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Abstract. One of the most important error correction codes
in digital signal processing is the Reed Solomon code. A lot
of VLSI implementations have been described in literature.
This paper introduces a highly parametrizable RS-decoder
for FPGAs. By implementing resource-sharing and by using
a fully pipelined multiplier/adder-unit in GF(2m) it was pos-
sible to achieve high throughput rates up to 1.3 Gbit/s on a
standard FPGA, while using only an attractive small amount
of logical elements (LE). The implementation, written in a
hardware description language (HDL), is based on an inver-
sionless Berlekamp Algorithm (iBA), whose structure leads
to a chain of identical processing elements (PE). The critical
path of one PE runs only through one adder and one multi-
plier. A detailed description of a resource-sharing method-
ology for this Berlekamp Algorithm and the achievable gain
are presented in this paper.

The benchmarking for the design was done for differ-
ent 8bit-codes against state-of-the-art FPGA-solutions and
showed a gain of up to a factor of six regarding the
AT-product, compared to other implementations.

1 Introduction

Today’s applications for digital signal processing become
more and more demanding, aiming for higher throughputs
on the one hand and for lower power and smaller devices on
the other hand. Efficient algorithms combined with state-of-
the-art silicon technology are essential to cope with the re-
quirements of modern digital signal processing applications.
Besides processing power and energy efficiency, flexibility
is a critical factor as well. Consumer electronics have to be
market-ready, while details for technical standards may still
change or it is not clear, which one of two competing stan-
dards has to be supported. Reconfigurable hardware, e.g. em-
bedded FPGA-cores in Systems on Chip (SoC), can be one
attractive compromise between flexibility on the one hand
and efficiency on the other hand.
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An important objective in digital signal processing is the
protection of data against errors. The Reed Solomon (RS)-
Code, developed in 1958 by I. S. Reed and G. Solomon, is
a key component for fault-tolerant data communication. It
is particularly suitable for the correction of burst errors and
hence used for example to protect data on CDs and DVDs or
in network communications. RS applications cover various
fields from e.g. coding graphical address stickers with six
bit symbol width, over 172 kB/s audio CD decoding, up to
10 Gbit/s high speed optical cable communication.

The algorithm presented in this paper is based on a
four-step approach: Transformation of the codeword to the
frequency domain, computation of the error locator- and
evaluator-polynomial, back transformation to the time do-
main and computation of the correction values, that are fi-
nally superposed with the received codeword. The decoding
is done in the frequency domain by a reformulated inver-
sionless Berlekamp Algorithm (Blahut, 1992; Sarwate and
Shanbhag, 2001). This structure is highly parametrizable and
thus very suitable for this implementation.

In this generic implementation the values for symbol size
(2 ≤m≤9), code word lengthk<2m–1 (shortened codes are
supported) and error correction capabilityt≤b(2m–1–k)/2c

(see Fig. 1) can be changed to any possible combination
within the limitations given above, where larger values than
m=9 are possible, but have not been analyzed in this work.
The primitive polynomial can be altered as well as the gen-
erator polynomial to meet certain RS-standard requirements.

By optimizing the basic design, implementing resource-
sharing and pipelining, the number of utilized LEs dropped
significantly, leading to a high performance implementation.
The methodology for implementing the optimized structure,
using resource-sharing, and the achievable gain are described
in detail in this paper.

This paper is structured as follows: Sect.2 is sketching
briefly the principle functionality of a RS-decoder. In Sect.3
the optimization for an FPGA implementation is described
and Sect.4 presents the results and benchmarks for different
RS-decoder implementations.
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ABSTRACT  

One of the most important error correction codes in 
digital signal processing is the Reed Solomon code. A 
lot of VLSI implementations have been described in 
literature. This paper introduces a highly parametrizable 
RS-decoder for FPGAs.  By implementing resource-
sharing and by using a fully pipelined multiplier/adder-
unit in GF(2m) it was possible to achieve high 
throughput rates up to 1.3 Gbit/s on a standard FPGA, 
while using only an attractive small amount of logical 
elements (LE). The implementation, written in a 
hardware description language (HDL), is based on an 
inversionless Berlekamp Algorithm (iBA), whose 
structure leads to a chain of identical processing 
elements (PE). The critical path of one PE runs only 
through one adder and one multiplier. A detailed 
description of a resource-sharing methodology for this 
Berlekamp Algorithm and the achievable gain are 
presented in this paper. 
The benchmarking for the design was done for different 
8bit-codes against state-of-the-art FPGA-solutions and 
showed a gain of up to a factor of six regarding the AT-
product, compared to other implementations. 
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1 Introduction 

