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Abstract. This paper is a direct continuation of “AI Assisted
Interference Classification to Improve EMC Troubleshooting
in Electronic System Development” (Maalouly et al., 2022).
The previous paper aimed to classify the electromagnetic
compatibility (EMC) problem classification, while this pa-
per addresses two primary issues: the data and the technique.
The technique used in the previous study involved a princi-
pal component analysis (PCA) (Pearson, 1901) to generate
input features for the neural network. However, since PCA
only encodes linear relations from the samples, autoencoder
(AE) models are now used to encode the data into a latent
vector that better represents the data. The latent vectors will
ultimately be used as input to classify the EMC problems. A
neural network and a random forest classifier were utilized
to develop a classification model, wherein the random for-
est demonstrated superior performance in comparison to the
neural network.

1 Introduction

Electromagnetic compatibility (EMC) problems are a signif-
icant concern in the printed circuit board (PCB) and chip de-
sign. The increase of electronic devices has brought these
issues to the fore, with mobile phones, sensors, entertain-
ment systems, and so forth now integral to everyday life.
The manufacturing process of such devices is a complex and
challenging undertaking. Consequently, the EMC issue is ad-
dressed during the design and development phase. However,
identifying the source of the EMC problem is a difficult and
resource-intensive task, which may prove particularly chal-

lenging for small and medium-sized enterprises. Therefore,
a novel approach to identifying the source of EMC problems
using elctromagnetic frequency spectra classification is stud-
ied and proposed. This study aims to detect these issues by
using measurement spectra as input to an intelligent model
for classification. However, the input data can become very
large, which can cause the network to underperform. To ad-
dress this issue, dimensionality reduction techniques are im-
plemented to reduce the data complexity.

Eliardsson and Stenumgaard (2019) explores the use of
AI, specifically machine learning, to automatically monitor
and classify electromagnetic interference (EMI) in safety-
critical wireless systems. It demonstrates how a k-nearest
neighbors (k-NN) algorithm can identify interference signals
in air-traffic control, highlighting AI’s potential in Electro-
magnetic Compatibility (EMC) applications. Artificial intel-
ligence has the potential to be utilized in multiple domains
within the field of EMC. Zhang (2024) proposes a deep learn-
ing method to predict electromagnetic emission spectra in
EMC tests of aerospace products. To enhance prediction ac-
curacy while avoiding overfitting, a threshold-based data de-
composition method is employed. A long short-term mem-
ory (LSTM) neural network is utilized, with hyperparam-
eters optimized via Bayesian methods. This paper follows
the previous work of Maalouly et al. (2022) where machine
learning methods are employed to categorize distinct PCB
layouts based on their electromagnetic frequency spectra,
derived from simulated near-field measurements of electric
fields. The training data, obtained by varying transmission
line geometries, were transformed from the time domain to
the frequency domain and utilized as input for a deep neu-
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ral network. Principal component analysis reduced the data’s
dimensions. The results demonstrated high accuracy in clas-
sifying designs using synthetic data.

For now, the data required to train a classification model
must be either real or possess characteristics similar to a real
dataset. The data were generated by an electromagnetic field
simulator. Due to the high computational effort, some addi-
tional physical optimizations are applied to the simulation
models and current computational hardware with GPU ac-
celeration is used in a parallel network. To further accelerate
this and make it free from human errors in model generation,
the simulation models are created, executed, and extracted in
an automated way. The data are then parsed and treated to be
used by the AE and later for the training of a classification
neural network.

This paper begins with an overview of the real and simu-
lated datasets. It then proceeds to describe the pipeline, be-
ginning with data processing and continuing with the autoen-
coder networks. This is followed by an examination of the
use of reduced data with a classification neural network and
a random forest classifier. The paper concludes with a pre-
sentation of the results and a discussion of the conclusions.

