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Abstract. In this study, the impact of local oscillator cable
movements or drift during VNA measurements using fre-
quency extenders is investigated. A non-reciprocal measure-
ment error caused by alterations of the local oscillator sig-
nal in R 900 (WR 10) waveguide measurements from 75 to
110 GHz is observed and systematically analyzed. Further-
more, the theory behind this effect and its implications on
measurement results are discussed, as well as possible cor-
rections for both calibrated and raw measurement data.

1 Introduction

In vector network analyzer (VNA) set-ups with two or more
test ports, cable movements are often a significant source
of measurement uncertainty (MU). When utilizing VNA fre-
quency extenders, instead of using a VNA base unit alone, all
cables connecting each extender to the VNA could be moved
and are potential MU sources. In some cases, a considerable
cable movement is required, e.g. in set-ups used for the char-
acterization of large devices under tests (DUTs) or antennas.
Each VNA extender is usually connected with a local oscil-
lator (LO) cable, a radio frequency (RF) cable and two inter-
mediate frequency (IF) cables to a VNA base unit. While LO
cable movements are the primary influence on the LO signal
during measurements in laboratories with stable set-ups and
good environmental control, similar changes in the LO signal
could also arise from temperature fluctuations or drift under
less ideal conditions.

Measurement errors resulting from these cable move-
ments, as demonstrated in Novotny (2019) and Arsenovic
(2020), may be underestimated or overlooked. Often, reflec-
tion measurements are utilized to assess cable stability, yet
they remain unaffected by the underlying cause, leading to

not detecting and consequently neglecting the issue. When
employing conventional methods to account for cable move-
ments and evaluate measurement uncertainties, as outlined in
the EURAMET Calibration Guide No. 12 (CG-12) by Zeier
et al. (2018) or the METAS VNA Tools Math Reference Fed-
eral Institute of Metrology (METAS) (2024), these influences
are not comprehensively addressed yet.

In this study, the impact of LO cable movement is sys-
tematically investigated. Initially, the theoretical effects of a
change in the LO signal at one frequency extender is ana-
lyzed and equations for error correction to account for this
effect are derived. Additionally, an experiment is conducted
employing a phase shifter to methodically examine changes
in the LO signal phase during measurements. The phase
shifter is integrated into the LO cable path, and the phase
value setting is varied from 1 to 10° while measuring the
scattering parameters (S-parameters) of a thru connection
using R 900 (WR 10) VNA frequency extenders from 75
to 110 GHz. This experimental set-up with a phase shifter
facilitates a systematic analysis of the effects discussed by
Novotny (2019) and Arsenovic (2020), establishing a con-
nection to theoretical considerations.

2 Theoretical impact of cable movements

An ideal RF mixer, as depicted in Fig. 1, can be described
by a simple S-parameter matrix according to Willliams et al.
(2005). Therefore, the incident wave aRF can be related to
the outgoing wave bIF by a factor aLO, which depends on the
phase of the LO signal at the mixer input

bIF = aLO · aRF. (1)

Most commonly, mixers are operated in saturation. There-
fore, a change in the amplitude of the LO signal has a minor
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Figure 1. Ideal RF Mixer as described by Willliams et al. (2005).

effect on the output signal, and the factor aLO describes only
a change in the LO signal phase. In this work the effect of the
LO signal amplitude change due to the cable movement will
be neglected (|aLO| = 1).

Using this simple representation of a mixer, a signal flow
graph representing the frequency translating measurement
can be drawn. The flow graph in Figure 2 represents the
RF section of the forward measurement model. A similar
graph can be constructed for the reverse measurement model,
as shown by Rytting (2004). The coefficients of the reverse
measurement model are named with a prime symbol in this
work. Utilizing the presented flow graph, the raw measured
S-parameters of the IF and RF signals can be represented as:

SM
11 =

bIF,0

aIF,0
=
bRF,0 · aLO,0

aRF,0 · aLO,0
and

SM
21 =

bIF,3

aIF,0
=
bRF,3 · aLO,3

aRF,0 · aLO,0
. (2)