Today’s applications for digital signal processing 
become more and more demanding, aiming for higher 
throughputs on the one hand and for lower power and 
smaller devices on the other hand. Efficient algorithms 
combined with state-of-the-art silicon technology are 
essential to cope with the requirements of modern 
digital signal processing applications. Besides 
processing power and energy efficiency, flexibility is a 
critical factor as well. Consumer electronics have to be 
market-ready, while details for technical standards may 
still change or it is not clear, which one of two 

competing standards has to be supported. 
Reconfigurable hardware, e.g. embedded FPGA-cores 
in Systems on Chip (SoC), can be one attractive 
compromise between flexibility on the one hand and 
efficiency on the other hand. 
 
An important objective in digital signal processing is 
the protection of data against errors. The Reed Solomon 
(RS)-Code, developed in 1958 by I.S. Reed and G. 
Solomon, is a key component for fault-tolerant data 
communication. It is particularly suitable for the 
correction of burst errors and hence used for example to 
protect data on CDs and DVDs or in network 
communications. RS applications cover various fields 
from e.g. coding graphical address stickers with six bit 
symbol width, over 172 kB/s audio CD decoding, up to 
10 Gbit/s high speed optical cable communication.  
 
The algorithm presented in this paper is based on a four-
step approach: Transformation of the codeword to the 
frequency domain, computation of the error locator- and 
evaluator-polynomial, back transformation to the time 
domain and computation of the correction values, that 
are finally superposed with the received codeword. The 
decoding is done in the frequency domain by a 
reformulated inversionless Berlekamp Algorithm [1], 
[2]. This structure is highly parametrizable and thus 
very suitable for this implementation.  
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figure 1: RS codeword 

In this generic implementation the values for symbol 
size (2 ≤ m ≤ 9), code word length k < 2m – 1 (shortened 
codes are supported) and error correction capability  
t ≤ ⎣ (2m – 1 – k) / 2 ⎦ (see figure 1) can be changed to 
any possible combination within the limitations given 
above, where larger values than m = 9 are possible, but 

Fig. 1. RS codeword.

2 Algorithm

Derived from BCH-codes (Clark and Cain, 1981; Hamming,
1980), RS-codes (Reed and Chen, 1999) are able to cor-
rect symbols instead of bits. As all bits in a symbol can
be corrupt, the decoding algorithm not only has to iden-
tify the wrong symbols but also has to restore the original
value, whereas binary codes only have to invert the corrupt
bit. Thus, instead of simple Boolean operations, Galois-Field
arithmetic (Blahut, 1992; Clark and Cain, 1981; Roman,
1992) has to be used to compute the two dimensional code-
words of a symbol code. In Fig. 2 the complete decoding
process of an RS-decoder is depicted. Three different types
of information have to be extracted from a received code-
word: The number of errors and, if errors have occurred, their
positions in the codeword and their values. The corrupt in-
put datar is stored in a FIFO-RAM and simultaneously sent
to the syndrome computation, where the syndromes of the
error pattern are separated from the information part of the
codeword. With these syndromesS the error locations and
magnitudes can be determined. Therefore, the key equation
has to be solved. The Chien-Search locates the positions of
incorrect symbols, by finding the zero points of the error lo-
cator polynomial3. The Forney-Algorithm finally computes
the correction pattern out of the error evaluator polynomial�

and the odd coefficients of3. This pattern is added to the de-
layed input and results in an error-free codeword, if not more
thant errors have occurred. Otherwise the decoding process
will fail. It depends on the error pattern, whether this failure
is detectable or not.

2.1 Syndrome Computation

Assuming a corrupt transmission, the received codewordr

consists of the original codewordy which is superposed by
the error patterne:

rj = yj + ej .

The syndromeS is defined as the multiplication of the trans-
pose of a received wordr with the parity check matrixH
(Hamming, 1980)

ST
= H · rT

= H ·

(
yT

+ eT
)

= H · eT

and depends only on the error patterne. Practically, this
operation is a partial transformation of the codeword to the
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have not been analyzed in this work. The primitive 
polynomial can be altered as well as the generator 
polynomial to meet certain RS-standard requirements. 
 