2 Dataset

2.1 Real Data

The training data are generated using a hybrid approach of
real EMC near and farfield measurements and electromag-
netic field simulation based on the same PCB basic lay-
out. In general, the hardware setup contains differential pair
transmission lines, which are excited by a frequency ad-
justable (clock) signal generator. The variation parameters
are chosen to be the ground (GND) plane geometry below
the transmission lines, their line impedance, the termination
impedance as far as the dimensioning of decoupling capac-
itors in the power delivery network (PDN). The parameter
variations were coarse-stepped for the real measurements
and finer resolutions are used for the simulations in order to
achieve a sufficient amount of training data. In order to allow
for some simplifications in simulation model complexity, ra-
diated emission measurements in a semi-anechoic chamber
based on test setups according to EN 55011 were carried out
to obtain real datasets which can be extended by simulation.
The PCBs were placed on a non-conductive table (εr ≈ 1.2)
with a height of 80 cm above the conductive ground plane.
The phase-centre of the measurement antenna is placed in a
distance of 3 m from the centre of the PCB. Measurements
were carried out in the frequency range 30 to 1000 MHz us-
ing a bandwidth of 120 kHz with peak and average detection.
By the measurement of 30 hardware samples using two exci-
tation frequencies and two wire lengths (300, 2000 mm) for
the power supply, a total number of 1440 data samples are
generated. However, as the emission is generated by a nar-

Figure 1. DUT during near-field measurement.

rowband disturbance source, the peak and average detection
results are highly correlated, which has to be taken into ac-
count. Another way to obtain real measurement data for the
radiation is to use near-field scans. The electric and magnetic
field components (x, y & z) are measured using near-field
probes. These measurements are taken at various locations
around the DUT (device under test) (Claeys, 2018). The near-
field scanner NFS3000 from Fraunhofer ENAS in Paderborn,
Germany was used as the measuring instrument (Schroeder
et al., 2020). Figure 1 shows a photo of this near-field mea-
surement. The probe above the DUT measures the respective
signal strength (here: Ht ) and the exposed conductor loop
on the right is used as a reference signal for calculating the
phase. The results of these magnetic tangential field measure-
ments are represented in Fig. 2. Here, the PCB was excited
with a 50 MHz square wave signal on channel 1 and shows
the main signal and the first two harmonics, respectively.
The representation of the tangential electric and magnetic
fields around a closed surface can be used as an equivalent
source using the Surface Equivalence Principle or the BEM
(Boundary Element Method) (Sievers, 2008). These substi-
tute sources can then be used for a far-field transformation.
The mathematical principles and conditions are described in
Lange et al. (2020) and Marschalt et al. (2022). The result of
this near-field to far-field transformation (NF2FF) is shown
in Fig. 3.

This means that the near-field data can then be used in
the same way as the far-field measurements by the NF2FF,
although a completely different measurement method was
used.

2.2 Simulation Data

As measurements are very time-consuming and many vari-
ants are required for the training data, which would also be
very cost-intensive, the necessary training data are comple-
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Figure 2. Maximum tangential magnetic field strengths of the PBC
board, which was excited with a 50 MHz square wave signal, as
a replacement source for an NF2FF. (a) 50 MHz, (b) 150 MHz,
(c) 250 MHz.

Figure 3. NF2FF Results from the near-field measurement on
the PCB at various spatial coordinates, which was excited with a
50 MHz square-wave signal.

mented by simulations. For this purpose, the circuit board
from Fig. 1 was modeled as a simulation model, which was
also excited at f = 50 MHz on channel 1 in Fig. 4. Here it is
much easier to generate the necessary variants for the differ-
ent training data.

In order to obtain very realistic results, the Finite Inte-
gration Technique (FIT) (Weiland, 1977) was used here in
the time domain, as this allows very broadband results to be
used in a simulation as well as real signal shapes. In order
to adapt the radiation behavior to the real environment of an
anechoic chamber with a steel floor, corresponding boundary
conditions were defined in the simulation and not the com-
plete measurement environment was modeled, as this would
increase the calculation time enormously. Instead of the ab-
sorber structures PML (perfectly matched layer) (Berenger,
1994) and a PEC (Perfect Electrical Conductor) (Lindell and
Sihvola, 2005) boundary condition was selected for the steel

Figure 4. Maximum magnetic (a) and electric (b) field distribu-
tions on the simulation model of the PCB with an activated 50 MHz
square wave signal on the right trace (channel 1).

