrid integrator presented in Sect. 4.4.

4 Application examples

In the following, we will demonstrate the operation of the hy-
brid integrator with local feedback using two classical exam-
ples, the harmonic oscillator and a damped spring-mass sys-
tem. We then show a spiking neuron according to Hindmarsh
and Rose (1984), which has significantly different time con-
stants in the three differential equations and requires the scal-
ing of at least one variable. Finally, we demonstrate the op-
eration and advantages of the hybrid integrator with overload
estimation using a second-order CT 16 modulator. How-
ever, we do not perform detailed analyses of SNR or noise
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Figure 9. New hybrid integrator with local feed back and predictive
overload estimation of analog integrator.

Figure 10. Block diagram of the harmonic oscillator.

shaping, but take a look at the integrator states in the pres-
ence of step changes in the input signal at the limit of the
dynamic range.

4.1 Harmonic oscillator on an analog computer

In this practical example the harmonic oscillator described
by the differential equation −ω2ÿ = y is implemented. Fig-
ure 10 shows the Simulink model of such an oscillator, built
from pure analog integrators.

The analog computer circuit consists of integrators config-
ured in a loop with coefficient elements ω = 0.1 in between.
A selection of signals from the harmonic oscillator simula-
tion is shown in Fig. 11: The first diagram represents the sig-
nals YA+YD (y, in green color) composed of analog and dig-
ital parts, −ẎA− ẎD (y’, in blue color), and ŸA+ ŸD (y”, in
red color). In the middle and bottom diagrams of Fig. 11, the
analog and digital portions of YA+YD (ya, in green color,
yd, in light green color) and ẎA+ ẎD (y’a, in blue color, y’d,
in light blue color) are shown.

The initial condition is YA(0)+YD(0)= 10. This is real-
ized by an initial digital value YD(0)= 10, as can be seen in
the middle of Fig. 11. Depending on how the digital LSBs are
scaled with respect to the machine unit MU, not only multi-
ples of the MU can be used as initial values in the hybrid
integrator, but also fractions of a MU. Most of the amplitude

Figure 11. Simulation of harmonic oscillator with hybrid integra-
tors.

is exchanged digitally between the integrators in the oscilla-
tor, as can be seen from the digital values YD and ẎD which
reach full scale value 10. The analog parts YA and ẎA ex-
ceed MU only slightly up to approximately 1.5 MU, when
YA+YD and ẎA+ ẎD have their zero crossings, i. e. when
their derivative is at maximum amplitude. Crucial for this is
that the digital slew rate of the Integral 1 is of the order of the
slew rate of the total integral of the hybrid integrator.

4.2 Spring-mass-damper system on an analog
computer

As a second example for the application of the hybrid in-
tegrator a damped spring-mass system is considered. The
Simulink block diagram for this is shown in Fig. 12. At the
top of the block diagram, a purely analog and continuous-
time system is set up as a reference. The model corresponds
to the unscaled model of Fig. 1, the result should correspond
to the simulation result of Fig. 2.

The integrators in the reference model are inverting. An
initial value of 0.1 at the input of the second integrator thus
leads to an initial displacement of −0.1. The Simulink mod-
ule of the hybrid integrator is not inverting, so in Fig. 12
inverters are provided at the outputs reg_sum, A_int, and
AD_int, respectively. reg_sum and A_int represent the ana-
log and digital parts of the integral, respectively. At A_int the
respective total integral is output after that the sign is changed
and then output as yad (in green color), -y’ad (in blue color)
and y”ad (in red color) shown in Fig. 13 above.