The error correction takes into account all constant imper-
fections of the measurement set-up and VNA itself. How-
ever, cable movement during or after calibration is not ac-
counted for by the error correction. Therefore, a term δaLO,3
is considered here. It represents the influence of the LO cable
movement after calibration. The change in the raw measured
S-parameter values can be expressed as follows:

SM
11 =

bIF,0

aIF,0
=
bRF,0 · δaLO,0

aRF,0 · δaLO,0
, (3)

SM
21 =

bIF,3

aIF,0
=
bRF,3 · δaLO,3

aRF,0 · δaLO,0
=
bRF,3

aRF,0
· δ and

SM
12 =

bIF,0

aIF,3
=
bRF,0 · δaLO,0

aRF,3 · δaLO,3
=
bRF,0

aRF,3
·

1
δ
. (4)

Equation (3) shows that a cable movement after calibra-
tion has no impact on the reflection coefficient measurement,
as the same signal is used for up and down conversion. How-
ever, from Eq. (4), it can be seen that there is a non-reciprocal
impact of the error δ on transmission measurement raw val-
ues because LO signals with different phases are now used.
The impact of this phase error in the LO signal is identical
for forward and backward transmission; only the sign differs.

However, in practice, reflection measurements are com-
monly employed to test the impact of cable movements, as

presented in the CG-12 (Zeier et al., 2018). The results from
such tests are not directly applicable to transmission mea-
surements.

2.1 Compensation of the LO phase error

The error corrected transmission terms using the 12-term
model with frequency conversion are

S21 =

(
SM

21−e30
e10e32

)
·

[
1+

(
SM

22e
′

33
e′23e

′

32

)(
e′22− e22

)]
D

and

S12 =

(
SM

12−e
′

03
e′10e

′

32

)
·

[
1+

(
SM

11e00
e10e01

)(
e11− e

′

11
)]

D
, with (5)

D =

[
1+

(
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11e00
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)
e11

][
1+

(
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22e
′

33
e′23e

′

32

)
e′22

]

−

(
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e10e32

)(
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12− e
′

03
e′23e

′

01

)
e22e

′

11. (6)

Here, the coefficients with a prime symbol belong to the
reverse measurement and e30 denotes cross-talk, which is
commonly negligible and not shown in Fig. 2. For measure-
ments with negligible cross-talk, meaning e30 ≈ e

′

03 ≈ 0, the
reflection parameters S11 and S22, as well as the factor D,
are immune to the error caused by LO cable movement after
calibration because the error is compensated by a product of
SM21 and SM12 .

D ≈

[
1+

(
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11e00
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)
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][
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(
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)(
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11 (7)

Without cross-talk the transmission parameters in Eq. (5) can
be rewritten using Eq. (4) to

S21 ≈

(
SM

21
e10e32

)
·

[
1+

(
SM

22e
′

33
e′23e

′

32

)(
e′22− e22

)]
D

= δ ·

(
bRF,3
aRF,0
e10e32

)
·

[
1+

(
SM

22e
′

33
e′23e

′

32

)(
e′22− e22

)]
D

= STrue
21 δ and (8)
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Figure 2. Flow graph of the forward measurement model of the RF section without cross-talk.

S12 ≈

(
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(
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Therefore, the transmission factor of the DUT in both the
forward and backward direction can be described as the prod-
uct of a true value STrue

21 and STrue
12 with a complex phase-

shifting term δ. In the case of negligible cross-talk, this term
δ is identical for raw and calibrated measurement results. The
true values are

STrue
12 = δS12 and STrue

21 =
1
δ
S21. (10)

3 Measurements

In the experiment shown in Fig. 3, R 900 (WR 10) VNA fre-
quency extenders in the range of 75 to 110 GHz are used.
To examine the impact of changes in the LO signal, a phase
shifter is introduced into the LO signal path of one exten-
der. A thru reflect line (TRL) calibration is performed and
a direct thru connection of the waveguide interfaces in the
reference plane is measured repeatedly with different phase
shifter settings. This set-up enables systematic investigation
of the effects of a change in the LO signal as it might be
caused by drift or cable movements after calibration.