By optimizing the basic design, implementing resource-
sharing and pipelining, the number of utilized LEs 
dropped significantly, leading to a high performance 
implementation. The methodology for implementing the 
optimized structure, using resource-sharing, and the 
achievable gain are described in detail in this paper.  
 
This paper is structured as follows: Chapter 2 is 
sketching briefly the principle functionality of a RS-
decoder. In chapter 3 the optimization for an FPGA 
implementation is described and chapter 4 presents the 
results and benchmarks for different RS-decoder 
implementations. 

2 Algorithm 

Derived from BCH-codes [3], [4], RS-codes [5] are able 
to correct symbols instead of bits. As all bits in a 
symbol can be corrupt, the decoding algorithm not only 
has to identify the wrong symbols but also has to restore 
the original value, whereas binary codes only have to 
invert the corrupt bit. Thus, instead of simple Boolean 
operations, Galois-Field arithmetic [1], [3], [6] has to be 
used to compute the two dimensional codewords of a 
symbol code.  
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figure 2: Block diagram of a RS decoder  

In figure 2 the complete decoding process of an RS-
decoder is depicted. Three different types of 
information have to be extracted from a received 
codeword: The number of errors and, if errors have 
occurred, their positions in the codeword and their 
values. The corrupt input data r is stored in a FIFO-
RAM and simultaneously sent to the syndrome 
computation, where the syndromes of the error pattern 
are separated from the information part of the 
codeword. With these syndromes S the error locations 
and magnitudes can be determined. Therefore, the key 
equation has to be solved. The Chien-Search locates the 
positions of incorrect symbols, by finding the zero 
points of the error locator polynomial Λ. The Forney-

Algorithm finally computes the correction pattern out of 
the error evaluator polynomial Ω and the odd 
coefficients of Λ. This pattern is added to the delayed 
input and results in an error-free codeword, if not more 
than t errors have occurred. Otherwise the decoding 
process will fail. It depends on the error pattern, 
whether this failure is detectable or not. 

2.1 Syndrome Computation 
Assuming a corrupt transmission, the received 
codeword r consists of the original codeword y which is 
superposed by the error pattern e: 
 

jjj eyr += . 
 

The syndrome S is defined as the multiplication of the 
transpose of a received word r with the parity check 
matrix H [4] 
 

( ) TTTTT eeyrS ⋅=+⋅=⋅= HHH  
 
and depends only on the error pattern e. Practically, this 
operation is a partial transformation of the codeword to 
the frequency domain. The computation of the 
syndrome follows Horner’s rule. Each syndrome is 
computed by:  
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This structure describes a recursive operation, that 
multiplies and accumulates a constant value αi with the 
input data rj=0..2

m
– 2. The 2t (where t is the number of 

maximum correctable errors) syndromes are computed 
in parallel by one MAC (Multiply ACcumulate)-unit 
each. After the whole code word is processed, all 
syndromes have been calculated simultaneously. 

2.2 Solving the Key Equation 
The main component of an RS-decoder is the key 
equation block. It solves a set of 2t linearly dependent 
equations 
 

( ) ( ) ( ) tXXXX 2modSΛΩ ⋅=  
 
with the two polynomials Λ(X), that describes the error 
locations, and Ω(X) that identifies the error magnitudes. 
There are numerous algorithms described in literature 
that find the minimum-degree solution to the equation 
above. One of the fastest and hence often preferred 
algorithm is the so called “Berlekamp Massey 

Algorithm” (BMA) that solves ( ) ( ) 0
12

=⋅∑
−t

XX
ν

SΛ , 

Fig. 2. Block diagram of a RS decoder .

frequency domain. The computation of the syndrome fol-
lows Horner’s rule. Each syndrome is computed by:

Si = r
(
αi

)
=

2m−2∑
j=0

rjα
ij

= r0 + αi
(
r1 + αi

(
. . . + αi (rn−1)

))
| i = 0, 2, . . . , 2t − 1 .

This structure describes a recursive operation, that multi-
plies and accumulates a constant valueαi with the input data
rm
j=0...2−2. The 2t (wheret is the number of maximum cor-

rectable errors) syndromes are computed in parallel by one
MAC (Multiply ACcumulate)-unit each. After the whole
code word is processed, all syndromes have been calculated
simultaneously.

