
Adv. Radio Sci., 22, 61–75, 2024
https://doi.org/10.5194/ars-22-61-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

From Schematics to Netlists – Electrical Circuit Analysis Using
Deep-Learning Methods
Dennis Hemker1, Jad Maalouly1, Harald Mathis1,2, Rainer Klos3, and Eranyan Ravanan3

1Application Center SYMILA, Fraunhofer FIT, Hamm, Germany
2Industrial Informatics, Hochschule Hamm-Lippstadt, Hamm, Germany
3Microchip GmbH, Karlsruhe, Germany

Correspondence: Dennis Hemker (dennis.hemker@fit.fraunhofer.de)

Received: 28 March 2024 – Revised: 9 September 2024 – Accepted: 23 September 2024 – Published: 29 November 2024

Abstract. Within the project progressivKI, research is car-
ried out to improve the analysis of schematics that depict an
electrical circuit. Lots of manual efforts are necessary to val-
idate a design, as schematics are handed in as image data.
They neither follow a standard nor contain any meta infor-
mation that can be obtained to automatically check certain
conditions. Furthermore, even the visual representation of
components like diodes, capacitors or resistors can differ de-
pending on the design tool used.

In this paper, we present an approach to decompose the
problem into three different parts and describe their current
status: (i) detection of the components like resistors, capac-
itors, or diodes (ii) detection of lines and their junctions
(iii) detection of textual data placed next to components (like
voltage or resistance). For each of the given areas we employ
deep-learning methods as a basis. The training data is pro-
vided by Microchip in the form of link-annotated PDFs. In
a preprocessing phase, the data is programmatically scanned
for useful information like component names and bounding
boxes to pre-annotate them before human correction. The fi-
nal step is to fuse all information from (i)–(iii) to obtain a
netlist that can be automatically validated with given rules.

While most work has been carried out in (i) and (ii), a
more general workflow including supportive tools has been
established to extend our approach to PDFs from other de-
sign tools. The results show that recent deep-learning meth-
ods are capable of detecting components with a high accu-
racy given training data of good quality (no false labels).

1 Introduction

Nowadays, electronic devices can be found in various appli-
cations and play an important role in people’s everyday lives.
From highly integrated mobile products like smartphones
and laptops over public infrastructure, medical usage or as
part of cars up to the aim of autonomous driving; electron-
ics power many use-cases. Manufacturing such devices is a
non-trivial task. Many factors like cost-effective component
placement, electromagnetic compatibility issues or reuse and
adaption of existing designs influence the development pro-
cess.

However, one crucial representation of such systems is the
schematic. It describes the components’ (electrical) connec-
tivity and functionality in a two-dimensional fashion. Having
all information available in the design tool, it is possible to
run checks and validations before a prototypical fabrication
takes place.

From an industry perspective, schematics received from
customers can be compared against their own reference de-
signs, allowing detection of falsely integrated or parame-
terized components before production. Practical experiences
show that aforementioned schematics are submitted as im-
ages (bitmaps) by customers lacking machine-readable in-
formation about component connections and properties. Fur-
thermore, available design tools are shipped with their own
set of symbol libraries not following a unique standard. As a
result, design validation is often a manual, time-consuming
and thus costly task.

Netlists are a commonly used format in electronic design.
They can be of different complexities and representations,
but also tailored down to a basic description of electronic

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.



62 D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods

components in the circuit and connected nodes (wires con-
necting pairs of components). A netlist can either be checked
with scripts or potentially imported in tools like LTspice or
Ngspice for further processing. As a conclusion, the depicted
overall workflow can benefit from an automated, computer-
based support.

In recent years, multiple approaches have been proposed to
tackle similar problems. Most focus has been put on the de-
tection of hand-written circuits. In Mohan et al. (2022) hand-
drawn components are identified in two stages by geometri-
cal properties or histogram of oriented gradients (HOG) fea-
tures in combination with Support Vector Machine (SVM).
Optical character recognition (OCR) trained on an extended
MNIST dataset (Deng, 2012) is used to detect digits. Fur-
thermore, for hand-written schematics, Huoming and Lix-
ing (2019) utilize pixel distributions to segment compo-
nents from lines. K-nearest neighbor is then applied on bi-
narized component images to distinguish between 35 dif-
ferent classes. Rachala and Panicker (2022) compare deep-
learning models SSD300 (Liu et al., 2016), YOLOv3 (Red-
mon and Farhadi, 2018) and YOLOv5 (Ultralytics, 2021) to
detect five different components. Lines are obtained from
Hough Transform after removing formerly detected com-
ponents. The hand-written schematics used do not contain
text. In Sertdemir et al. (2022) YOLOv5 is utilized to de-
tect 13 different components in digital schematics (not hand-
written). Lines are identified by Hough Transform whereas
textual properties are derived from OCR and mapped to the
closest nearby component (Euclidean distance). They pro-
vide an end-to-end software capable of generating netlists.
A more general framework for hand-written sketches can be
found in Altun and Nooruldeen (2019). Deep-learning tech-
niques are used to detect digital logic circuit components and
diagram structures. Custom designed Convolutional Neural
Networks (CNN) of different depths are compared in Gü-
nay et al. (2020) to distinguish between four classes of hand-
drawn components. They focus solely on the classification of
isolated image patches from schematics. In Dey et al. (2021)
a two-stage CNN is used to first classify hand-written cir-
cuit elements into one of four groups. Next, a group-specific
classifier is applied enabling distinctiveness of 20 classes in
total.