Figure 5. Reduction of the simulation volume and the resulting sim-
ulation time by using the NF2FF.

floor. To save further calculation time, an NF2FF was also
used here by simulating only the size around the table re-
quired by convergence studies and calculating the rest using
the NF2FF (Gibson, 2008). These adjustments can be seen in
Fig. 5.

These adjustments have already enabled highly complex
simulation models to be created for more than 80 000 training
data pairs with variations of the DUT as input parameters and
radiation behavior as far-field spectra. The variations differed
in the form of transmission lines, GND structure, various ad-
ditional impedances (at short-circuit and load resistors) and
signal types. The simulated data are then parsed between two
different classes. The first class is the termination [good, bad]
while the second is the frequency [50 MHz, 100 MHz]. All
simulated data assumes a line impedance value of 100 �. A
termination is considered good if its resistance aligns with
the line impedance of 100 � within a tolerance of ±15 %.
Termination resistance ranging from 85 to 115 � is consid-
ered optimal, while values outside this range are considered
suboptimal.
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3 Classification Model

3.1 Pipeline

The pipeline processes raw data and converts it into a read-
able format for our models. The selected frequency classes
are between 50 and 100 MHz, and the termination is either
good or bad. The data labels are parsed to meet the require-
ments to start the encoding process using an AE model. Once
the AE model is constructed, the data are encoded into the
desired number of latent dimensions to extract the necessary
features. The neural networks described in the following sec-
tions are constructed using Python and TensorFlow (Abadi
et al., 2015), while the random forest classifier is constructed
using Scikit-learn (Pedregosa et al., 2011).

3.2 Autoencoder

An AE is a type of unsupervised neural network. It consist of
two networks, an encoder, and a decoder, working together
to learn an efficient representation of input data. The main
purpose of autoencoders is to encode input data into a lower-
dimensional (latent dimension) representation and then de-
code it back to reconstruct the original input. The advantage
of using an AE network is the learning of the latent dimen-
sion in a non-linear fashion in contrast to a principle com-
ponent analysis, which is only capable of capturing linear
relations.

The data collected and parsed have totaled to 353 sam-
ples. Each sample contains 1001 farfield measurements from
frequencies ranging between [30 MHz–1000 MHz]. The fre-
quency classes are properly distributed while the termination
class holds a slight imbalance. The latent dimensions (l) cho-
sen are l = 2 and l = 200. The reduction to l = 2 allows for
the visualization of the dataset and to check if any cluster-
ing exists. The data are reduced from 1001 dimensions to 2
dimensions. Figure 6 is a visualization of the simulated data
showing a typical behavior for a simulation where the sample
points are almost linear in structure. Clustering is also visible
within the simulated dataset.

As the latent dimension increases the information loss will
be less and less severe. Tables 1 and 2 shows the encoder
and decoder network architectures respectively. The latent
dimension chosen is of size 200 for the training of the classi-
fication neural network. The training is done over 300 epochs
with a batch size of 256. Adam optimizer is used along with
a 0.0001 learning rate with a mean squared error as a loss
function. The model achieved a low loss error as seen in
Fig. 7 meaning the model learned to encode the data effi-
ciently with minimum information loss. The reconstruction
of a simulated measurement curve should ideally resemble
the initial input curve as in Fig. 8. The data are then run into
the encoder to reduce the data dimensionality. The result is
a dataset of size [352, 200] and a corresponding label set of
[352, 3].

Figure 6. Encoding the simulated data using the AE model.

Table 1. The encoder network architecture.