2.2 Solving the Key Equation

The main component of an RS-decoder is the key equation
block. It solves a set of 2t linearly dependent equations

� (X) = 3 (X) · S(X)
∣∣

modX2t

with the two polynomials3(X), that describes the error lo-
cations, and�(X) that identifies the error magnitudes. There
are numerous algorithms described in literature that find the
minimum-degree solution to the equation above. One of
the fastest and hence often preferred algorithm is the so
called “Berlekamp Massey Algorithm” (BMA) that solves
2t−1∑

ν

3 (X) ·S(X)=0, whereν≤t is the number of errors that

have occurred. For this implementation a further develop-
ment of the BMA, the “Berlekamp Algorithm” (BA), that
concurrently computes3 and�, is used.

2.2.1 Berlekamp Algorithm

The problem of finding the minimum-degree solution to the
key equation is the same as trying to find the smallest Lin-
ear Feedback Shift Register (LFSR)3(X), that generates the
first 2t terms ofS. The initial LFSR that predictsS1 from S0
is tested, whether it can predictS2 as well. When it passes
the test, it is still the best solution and the test continues with
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where ν ≤ t is the number of errors that have occurred. 
For this implementation a further development of the 
BMA, the “Berlekamp Algorithm” (BA), that 
concurrently computes Λ and Ω, is used. 

2.2.1 Berlekamp Algorithm 
The problem of finding the minimum-degree solution to 
the key equation is the same as trying to find the 
smallest Linear Feedback Shift Register (LFSR) Λ(X), 
that generates the first 2t terms of S. The initial LFSR 
that predicts S1 from S0 is tested, whether it can predict 
S2 as well. When it passes the test, it is still the best 
solution and the test continues with the successive 
syndromes, until it fails. At this point, the registers have 
to be modified in such a manner that the next syndrome 
is predicted correctly and the previous predictions do 
not change. Furthermore, the length of the LFSR should 
increase by the least possible amount. 
Starting from the initial values Λ0(X) = 1 and Ω0(X) = 0 
the BA computes the solution for the key equation in r 
= 2t steps by calculating a so called discrepancy 
polynomial 
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and then updating Λ and Ω as necessary by solving  
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(for a detailed description refer to [1], [3], [7]). The 
problem with both algorithms (BMA and BA) is the 
multiplication with the inverse discrepancy polynomial 
∆r

–1(X) that has to be performed in every step of the 
computation, when the polynomials Λr and Ωr are 

updated. This division in the GF-domain needs a lot of 
resources, and  furthermore, the BA leads to an irregular 
structure that is very hard to implement in a 
parametrizable RS decoder. Sarwate and Shanbhag [2] 
introduced an architecture for the BA, where the 
division is replaced by multiplications. Thus the BA can 
be described in a very regular structure of identical 
processing elements with a small control unit. This 
composition leads to a parametrizable and efficient 
implementation and hence was used for this work. 

2.3 Chien Search and Forney Algorithm 
With the known error locator polynomial it is possible 
to determine the error locations by finding the zero 
positions of 
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To finally compute the correction pattern, the error 
evaluator polynomial is analyzed. The error pattern e is 
derived from the following formula: 
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The division can be performed by inverting the signal 
Λodd , using a ROM, and a succeeding multiplication of 
the two signals. 

3 Optimization for FPGA 

To map the theoretical formulas of an RS-decoder on an 
implementation feasible for FPGAs, the inversionless 
BA, mentioned previously, has been used for this 
design. Furthermore, the regular structure of  the iBA 
has been modified for resource-sharing. By 
implementing a fully pipelined multiplier/adder-unit 
(also referred to as the calculation unit), the maximum 
clock frequency could be increased. 
The optimizations described in this work are 
examplarily shown for an Altera APEX20KE FPGA 
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figure 3: iBA structure Fig. 3. iBA structure.

 4

with LEs (logic elements), containing primarily a four 
bit input LUT (look-up-table) and an optional register. 