Most approaches described focus only on the processing
of hand-written circuit diagrams. Furthermore, the number
of component classes to be detected as well as the ability to
detect text and lines varies. Lastly, most diagrams examined
contain a small amount of components and lines but the us-
age of deep-learning methods shows promising results.

The rest of this paper is organized as follows. Section 2
explains the dataset used and how the overall problem is sub-
divided into the three subtasks component-, line- and text-
detection. Section 3 examines the automatized extraction of
ground truth information for each subtask. In the subsequent
Sect. 4, respective deep-learning approaches and their per-
formances are discussed. Section 5 shows how the deep-

Figure 1. Processing pipeline for training (offline) and prediction
case (online) consisting of three parallel stages, fusion into a JSON
file, inferring the connections by combining text, components and
lines and finally netlist export.

learning models’ outputs are fused into a high-level repre-
sentation again before concluding in Sect. 6.

2 Methodology

In order to tackle the problem in more isolated ways, we pro-
pose to decompose the overall task into three sub-tasks:

1. Detection of electrical components including the type
and respective bounding box. Identification of the line
junctions is part of this task.

2. Detection of vertical and horizontal lines including their
start and end points.

3. Detection and recognition of text including respective
bounding boxes and the characters inside.

Finally, the geometrical information extracted by the three
sub-tasks are assembled into a JavaScript Object Notation
(JSON) file followed by a module combining them to a
more abstract, high-level representation including connectiv-
ity. Different exporters can utilize the latter in order to gen-
erate netlists. The overall processing pipeline is depicted in
Fig. 1.

The collected dataset consists of 67 Portable Document
Formats (PDFs) with a total number of 244 pages taking
95 MB disk space. These schematics depict electric circuits
of different complexity made with the Altium Designer ©.
By complexity, we refer to properties like overlapping vs.
non-overlapping lines, text fragments which are clearly vs.
non-clearly assignable to a specific component or the density
of components. Example circuits can be found in Fig. 2.

Supportive text boxes, authoring information, embedded
images and tables are ignored. Pages that do not contain a
single electrical component are excluded completely which
leads to a number of 164 usable pages. Note that the provided
data is not artificially constructed but represents schematic
designs currently used in industry by Microchip.

Adv. Radio Sci., 22, 61–75, 2024 https://doi.org/10.5194/ars-22-61-2024



D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods 63

Figure 2. Panel (a) represents a circuit with non-overlapping lines, small amount of components. Panel (b) shows overlapping lines and
medium density of components. In panel (c), circuit with overlapping lines and high density of components is shown.

The provided PDFs are link-annotated and also con-
tain Scalable Vector Graphics (SVG) data. For the training
(offline) case, ground truth can be extracted, filtered and
processed to necessary formats which reduces the efforts to
manually label the images. In the prediction case (online),
re-trained models generate the geometrical information re-
quired. Both mentioned stages produce a JSON file which

is used in the combination component before exporting the
schematic to a netlist. Additionally, the shared JSON for-
mat allows examinations of the combination module on the
ground truth data. Subsequently, the same pipeline can ingest
predictions.

https://doi.org/10.5194/ars-22-61-2024 Adv. Radio Sci., 22, 61–75, 2024



64 D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods

Table 1. Components mapped to exemplary regular expressions.

Component Regular expressions

Amplifier (Type.*Buffer | Type.*Comparator)
Capacitor (Symbol:.*Cap.*NP)
Connector (Category:.*Connector & Type:.*Header.*)
DiodeTvsSingle (Symbol:.*Diode.*TVS.*Uni)
Resistor (Category:.*Res | Description:.*Res)
Indcuctor (PartGroup:.*Ind | ComponentType:.*Ind)
TransistorMosfetPnp (Symbol:.*Tran.*MOS-P)

Excerpt of regular expressions used to obtain ground truth data for components.

3 Ground Truth Extraction

Extraction of ground truth elements is done sequentially on-
the-fly per page enabling images and labels to be converted
and saved for each respective stage. All steps have in com-
mon that the PDF page is converted to a bitmap with 300
dpi for further task-specific processing. The dataset is gen-
erally split into train, test or validation sets specific to each
stage. The architectural design allows for interruption before
augmentation and splitting might be applied. Importing all
automatically extracted ground truth data into LabelStudio
(Tkachenko et al., 2022) for manual inspection, curation and
extension is possible before feeding data back to the three
stages. This approach can be considered semi-automated.

3.1 Component Detection

The schematics provided contain various symbols. As they
are exported from Altium Designer ©, additional information
about the components like textual description, category, part
group or component type are stored in the PDF and shown
while hovering over it in a PDF viewer.

First, the PDF is scanned for its xref table. It can contain
information about rectangles in the PDF, possible actions and
references to JavaScript functions that execute on interaction.
If the JavaScript xref contains a specific character, we collect
the link ID together with the rectangle coordinates scaled
relatively from the media box. In the next step, the PDF is
opened in binary mode and processed line-wise. If the line
contains one of the formerly collected link IDs and the key-
word function, it is split by a delimiter. These splits are then
compared against a list of regular expressions to obtain the
ground truth class label for the component. This allows for
applying search patterns to extract currently 32 classes as
shown in Table 1.