The period of the damped oscillation is about 1 s. For the
digital part of the hybrid integrator to follow the signals, the
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Figure 12. Matlab-Simulink block diagram of spring-mass-damper system with hybrid integrator.

clock frequency must be a multiple of the oscillation fre-
quency. Therefore, the clock frequency was set to 100 Hz.
To ensure that the digital portion of the integral has suffi-
cient resolution, the equivalent analog value of a digital LSB
was set to 0.01. The threshold value of the comparator is
1
2 LSB. Since Register R1 (in Fig. 6) adds up the digital in-
put XD(t) 100 times per second, digital integration requires
scaling down the input XD(t) to the Register R1 by a factor
of 100. If the Register R2 already contains the comparator
value scaled down to the LSB, it must be scaled up again at
DAC1 to generate the ramp signal 1XA(τ ) with slope 1 in
integrator INT2.

In Fig. 13, in addition to the overall analog-digital quanti-
ties of the spring-mass-damper system, the respective ana-
log portions ya (in green color), -y’a (in blue color) and
y”a (in red color) are plotted. Since already y’a never ex-
ceeds 3 LSB, the pure analog fraction ya is never larger than
0.7 LSB, the (not shown) analog fraction Integral 3 repre-
senting

∫
XA(t)dt is also only 0.2 LSB at most. With the

chosen scaling with a small LSB and high clock frequency
related to the oscillation frequency, no overflow from analog
to digital takes place in the 2nd integrator.

The 1st integrator generates -y’a, having a maximum mag-
nitude of 4 LSB. The fraction of Integral 3 of the first inte-
grator is 0.5 LSB at most. Although -y’a exceeds 1 LSB this
does not represent an overload: The peaks of the sawtooth-
shaped waveform result from the high values at the digital
input of the first integrator, which generate the periodic lin-
ear ramped integral component Integral 4 with the DAC1 and
INT3. In practice, however, Integral 4 and Integral 3 are not
added first, as shown in the block diagram. Instead, the sum-
mation is done with an adder circuit at the analog integrator
in the subsequent second hybrid integrator.

In Fig. 13 y”a shows the largest values of all analog sig-
nals, which results from the factor 60 due to the spring con-
stant. The analog input to the first integrator is therefore up to
30 LSB, resulting in overflows from analog to digital being
generated in the first integrator, which can be seen from the
steps in the sawtooth waveform of y’a.

The hybrid integrator enables simple interconnection of
analog computing components without the need for scaling.

4.3 Spiking neuron

The third example is the implementation of a spiking neu-
ron described by a set of differential equations on the analog

Adv. Radio Sci., 21, 89–100, 2023 https://doi.org/10.5194/ars-21-89-2023



D. Killat et al.: Hybrid Integrators 97

Figure 13. Matlab-Simulink simulation of spring-mass-damper sys-
tem with hybrid integrator.

Figure 14. Simulation of spiking neuron ẏ.

computer. A well-known model here is that of Hindmarsh
and Rose (1984), which consists of three coupled differential
equations:

ẋ = y− ax3
+ bx2

+ I − z (6)

ẏ =−dx2
+ c− y (7)

ż= r (s (x− xr)− z) (8)

A bursting behavior as in Hindmarsh and Rose (1984) is ob-
tained when a = 1, b = 3, c = 1, d = 5, r = 10−3, xr =− 5

8
and the external current is set to I = 2. Scaling the equations
in time by multiplying the three derivatives ẋ, ẏ, and ż by
a factor 1000, the neuron starts the first burst of pulses after
0.8 s simulation time, as shown in Fig. 14.

In the analog computer the integrator around y has a short
time constant and simultaneously a large signal amplitude.

Therefore the outputs of the integrators must be scaled down
to the machine unit MU. For this purpose, x and z would be
divided by 2, and y would be scaled down by a factor of 15.

An alternative to the extensive downscaling of y is the use
of a hybrid integrator, as realized with the model in Fig. 15.

The three coupled differential equations require three in-
tegrators, integ_X, integ_Z, and integ_Y_hybrid. The hybrid
integrator for y is operated at a clock rate of 10 kHz. The ini-
tial values for each of the three integrators are 0. The constant
components are switched on after the start of the simulation
and the initialization of the hybrid integrator after a clock
period, i. e. after 100 µs.