The measurement result depicted in Fig. 4 confirms the ex-
pectations from the theory discussed in Sect. 2, that the LO
signal phase has only a minor impact on the magnitude of
the thru S-parameters, while there is a significant impact on
the measured phase of the transmission parameter of the thru.
Due to noise, it is not possible to make reliable statements re-
garding the phase of the well-matched reflection parameters
of the thru connection. This results from the multiplication
of the LO signal in the VNA extender box.

The multiplication factor N for the LO signal in the R 900
VNA extenders used here is N = 6. Therefore, adjusting the
phase shifter in the LO signal path to α causes a phase shift

Figure 3. Overview of the measurement set-up using WR-10
waveguide extenders and a phase shifter in the LO signal path.

at VNA port two of approximatelyN ·α in the aRF,3 and bRF,3
waves. Figure 4 confirms this; for example, a setting of 1° re-
sults in a phase shift of 6° in the measured result. Addition-
ally, it is evident that the phase of the two transmission coef-
ficients is affected with opposite signs. We conducted mea-
surements with the phase shifter setting of 0° as both the first
and last measurement. However, the results demonstrate high
repeatability, and no discernible difference can be observed
from the plot in Fig. 4.

4 Consideration and Correction

The phase error δ caused by LO cable movements after cali-
bration can be determined by measuring one reciprocal DUT
in each cable position and using STrue

21 = S
True
12 . All measure-

ments in one cable position can then be corrected using

δS12 =
1
δ
S21⇔ δ =±

√
S21

S12
=

+
√
S21
S12

−

√
S21
S12
= ejπ ·

√
S21
S12
.

(11)

Since the phase error δ can only be determined unambigu-
ously within ±180°, the LO signal cable movement should
still be kept to a minimum. However, for most cables and
scenarios this should be no problem.

In Fig. 5, the phase angle of the measurement result is
shown again, this time with the correction applied. It can be
observed that the measurement result for the phase angle of
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Figure 4. S-Parameter measurement results for a thru with phase shifter settings from 0 to 10° in the LO signal path.

Figure 5. Phase angle measurement result shown in Fig. 4 with applied correction making the phase angle of the Thru measurements
reciprocal.

thru connections is now almost independent of the setting
of the phase shifter in the LO signal path, confirming the
proposed correction in Eq. (11). In most measurement sce-
narios, it is sufficient to move only one frequency extender.
However, if cable movements on several ports are necessary

or there is significant drift for another reason, this correction
can be applied simultaneously to several ports. This is be-
cause the errors from the LO signal change on each port are
linearly superimposed in the measurement result.
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Alternatively, the LO cable movement could be character-
ized and regarded as a source of measurement uncertainty for
the transmission coefficient phase. However, due to the mul-
tiplication factor α of the VNA frequency extenders, this MU
contribution would be rather significant. In Schramm et al.
(2024), measurement uncertainties and uncertainty budgets
for waveguide measurements are presented. The additional
term due to local oscillator cable movement would presum-
ably dominate the uncertainty budgets for the phase angle of
the transmission terms. Therefore, a correction is preferable.

5 Conclusions

In this study, we explored the impact of LO signal varia-
tions in VNA measurements, akin to the disturbances in-
duced by cable movements post-calibration. Through the-
oretical analysis and experimental demonstrations utilizing
a phase shifter to intentionally induce signal variations, we
systematically examined the effect of LO signal changes. Our
experiment demonstrated that even minor phase changes in
the LO signal after calibration can significantly affect the
measured phase angle of the transmission coefficients, at-
tributed to the multiplication factor N of the VNA frequency
extenders. By deriving error correction terms, including the
frequency translating components, we formulated a correc-
tion method for the non-reciprocal error and applied it to
our experimental data. Our results demonstrate that the cor-
rected measurements remain unaffected by fluctuations in the
LO signal, underscoring the robustness of our correction ap-
proach. This study contributes to enhancing the accuracy and
reliability of VNA measurements, particularly in scenarios
where LO signal variations could potentially introduce er-
rors.
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