Furthermore, junction points, ground symbols, voltage
sources and cross references can also be found in the PDF.
These are not provided with inline JavaScript functions, but
can be identified by geometrical and color properties us-
ing the SVG data. Page is loaded using the community-
developed Python library (Pdfminer.six, 2023) which enables
iterating over SVG layout elements. In case of junctions, can-

didates are filtered by a specific stroke color. Next, if the
SVG element consists of five points and the bounding box
is nearly squared with a relative tolerance of 0.01, they are
saved for later processing. Ground symbols are initially de-
tected by a specific color and the type line. There exists two
different shapes of ground symbols. One consists of five lines
on top of each other shortening in length. The other again is
depicted by five lines in a rake-like formation. As ground
symbols consist of multiple, closely aligned lines, a density
based clustering algorithm DBSCAN (Ester et al., 1996) is
applied. The hyperparameters used are ε = 15 (maximum
distance to the point’s neighbors) and min_samples= 5 (min-
imum amount of neighboring points) in the scikit-learn im-
plementation (Pedregosa et al., 2011). Clusters consisting
of exactly five lines are then fused given their labels and
bounding boxes are calculated by minimum and maximum
positions to frame the whole ground symbol. The voltage
sources are depicted by two lines forming a T-shape of the
same color as ground symbols. Again, the candidates are
clustered as mentioned before but using a configuration of
min_samples= 2 and rejecting clusters with not exactly two
lines. The cross references are identified by SVG elements
of type curve consisting of six or seven points and a specific
stroke color. Additionally, candidates are checked for being
not almost square, as cross references consist of one or two
“arrows” to their left or right and are much wider than high.
In total, 30 classes can be currently collected from the data
set. Figure 3 shows an excerpt of extracted components.

3.2 Line Detection

The schematics only contain exact vertical and horizontal
lines which represent the wires used to connect components.
Although these lines can take multiple right-angled bends,
we treat each straight part separately and recombine them
later. The format of lines can then be described as:

l =
[
xstart ystart xend yend

]
.

For the set of all lines L the following condition holds true:

∀ l ∈ L : xstart ≡ xend ∨ ystart ≡ yend (1)

Line extraction is also done while iterating over all SVG
objects in the PDF. Initially, the element is checked for a spe-
cific type (line or curve) and stroke color. Start and end points
are saved in absolute coordinates. The image is binarized by
thresholding it in the range [127,255] before saving using
standard OpenCV functions (OpenCV, 2023). Figure 4 de-
picts extracted ground truth lines.

3.3 Optical Character Recognition

Again, while iterating per-page over all SVG objects, ele-
ments are checked for the type character ignoring color. Only
text with an upright position is used because later OCR li-
braries can be given rotated images if necessary. Text in SVG

Adv. Radio Sci., 22, 61–75, 2024 https://doi.org/10.5194/ars-22-61-2024



D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods 65

Figure 3. Cropped view of exemplary ground truth components extracted from Fig. 2c.

data is provided per-character. In order to extract contiguous
parts (words), again the density based clustering algorithm
DBSCAN (Ester et al., 1996) is applied to group characters
and digits. As the implementation used from scikit-learn (Pe-
dregosa et al., 2011) works only on numbers, single charac-
ters are converted to their ordinal representation in Unicode.
A custom distance function is implemented which takes into
account the distance between top right and top left corner of
two samples:

p1 =
[
x1 y1 x2 y2

]
(2)

p2 =
[
x3 y3 x4 y4

]
(3)

dist(p1,p2)=

√
[x2− x3]2

+
[
y1− y3

]2 (4)

where x1, y1, x3, y3 are top left points and x2, y2, x4,
y4 are bottom right. DBSCAN is applied with ε = 3 and
min_samples= 1. Clusters are then fused given their labels
and bounding boxes are calculated by minimum and max-
imum positions. Ordinal cluster representation is reverted
back to characters and text is saved together with bounding
box coordinates. Figure 5 shows extracted ground truth data.

4 Deep-Learning Models

All subsequent experiments were carried out on a server pro-
viding up to eight NVidia RTX A5000 Desktop GPUs with
24GB. In all cases, no more than two GPUs were used for one
training pipeline. The code is integrated in a modular way so
it can run in a non-interactive mode on the servers imple-
menting an architecture described in Hemker et al. (2023).

4.1 Component Detection

Initially, first experiments were carried out by using the well-
known object detector SSD300 (Liu et al., 2016). As it ac-
cepts only images of size 300×300 pixels, input data needed
to be scaled down to the proper resolution. Original im-
ages extracted from the PDF typically have a size up to
5096× 3300 pixels. Scaling them as a whole to the required
resolution leads to bad classification performance because of
poor quality. Components are relatively small compared to
the overall image size so downscaling blurred them. To over-
come this issue, a different approach was applied. The image
was rasterized into overlapping tiles of size 300× 300 pix-
els and then passed to the SSD300 training pipeline. It led
to better detection results but a post-processing step using
non-maximum suppression to filter out duplicate bounding

https://doi.org/10.5194/ars-22-61-2024 Adv. Radio Sci., 22, 61–75, 2024



66 D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods

Figure 4. Cropped view of ground truth lines extracted from Fig. 2c. Black dots show the start and end points. Lines are colored green.

Figure 5. Extracted characters and digits before and after the clustering process.

boxes in the tiles was necessary. All in all, the prediction re-
sults were more accurate but at the cost of longer calculation
times. Taking into account the future requirement to detect
integrated circuits in the images which can span more than
300× 300 pixel tiles, a different solution was required.