Layers Neurons Activation

Conv1D 256 tanh
MaxPooling 1D
Conv1D 128 tanh
MaxPooling 1D
Conv1D 64 tanh
MaxPooling 1D
Flatten
Dense 200 Sigmoid

Table 2. The decoder network architecture.

Layers Neurons Activation

Dense 125 tanh
Conv1D T 64 tanh
UpSampling 1D
Conv1D T 128 tanh
UpSampling 1D
Conv1D T 256 tanh
UpSampling 1D
Dense 1001 sigmoid

3.3 Classification Network

With the data now reduced, the training of the classification
neural network can start. The classification network takes
an input of 200 features and outputs the predicted classes.
The network uses an Adam optimizer with a learning rate of
0.0001 and a batch size of 32. The data is split into training
and testing sets with the latter being 10 % of the dataset. Fur-
thermore, the training data are then split into 2 sets, one for
training and the other for validation being 20 % of the train-
ing data. Since this is a multiclass problem the loss used is
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Figure 7. The training loss function for the AE.

Figure 8. Simulated data measurement sample and its reconstruc-
tion.

the Binary Crossentropy with 300 training epochs with Ta-
ble 3 showing the network architecture.

3.4 Classification Network Results

The network achieved a low training and validation loss of
approximately 0.2, with slight indications of overfitting, as
demonstrated in Fig. 9. This suggests that the model has dif-
ficulty distinguishing between one of the classes. To further
analyze this, the confusion matrix of Fig. 10 is examined.
The frequency classes are perfectly discriminated, which is a
very predictable behavior due to the high correlation between
the feature set and the frequency classes (Maalouly et al.,
2024). However, there is no correlation between the termi-
nation and the feature set, but rather a clustering behavior.
The unbalanced number of samples in the Good Termination
class coupled with the number of total samples resulted in
an overfit model specifically for identifying the termination
class. A solution would be to reduce the complexity of the
model to better identify the clusters.

Table 3. The classification network architecture.

Neurons Activation

128 Relu
Dropout 0.2
64 Relu
Dropout 0.2
3 Sigmoid

Figure 9. Classification loss function.

3.5 Random Forest

Random Forest is a machine learning algorithm used for both
classification and regression tasks (Ho, 1995). It is an ensem-
ble learning technique that combines multiple models to im-
prove their predictive capabilities. During the training phase,
a Random Forest creates a multitude of decision trees. The
performance of a model can be improved or weakened by
the number of trees selected. To construct each decision tree,
a random subset of features from the training data are se-
lected and decisions are made based on those features. In the
previous section, the sample data could not be classified by
the network according to their respective termination. That
is due to low the correlation to the output class and the bias
in the dataset. Therefore, a machine learning model is better
equipped to handle such problems. Random forest was ap-
plied with different tree values as a hyperparameter. Using 10
tree estimators resulted in the highest accuracy, with a train-
ing accuracy of 0.996 and a test accuracy of 0.957. Figure 11
shows the resulting confusion matrix for the termination.

4 Conclusions

In this paper, a hybrid data generation approach is taken to
better validate the authenticity of the simulated data. The
simulated data are first parsed to a readable format, fit for the
consumption of the networks. Then, an AE network is con-
structed to take in the simulated data and output an encoded
form. As a next step, the encoded data are passed along to
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Figure 10. Frequency confusion matrix (a) and termination confusion matrix (b) from the classification neural network.

Figure 11. The confusion matrix using the test data with random
forest classification.

the classification neural network for the detection of the out-
put classes termination [Good, Bad] and frequency [50 MHz,
100 MHz]. The classification network shows the ability to
classify the frequency class reliably, however, the aid of a
random forest classifier is needed for the classification of the
termination. It can be reasonably deduced that the measure-
ment spectra allow for the extraction of certain key features
that can be used to identify specific EMC problems. How-
ever, the extent to which this is possible has yet to be tested.
For the next steps, the aim is to add more classes however,
the more classes are added the more complex the problem
becomes. Another task would be to bridge the gap between
real and simulated data. Although, a hybrid approach is used
the model still needs to be tested on real data.
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