The integrator for ẏ has direct feedback, as shown by
Eq. (7). The feedback is also linear, so in contrast to the inte-
grator for ẋ, it has no second or third powers in the feedback
path. Therefore, it is possible to feed back the analog and dig-
ital components yd and ya separately to the analog and digi-
tal inputs of the hybrid integrator. In this case, only the clock
frequency must be taken into account in the time scaling pro-
cess. While the scaling factor 1000 is still used at the analog
input ya’ and thus the simulation is accelerated accordingly
compared to the real time (wall clock), for the digital feed-
back at -yd the scaling factor 1000 has to be reduced to 0.1
because of the clock frequency of 10 kHz. Figure 16 shows
in two diagrams respectively the curves of y, ya and yd.

To ensure that the analog overdrive, which is detected by
the window comparator and thus increases the digital regis-
ters, is dominant over the negative digital feedback in any
case, the digital LSB must be selected to be 2. As a result,
a decrease of the analog ya can be limited to −2 on aver-
age, and even for transients to about −2.5 (lower figure in
Fig. 16).

This example shows that when using hybrid integrators in
analog computers it is not necessary to replace all integra-
tors by hybrid integrators, instead this can be done according
to the application. Furthermore, a local digital feedback can
be implemented, but it must be ensured that a negative digi-
tal feedback does not prevent the carry over from analog to
digital and thus the limiting of the output of the analog inte-
grator. The digital part of the hybrid integrator can be con-
verted from analog to digital by passing the individual bits
of yd through weighted resistors to the summation input of
integ_X.

4.4 CT 16 modulator

In the last example, a hybrid integrator with predictive over-
load estimation (OLE) according to Fig. 9 was used to re-
alize a CT 16 modulator of second order without scaling.
The modulator is constructed as in Fig. 3, only with 2 inte-
grators. The coefficients are b1= 1, a1= 1 and b2= 2. The
b-coefficients are connected to the digital inputsXD(t) of the
digital integrators. The hybrid integrators have a LSB= 1,
comparator thresholds of 1

2 LSB, and a clock period T = 1 s.
The respective input XA(t) is weighted by a factor GOLE =
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Figure 15. Model of spiking neuron with hybrid integrator for integration of ẏ.

Figure 16. Simulation of spiking neuron with hybrid integrator for
variable y.

0.5 for overload estimation and then added to the Integral 3.
The clock of the quantizer is delayed by half a clock period,
i. e. the registers and the comparator in the hybrid integrator
operate on the rising clock edge, the quantizer on the falling
clock edge.

In a Matlab-Simulink simulation bench, the time re-
sponses of the analog and digital components of the hybrid
integrators are compared. The integrator with OLE according

to Fig. 9 is compared with a version without OLE according
to Fig. 6. We pay attention to how the hybrid integrators cope
with overloads due to large input signals.

Both versions of the modulator, with and without OLE,
of course give the same overall results, as shown by the bit
stream v and the integrator outputs x1 and x2 in Fig. 17. The
top plot in Fig. 17 also shows the input signal u increasing
from 0.05 to 0.95 at t = 5 s, triggering the overload.

The two middle plots of Fig. 17 show the analog and dig-
ital components of the first integrator, the two lower plots
those of the second integrator. Herein x1d, x2d, x1d_o and
x2d_o are the digital parts, x1a, x2a, x1a_o and x2a_o the
analog parts. Signal names ending with _o belong to the in-
tegrator with overload estimation. Signal names ending in
. . . a_I3 are the respective parts of Integral 3, i. e.

∫
XA(t)dt .

As in section 4.2, it is necessary to distinguish between the
analog sum signal YA(t)dt (denoted by x*a in Fig. 17) and
the integral of the analog input

∫
XA(t)dt . YA(t)dt can be

represented by the instantaneous value of the contribution of
XD(t) (Integral 4) and the contribution 1XA(τ ) being much
larger than

∫
XA(t)dt .