Research on more recent object detection models and
promising results from related work papers lead to YOLOv7
(Wang et al., 2023) which comes with faster inference and
improved performance on the COCO dataset (Lin et al.,
2014). In order to fine-tune the YOLOv7 on our schematic
dataset, an augmentation pipeline is used to generate more

samples for training. First, images are converted to grayscale
(for avoiding color dependencies) and then fed into a
composed augmentation pipeline employing Albumentations
(Buslaev et al., 2020). It contains two steps:

1. Cropping random chunks of the input image with size
800× 800 pixels and probability p = 1.0.

2. Random rotation of the chunks by either zero or multi-
ples of 90◦ with probability p = 0.5.

Only fully visible bounding boxes in augmented images
are accepted. Applying augmentation with the given pipeline

Adv. Radio Sci., 22, 61–75, 2024 https://doi.org/10.5194/ars-22-61-2024



D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods 67

Figure 6. Available training and validation metrics for YOLOv7. The losses are heavily decreasing until the tenth epoch and keep lowering
until epoch 30. Scores like precision, recall and mAP are increasing and flatten after epoch 20. It is notable that validation objectness is
alternating but generally increasing. This can either be an indicator for the start of overfitting or for fragments of components (not fully
visible) in the validation set which are not labeled. They count as background and impact the aforementioned score.

500 times per input image yields a total number of 59 706
images for fine-tuning alongside their ground truth data
(564 786 annotations) in the YOLO-specific format. Train-
ing is performed for 30 epochs, a batch size of 4, pre-
trained model weights and the default configuration file
yolov7/cfg/training/yolov7.yaml and hyperpa-
rameter file yolov7/data/hyp.scratch.p5.yaml
found in the original Github repository. Data is split into
60 % train, 20 % validation and 20 % test sets. The metrics
and losses used in the further course are briefly explained in
the following, whereby TP denotes the number of true posi-
tives, TN the true negatives and FP the false positives.

– Precision: The ratio of true positives to all positive pre-
dictions.

Precision=
TP

TP+FP

– Recall: Measures how many of the positive instances
were identified as such.

Recall=
TP

TP+FN

– Mean average precision (mAP): Taking into account
precision, recall and the intersection over union (IoU)
to evaluate performance. If the IoU is above a given
threshold, predictions are considered as positive. Vari-
ations of the aforementioned threshold are reflected in
the mAP50-95 values, respectively.

IoU=
Area of Intersection

Area of Overlap
=

– Box: Loss that takes into account the error between pre-
dicted and actual bounding box coordinates.

– Objectness: Loss of how good the model is able to iden-
tify the presence of an object in an image.

– Classification: Loss to quantify the error of assigning
the correct label (class) to a bounding box.

For further loss descriptions see Wang et al. (2023) and on
how the mAP is calculated (using intersection of union for
bounding boxes), see Henderson and Ferrari (2017). Fig-
ure 6 depicts loss and scoring behavior during training. Until
epoch 20, the losses significantly decrease while mean aver-
age precision (mAP) in addition to precision and recall rise. It
is notable that the validation objectness is alternating but ris-
ing during training. It could indicate component symbols in
the validation dataset which are not labeled as such, leading
to false background detections or the early start of overfitting.

Results of the test set are shown in Table 2. It can be
seen that the overall detection performance is quite high
(mAP95≥ 0.73 for all classes except the DiodeZenerSingle
and TransistorBipolarPnp). However, some components like
Crystal, Shunt and different Diodes or Transistors are under-
represented in the datasets compared to Resistor, Capacitor,

https://doi.org/10.5194/ars-22-61-2024 Adv. Radio Sci., 22, 61–75, 2024



68 D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods

Table 2. Component detection test results for YOLOv7 fine-tuning.

Class #Labels mAP50 mAP95 Precision Recall

Amplifier 95 0.80 0.76 0.67 0.85
Capacitor 7838 0.97 0.82 0.90 0.93
Connector 1653 0.91 0.80 0.77 0.99
Crystal 91 0.87 0.75 0.66 0.88
DiodeBridgeRectifier 18 0.99 0.95 0.69 1.00
DiodeSingle 138 0.98 0.87 0.90 1.00
DiodeDual 65 0.98 0.92 0.80 1.00
DiodeSchottkySingle 189 0.98 0.73 0.89 0.98
DiodeSchottkyDual 16 0.99 0.95 1.00 0.69
DiodeTvsSingle 54 0.83 0.76 0.67 1.00
DiodeTvsBipolar 51 0.98 0.81 0.86 1.00
DiodeTvsDual 68 0.99 0.90 0.86 1.00
DiodeZenerSingle 34 0.61 0.57 1.00 0.00
FerriteBead 479 0.98 0.80 0.86 1.00
Fuse 46 0.97 0.89 0.83 1.00
Inductor 454 0.96 0.77 0.81 0.98
LedSingle 1146 0.98 0.89 0.91 1.00
LedDual 33 0.85 0.83 0.41 0.97
PolarizedCapacitor 294 0.96 0.84 0.90 1.00
Resistor 14 882 0.99 0.75 0.97 0.99
Shunt 7 0.96 0.86 0.70 1.00
Switch 167 0.91 0.87 0.67 0.97
TestPoint 2727 0.99 0.77 0.96 0.99
Transformer 46 0.96 0.88 0.79 1.00
TransistorBipolarPnp 7 0.57 0.52 1.00 0.00
TransistorBipolarNpn 21 0.88 0.84 0.55 0.95
TransistorMosfetPnp 46 0.97 0.94 0.83 0.96
TransistorMosfetNpn 288 0.98 0.96 0.83 1.00
Junction 48 328 1.00 0.88 0.97 1.00
Ground 13 522 0.99 0.99 0.96 1.00
Voltage 9150 0.99 0.98 0.96 1.00
Xref 10 233 0.99 0.98 0.94 1.00

All 112 186 0.93 0.84 0.83 0.91

Test results are rounded to two decimal places.

Junction and Ground. In particular, the classes DiodeZenerS-
ingle and TransistorBipolarPnp show a bad performance. The
total number of samples found in the train and test sets is
quite low, but this is also the case for other, better perform-
ing classes. A possible explanation could be a failure in the
extraction of pre-annotations. This requires a manual inspec-
tion before augmentation. Nevertheless, the model seems to
learn their visual properties and having more images with
these classes available could lead to more robust results. In
the next steps, classes will be extended by more components
like integrated circuits.

4.2 Line Detection

Initial tests were performed with the well-known proba-
bilistic Hough Transform (Kiryati et al., 1991). Although
it can lead to slightly worse detections compared to classi-
cal Hough Transform, calculation speed is much higher. In a
qualitative investigation with different algorithm parameters
implemented in OpenCV (OpenCV, 2023), resulting line de-
tections are mostly cluttered, noisy and duplicate. Figure 7
shows an example line detection with probabilistic Hough
Transform parameters ρ = 1 (distance resolution of the ac-

cumulator in pixels), θ = π/180 (angle resolution of the ac-
cumulator in radians), threshold= 10 (minimum number of
votes required for a line), minLineLength= 10 (minimum
line length), maxLineGap= 50 (maximum allowed gap be-
tween points to still treat them as the same line).

Lines are in some places detected on both gradient sides
of the original line boundaries (one at the top, one at the
bottom). Gaps are present in many cases and false positives
are detected e.g. within integrated circuit shapes. Different
parameters lead to the inclusion of more line candidates at
the cost of finding digits or parts of characters and compo-
nents. As fine-tuning these parameters for the whole or even
new datasets is a nearly impossible task, research on the lat-
est models capable of detecting lines leads to L-CNN (Zhou
et al., 2019). The authors state to outperform previous state-
of-the-art line detectors with their model. The implementa-
tion provided via Github repository allows for fine-tuning
the L-CNN on custom data. In the first step, binarized im-
ages are stored in a folder wireframe_raw/images (required).
Next to it, two JSON files (training and validation) contain
a list of image file names alongside the start and end points
of the respective lines. The data is split into 80 % train and
20 % validation set. The L-CNN pipeline automatically cre-
ates a folder called wireframe and places augmented images.
They include random flips and rotations while the resolution
is scaled down to have squared dimensions leading to a to-
tal number of 496 images with 191 004 lines as the training
set. The validation set is not augmented yielding a total num-
ber of 31 images containing 7843 lines. For training, default
wireframe.yaml configuration is applied but the number
of epochs is set to 300. Zhou et al. (2019) propose a new eval-
uation metric called structural average precision (sAP) which
is inspired by the mAP for object detection tasks. The strict-
ness of this metric is controlled with a user-defined threshold
ϑ ∈ {5,10,15}.

Figure 8 shows the loss curve for training and validation
next to the aforementioned sAP scores for the validation set.
Around epoch 10, the validation loss reaches a minimum
while training loss still reduces. This can be an indicator
for the model to start overfitting the data. Furthermore, all
sAP scores show the best performance around the mentioned
epoch. Default L-CNN scripts from Github save the best per-
forming model checkpoint together with the latest one. An
example schematic showing both ground truth and proposed
predictions can be found in Fig. 9. Compared to the classi-
cal approaches like probabilistic Hough Transform, lines ap-
pear less noisy and are not chunked by gaps. Additionally,
there are no duplicate lines on the bottom/top gradient sides.
However, in parts with high density of closely neighboring
lines, not all candidates are detected. A possible reason can
be the automatized downscaling of the schematic during L-
CNN pipeline. The loss in resolution could potentially lead to
blurred separations. In a post-processing step, predicted lines
that are not fulfilling condition (1) up to a small tolerance are
filtered out. Next steps include analysis of non-detected lines

Adv. Radio Sci., 22, 61–75, 2024 https://doi.org/10.5194/ars-22-61-2024



D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods 69

Figure 7. Cropped view of lines calculated with probabilistic Hough Transform from Fig. 2c. Black dots show start and end points. Lines
are colored green.

Figure 8. Panel (a) shows the training and validation loss of L-CNN for 300 epochs. The loss combines multiple metrics for junction and
line candidate heat maps. Panel (b) shows the different sAP scores for validation set.

https://doi.org/10.5194/ars-22-61-2024 Adv. Radio Sci., 22, 61–75, 2024



70 D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods

Figure 9. Randomly taken example schematic from the validation set at the best performing epoch. Panel (a) shows the ground truth data.
Panel (b) depicts line predictions. Most lines show a high confidence score. A small amount of lines is falsely proposed as they span across
multiple junction points.

and possible mitigations. Blurrings in dense areas caused by
downscaling can potentially be enhanced by applying pre-
processing methods.

4.3 Optical Character Recognition

A first qualitative investigation was carried out using three
prominent OCR libraries PaddleOCR (Du et al., 2020),
docTR (Mindee, 2021) and EasyOCR (JaidedAI, 2023). All
of them provide easy-to-use interfaces for loading an image
and scanning it for text. Additionally, they take care for nec-
essary pre-processing steps like binarization or downscaling
if required. Best results without changing any of the possi-
ble parameters using random schematics were provided by
EasyOCR. Initial results can be seen in Fig. 10. The text next
to the capacitors is precisely detected and separated while
next to resistors the characters are combined into a bigger
horizontal box spanning over the component symbols. How-
ever, especially small digits representing the pin numbers are
mostly not detected which is the case for all three libraries.