First, we compare the signal characteristics of the first in-
tegrator without overload estimation (OLE) with the one with
OLE. The signal curves differ from t = 8.5 s on. At t = 8.5 s,
Integral 3 (x1a_I3, dotted in green) falls below the threshold
of 0.5, and the window comparator yields 0. The quantizer
output v is positive, so at time t = 9.5 s the digital component
x1d is decremented by 1. Since at time t = 8.5 s the window
comparator output becomes 0, no continuous-time reset oc-
curs, and x1a_I3 increases from 0.5 to just below 1.5 during
a clock phase.
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Figure 17. 2nd order CT 16-Modulator under overload condition,
using hybrid integrators, with and without overload estimation.

In contrast, for the hybrid integrator with OLE, the ana-
log input u= 0.95 is multiplied by GOLE = 0.5 even after
t = 8.5 s and added to Integral 3, the comparator threshold
continues to be exceeded, and the Integral 3 continues to be
subjected to a continuous-time reset until t = 15.5 s. Over-
load estimation keeps the analog Integral 3 below the thresh-
old of 0.5.

The advantages of OLE are also evident in the second in-
tegrator: At t = 6.5 s, Integral 3 is just above the zero line,
the window comparator in the hybrid integrator without OLE
yields 0, so that at t = 7.5 s x2a_I3 increases to 2. In the inte-
grator with OLE, the window comparator output is positive,
so that at t = 7.5 s x2a_I3_o is still below 1. At t = 11.5 s,
similar behavior can be seen: By OLE, the comparator is pos-
itive, the x2a_I3_o is reduced by time t = 12.5 s, and the dig-
ital part of the integral x2d_o reaches 4.

Due to the OLE, the analog integral of the 1st integrator
can always be kept below 1 MU. Despite the peak values for
the analog sum signal x1a_o for the first integrator, the ana-

log Integral 3 (x2a_I3_o) of the second integrator is also kept
under 1 MU.

At the output of the second integrator, the sum signal
x2a_o and the digital output x2d_o must be evaluated to-
gether in the quantizer, which typically requires a suitable
DA conversion of the digital value.

5 Conclusions

The new improved hybrid integrator with overload estima-
tion is well suited for applications without negative feedback
and for signals with steep transients and can therefore be
used universally in analog computers, CT 16 modulators,
and analog control circuits.

A significant feature is that the digital component stored
in the hybrid integrator does not have to be converted into an
analog sawtooth voltage and fed to the analog output. Only
the overflow of one bit corresponding to a machine unit (MU)
that occurred in the hybrid integrator must be taken into ac-
count during a clock phase in the analog part, as well as the
digital input to the hybrid integrator, of course. The reset of
the analog component of the hybrid integrator is done con-
tinuously in time. During the reset process, an additive ramp
signal is used to achieve a continuously correct value for the
analog part of the hybrid integral. After the reset process,
the ramp signal is switched off and the digital component
is incremented. Disadvantages due to capacitive resets are
thus avoided. Also, disadvantages due to asynchronous digi-
tal counters and the need for high-precision continuous-time
comparators can be avoided in integration methods with in-
tegration direction reversal.

Due to the synchronous operation it is possible to use pre-
cisely clocked regenerative comparators, and because of the
continuous-time reset a a precise representation of the total
integral is possible. In contrast to this, of course, the overall
circuit complexity must also be taken into account. In partic-
ular, this is relevant if the digital part of the analog integral
has to be further processed in the analog computer, and thus
the circuitry overhead and errors in the DA conversion have
to be taken into account.

For overload estimation, the current analog input is added
to the analog part of the integral with a weighting factor,
so that in the case of dynamically changing signals or tran-
sients, the maximum magnitude of the analog integrator can
be safely kept below one machine unit MU. However, the
effectiveness of the overload estimation also depends on the
specific signal waveform.

Through simulations of a harmonic oscillator, a damped
spring-mass system, a spiking Neuron, and a CT 16 mod-
ulator, it has been shown that scaling from the mathematical
model to the real circuit with limited voltages is simplified,
and the dynamic range can be extended almost arbitrarily by
the hybrid representation of the integral.
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