EasyOCR allows for fine-tuning its detection model,
namely CRAFT (Baek et al., 2019). A training pipeline
is provided within the Github repository. We used the de-
fault configuration and started fine-tuning with a model
checkpoint trained on both SynthText (Gupta et al., 2016)
and ICDAR 2015 (Karatzas et al., 2015) dataset. Aug-
mentations like rotations, crops or flips are handled by
the pipeline itself. Data is split in the same ratio as

line detection to 80 % train and 20 % validation sets. In
total, 124 images with 46 498 text boxes are used for
training while validation includes 31 images and 13 075
text boxes. We run evaluations every 200 epochs while
training is set to 8000 epochs. Default configuration file
trainer/craft/config/custom_data_train.
yaml is used with adaptions to data set locations and number
of epochs.

Figure 11 shows exemplary validation results during train-
ing after 0 (default pre-trained weights), 400, 2000 and 7800
epochs. The CRAFT model seems to quickly lose its pre-
vious capabilities as the detection candidate heatmaps de-
crease, but later steps show an increased response on pin
number digits. Taking into account the precision and recall
during validation together with the training loss, it can be
seen that the loss is still decreasing while validation met-
rics improve. As the model adapts to new data, predicted text
candidates are below the detection threshold so no bounding
boxes are obtained. Further epochs of training cause more
valid bounding boxes to be proposed by the model, lead-
ing to increasing precision and recall values. However, after
8000 epochs, heatmaps at already intense places are not as
strong as the initial ones. Taking into account the precision
and recall curves in Fig. 12, training progress could be flat-
tening. Further investigations include increasing the number
of epochs to see if heatmap activity resembles the original
performance in all regions while precision and recall rise.
Please note that the presented studies are only about text

Adv. Radio Sci., 22, 61–75, 2024 https://doi.org/10.5194/ars-22-61-2024



D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods 71

Figure 10. Cropped view of the detected text candidates by EasyOCR with default configuration.

detection and recognition can be examined afterwards. Al-
ternatives can be further image pre-processing strategies and
augmentation in addition to replacing the pipeline with a dif-
ferent architecture.

5 Combination

Finally, the information predicted by the three presented
models are fused into a single JSON description containing
components, lines and text alongside their bounding boxes
or start and end points in relative coordinates. Furthermore,
each detection is assigned a unique identifier and metadata
can be added if required.

We refer to these raw detections as geometrical primitives.
In order to infer high-level information from them, compo-
nents are matched against lines. Additionally, the detected
text is mapped to its closest components. Both alignments are
done by calculating the Euclidean distance from the bound-
ing box center coordinates. First qualitative results show the
general feasibility of this approach. However, as text place-
ment does not follow a specific scheme (it can be visible on
any of the four sides around the component), wrong matches
are obtained. Even from a human perspective, it is hard to
assign particular text placements to components with high

confidence. Another challenge is the handling of non-closed
lines. These are linked to external connections that are not
part of the regular electrical component classes. However, it
is expected that not all cases can be handled automatically.
As the fusion strategy depends on parameters like the dis-
tance threshold and selection of reference points used for cal-
culations, a human in the loop could select appropriate values
per schematic on demand.

Connections of text, components and lines are stored in an
internal, more abstract format. Given this high-level repre-
sentation, various netlist exporters can be implemented in the
future. Possible variants are simple ones following a SPICE
layout, e.g. CC8 0 NetC8_2 100pF depicting capacitor C8
is connected to ground (0) and net NetC8_2 having value
100pF. More complex structures include the Electronic De-
sign Interchange Format (EDIF). Finally, exported structures
can serve as input for validation checks and other pipelines.

6 Conclusions

In this paper, an approach to reconstruct connectivity infor-
mation of electrical circuits from schematic images is pre-
sented. First, the problem is decomposed into three parts,
namely component, line, and text detection. For each of

https://doi.org/10.5194/ars-22-61-2024 Adv. Radio Sci., 22, 61–75, 2024



72 D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods

Figure 11. Cropped view of detection heatmaps for exemplary schematic. Panel (a) shows the heatmap for character candidates. Heatmap (b)
depicts the connectivity between characters (grouping them to words), both calculated by default pre-trained CRAFT. The model particularly
finds characters and parts of components, but pin numbers do not show a high response in both cases. After 400 epochs, panels (c) and (d)
indicate lower response in formerly hot regions. Validation at epoch 2000 in panels (e) and (f) shows a higher response again, now including
pin numbers. Panels (g) and (h) only indicate small improvements around the pin numbers after 7800 epochs, but text consisting of multiple
characters or digits shows higher scores.

Adv. Radio Sci., 22, 61–75, 2024 https://doi.org/10.5194/ars-22-61-2024



D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods 73

Figure 12. Panel (a) shows the loss during training. After a few epochs, it is strongly decreasing and keeps lowering until final epoch 8000.
Precision and recall curves in panel (b) show best performance at around 3000 and 4500 epochs. Considering the still decreasing loss,
increasing the number of epochs could lead to better performance.

these stages, deep-learning models are selected and applied
to solve the task. Using a publicly available, industry rele-
vant dataset based on Altium Designer © schematics, ground
truth information can be obtained by raw PDF parsing and
SVG processing. Both ground truth data and predictions can
be fused into a JSON format containing geometrical primi-
tives. In the next step, high-level representation is inferred to
connect components, lines and text. Finally, the proposed ar-
chitecture allows to interface netlist exporters here which can
transform this representation to formats of different complex-
ity. First tests show promising results, especially for compo-
nent and line detection stages.

However, the next steps include adding integrated circuits
to the list of detectable components. Our current analysis
shows that they do not share common properties in the PDF
link-annotations and thus need to be labeled manually. Fur-
ther work is required to detect the orientation of components
which is necessary for analyzing pin connections. Moreover,
the text detection pipeline requires further analysis, espe-
cially because of the small pin numbers to be detected. Ad-
ditionally, as the current geometrical primitive combination
is checked qualitatively by human inspection, the acquisition
of ground truth data on the connectivity level (netlists) is es-
sential for comparable metrics in the final reassembly stage.
It is expected that the fusion process requires small adjust-
ments by a human before exporting to netlists. However, the
data used can be taken from other design tools to train from
scratch or fine-tune existing models. Therefore, the method
presented can be used as a framework.

Code availability. Due to project restrictions, source code is not
published.

Data availability. The link-annotated PDFs were taken from the
publicly available schematics by Microchip. The dataset is hosted
internally on Fraunhofer infrastructure and persisted. Readers can
contact the correspondence author or any other of the named au-
thors to get access to the dataset.

Author contributions. DH provided graphical and textual contribu-
tions and programmed together with JM the computer code. Con-
ceptual design, discussion and analysis of results was done by DH,
JM, HM, RK and ER. RK and ER further composed the dataset and
provided domain knowledge.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special issue
“Kleinheubacher Berichte 2023”. It is a result of the Klein-
heubacher Tagung 2023, Miltenberg, Germany, 26–28 September
2023.

Financial support. This research has been supported by the
Bundesministerium für Wirtschaft und Klimaschutz (grant
nos. 19A21006D, 19A21006L, and 19A21006Q).

https://doi.org/10.5194/ars-22-61-2024 Adv. Radio Sci., 22, 61–75, 2024



74 D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods

Review statement. This paper was edited by André Buchau and re-
viewed by two anonymous referees.

References

Altun, O. and Nooruldeen, O.: SKETRACK: stroke-based recogni-
tion of online hand-drawn sketches of arrow-connected diagrams
and digital logic circuit diagrams, Sci. Programming, 2019, 1–
17, https://doi.org/10.1155/2019/6501264, 2019.

Baek, Y., Lee, B., Han, D., Yun, S., and Lee, H.: Charac-
ter Region Awareness for Text Detection, 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 15–20 June 2019, Long Beach, USA, IEEE,
https://doi.org/10.1109/CVPR.2019.00959, 2019.

Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A.,
Druzhinin, M., and Kalinin, A. A.: Albumentations: Fast
and Flexible Image Augmentations, Information, 11, 125,
https://doi.org/10.3390/info11020125, 2020.

Deng, L.: The MNIST Database of Handwritten Digit
Images for Machine Learning Research [Best of
the Web], IEEE Signal Proc. Mag., 29, 141–142,
https://doi.org/10.1109/MSP.2012.2211477, 2012.

Dey, M., Mia, S. M., Sarkar, N., Bhattacharya, A., Roy, S., Malakar,
S., and Sarkar, R.: A two-stage CNN-based hand-drawn electri-
cal and electronic circuit component recognition system, Neural
Comput. Appl., 33, 13367–13390, 2021.

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., Bai, Y., Yu,
Z., Yang, Y., Dang, Q., and Wang, H.: PP-OCR: A Practi-
cal Ultra Lightweight OCR System, CoRR, arXiv [preprint],
https://doi.org/10.48550/arXiv.2009.09941, 21 September 2020.

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based
algorithm for discovering clusters in large spatial databases
with noise, in: KDD’96: Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining,
2–4 August 1996, Portland, USA, AAAI Press, vol. 96, 226–
231, https://dl.acm.org/doi/proceedings/10.5555/3001460 (last
access: 28 November 2024), 1996.

Günay, M., Köseoğlu, M., and Yıldırım, Ö.: Classification of
hand-drawn basic circuit components using convolutional neu-
ral networks, in: 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications
(HORA), 26–28 June 2020, Ankara, Turkey, IEEE, 1–5,
https://doi.org/10.1109/HORA49412.2020.9152866, 2020.

Gupta, A., Vedaldi, A., and Zisserman, A.: Synthetic data for
text localisation in natural images, in: Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 27–30 June 2016, Las Vegas, USA, IEEE, 2315–2324,
https://doi.org/10.1109/CVPR.2016.254, 2016.

Hemker, D., Kreutter, S., and Mathis, H.: On Reducing Com-
plexity in AI Pipelines: Modularisation to Retain Control,
ERCIM News 133, ERCIM EEIG, BP 93, Sophia Antipo-
lis Cedex, France, https://ercim-news.ercim.eu/images/stories/
EN133/EN133-web.pdf (last access: 28 November 2024), 2023.

Henderson, P. and Ferrari, V.: End-to-end training of object class
detectors for mean average precision, in: Computer Vision–
ACCV 2016: 13th Asian Conference on Computer Vision,
Taipei, Taiwan, 20–24 November 2016, Revised Selected Pa-

pers, Part V 13, Springer, 198–213, https://doi.org/10.1007/978-
3-319-54193-8_13, 2017.

Huoming, Z. and Lixing, S.: Research on K nearest neighbor identi-
fication of hand-drawn circuit diagram, J. Phys. Conf. Ser., 1325,
012233, https://doi.org/10.1088/1742-6596/1325/1/012233,
2019.

JaidedAI: EasyOCR, GitHub [code], https://github.com/JaidedAI/
EasyOCR (last access: 20 January 2024), 2023.

Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bag-
danov, A., Iwamura, M., Matas, J., Neumann, L., Chandrasekhar,
V. R., Lu, S., Shafait, F., Uchida, S., and Valveny, E.: IC-
DAR 2015 competition on Robust Reading, in: 2015 13th In-
ternational Conference on Document Analysis and Recogni-
tion (ICDAR), 23–26 August 2015, Nancy, France, 1156–1160,
https://doi.org/10.1109/ICDAR.2015.7333942, 2015.

Kiryati, N., Eldar, Y., and Bruckstein, A. M.: A probabilistic Hough
transform, Pattern Recogn., 24, 303–316, 1991.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L.: Microsoft coco:
Common objects in context, in: Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland, 6–
12 September 2014, Proceedings, Part V 13, Springer, 740–755,
https://doi.org/10.1007/978-3-319-10602-1_48, 2014.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y.,
and Berg, A. C.: Ssd: Single shot multibox detector, in: Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam,
the Netherlands, 11–14 October 2016, Proceedings, Part I 14,
Springer, 21–37, https://doi.org/10.1007/978-3-319-46448-0_2,
2016.

Mindee: docTR: Document Text Recognition, GitHub [code], https:
//github.com/mindee/doctr (last access: 15 January 2024), 2021.

Mohan, A., Mohan, A., Indushree, B., Malavikaa, M., and Naren-
dra, C.: Generation of Netlist from a Hand drawn Circuit through
Image Processing and Machine Learning, in: 2022 2nd Interna-
tional Conference on Artificial Intelligence and Signal Process-
ing (AISP), 12–14 February 2022, Vijayawada, India, IEEE, 1–4,
https://doi.org/10.1109/AISP53593.2022.9760577, 2022.

OpenCV: Open Source Computer Vision Library, GitHub [code],
https://github.com/opencv/opencv (last access: 28 November
2024), 2023.

Pdfminer.six: Pdfminer.six, GitHub [code], https://github.com/
pdfminer/pdfminer.six (last access: 16 January 2024), 2023.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Rachala, R. R. and Panicker, M. R.: Hand-drawn electrical cir-
cuit recognition using object detection and node recognition, SN
Computer Science, 3, 244, https://doi.org/10.1007/s42979-022-
01159-0, 2022.

Redmon, J. and Farhadi, A.: Yolov3: An incremental improvement,
arXiv [preprint], https://doi.org/10.48550/arXiv.1804.02767,
8 April 2018.

Sertdemir, A. E., Besenk, M., Dalyan, T., Gokdel, Y. D., and
Afacan, E.: From Image to Simulation: An ANN-based Au-
tomatic Circuit Netlist Generator (Img2Sim), in: 2022 18th
International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design

Adv. Radio Sci., 22, 61–75, 2024 https://doi.org/10.5194/ars-22-61-2024

https://doi.org/10.1155/2019/6501264
https://doi.org/10.1109/CVPR.2019.00959
https://doi.org/10.3390/info11020125
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.48550/arXiv.2009.09941
https://dl.acm.org/doi/proceedings/10.5555/3001460
https://doi.org/10.1109/HORA49412.2020.9152866
https://doi.org/10.1109/CVPR.2016.254
https://ercim-news.ercim.eu/images/stories/EN133/EN133-web.pdf
https://ercim-news.ercim.eu/images/stories/EN133/EN133-web.pdf
https://doi.org/10.1007/978-3-319-54193-8_13
https://doi.org/10.1007/978-3-319-54193-8_13
https://doi.org/10.1088/1742-6596/1325/1/012233
https://github.com/JaidedAI/EasyOCR
https://github.com/JaidedAI/EasyOCR
https://doi.org/10.1109/ICDAR.2015.7333942
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-46448-0_2
https://github.com/mindee/doctr
https://github.com/mindee/doctr
https://doi.org/10.1109/AISP53593.2022.9760577
https://github.com/opencv/opencv
https://github.com/pdfminer/pdfminer.six
https://github.com/pdfminer/pdfminer.six
https://doi.org/10.1007/s42979-022-01159-0
https://doi.org/10.1007/s42979-022-01159-0
https://doi.org/10.48550/arXiv.1804.02767


D. Hemker et al.: From Schematics to Netlists – Electrical Circuit Analysis Using Deep-Learning Methods 75

(SMACD), 12–15 June 2022, Villasimius, Italy, IEEE, 1–4,
https://doi.org/10.1109/SMACD55068.2022.9816254, 2022.

Tkachenko, M., Malyuk, M., Holmanyuk, A., and Liubimov, N.:
Label Studio: Data labeling software, GitHub [code], https://
github.com/heartexlabs/label-studio (last access: 20 November
2024), 2022.

Ultralytics: YOLOv5: A state-of-the-art real-time object detec-
tion system, https://docs.ultralytics.com (last access: 16 January
2024), 2021.

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M.: YOLOv7:
Trainable bag-of-freebies sets new state-of-the-art for real-
time object detectors, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, 18–22 June 2023, Vancouver, Canada, 7464–7475,
https://doi.org/10.1109/CVPR52729.2023.00721, 2023.

Zhou, Y., Qi, H., and Ma, Y.: End-to-end wireframe parsing, in:
Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, 27 October–2 November 2019, Seoul, South Ko-
rea, IEEE, 962–971, https://doi.org/10.1109/ICCV.2019.00105,
2019.

https://doi.org/10.5194/ars-22-61-2024 Adv. Radio Sci., 22, 61–75, 2024

https://doi.org/10.1109/SMACD55068.2022.9816254
https://github.com/heartexlabs/label-studio
https://github.com/heartexlabs/label-studio
https://docs.ultralytics.com
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/ICCV.2019.00105

	Abstract
	Introduction
	Methodology
	Ground Truth Extraction
	Component Detection
	Line Detection
	Optical Character Recognition

	Deep-Learning Models
	Component Detection
	Line Detection
	Optical Character Recognition

	Combination
	Conclusions
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Financial support
	Review statement
	References