3.1 Inversionless BA 
The iBA architecture, presented in [2], replaces the 
division by multiplications and leads to an arrangement 
of a chain of identical processing elements (PE) and 
only one irregular control element (CE). A chain of  
3t + 1 PEs, consisting of an error locator update (ELU) 
and a discrepancy computation (DC) block, compute the 
values for Λ and Ω. In order to avoid the inversion, 
instead of Λ and Ω shifted polynomials β·Λ and β·Ω are 
computed. The result of the Chien Search will not be 
affected by that and the Forney Algorithm can be 
adapted by implementing a constant multiplication to 
the formula. Hence, the polynomials will still be 
referred to as Λ and Ω. The structure of the iBA is 
shown in figure 3. The PEs are initialized with a 
polynomial 
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and compute the error locator and the error evaluator 
polynomials in 2t clock cycles. Every clock cycle the 
computations 
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(Θ is a help polynomial) are carried out for 0 ≤ i ≤ 3t, 
where the initial values are Θi

0 = δi
0 for  

0 ≤ i ≤ 3t and γ 0 = 1. The control element computes γ r 

and kr: 
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The control signal MC r is 1, if δ0

r ≠ 0 and kr ≥ 0, and 0 
if otherwise. The internal counter kr of the CE is 
initialized with k0 = 0. The Control Element is 
combined with the first PE (PE0), as the internal signal 
δ0

r+1 is needed to compute the control signal MC r+1. 
 
The processing element and its main part, the 
calculation unit, are shown in figure 4. The critical path 
of the complete iBA algorithm passes through one 
GF(2m) multiplier and one GF(2m) adder of this unit.  
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figure 4: Schematic of a processing element 
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figure 5: Schematic of PE3t 

The last processing element can be simplified, because 
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table 1: Calculation for constant data rate 

Fig. 4. Schematic of a processing element.

the successive syndromes, until it fails. At this point, the
registers have to be modified in such a manner that the next
syndrome is predicted correctly and the previous predictions
do not change. Furthermore, the length of the LFSR should
increase by the least possible amount.

Starting from the initial values30(X)=1 and�0(X)=0 the
BA computes the solution for the key equation inr=2t steps
by calculating a so called discrepancy polynomial

1r (X) =

deg3r−1∑
j=0

3
j

r−1 · Sr−j

and then updating3 and� as necessary by solving[
3r(X)

Br(X)

]
=

[
1 −1rX

1−1
r δ (1 − δ)X

]
·

[
3r−1(X)

Br−1(X)

]
[

�r(X)

Ar(X)

]
=

[
1 −1rX

1−1
r δ (1 − δ)X

]
·

[
�r−1(X)

Ar−1(X)

]
,

(for a detailed description refer to Blahut (1992), Clark and
Cain (1981) and Berlekamp (1968). The problem with both
algorithms (BMA and BA) is the multiplication with the in-
verse discrepancy polynomial1−1

r (X) that has to be per-
formed in every step of the computation, when the polynomi-
als3r and�r are updated. This division in the GF-domain
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with LEs (logic elements), containing primarily a four 
bit input LUT (look-up-table) and an optional register. 

3.1 Inversionless BA 
The iBA architecture, presented in [2], replaces the 
division by multiplications and leads to an arrangement 
of a chain of identical processing elements (PE) and 
only one irregular control element (CE). A chain of  
3t + 1 PEs, consisting of an error locator update (ELU) 
and a discrepancy computation (DC) block, compute the 
values for Λ and Ω. In order to avoid the inversion, 
instead of Λ and Ω shifted polynomials β·Λ and β·Ω are 
computed. The result of the Chien Search will not be 
affected by that and the Forney Algorithm can be 
adapted by implementing a constant multiplication to 
the formula. Hence, the polynomials will still be 
referred to as Λ and Ω. The structure of the iBA is 
shown in figure 3. The PEs are initialized with a 
polynomial 
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and compute the error locator and the error evaluator 
polynomials in 2t clock cycles. Every clock cycle the 
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The control signal MC r is 1, if δ0

r ≠ 0 and kr ≥ 0, and 0 
if otherwise. The internal counter kr of the CE is 
initialized with k0 = 0. The Control Element is 
combined with the first PE (PE0), as the internal signal 
δ0

r+1 is needed to compute the control signal MC r+1. 
 
The processing element and its main part, the 
calculation unit, are shown in figure 4. The critical path 
of the complete iBA algorithm passes through one 
GF(2m) multiplier and one GF(2m) adder of this unit.  
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needs a lot of resources, and furthermore, the BA leads to
an irregular structure that is very hard to implement in a
parametrizable RS decoder. Sarwate and Shanbhag (2001)
introduced an architecture for the BA, where the division is
replaced by multiplications. Thus the BA can be described in
a very regular structure of identical processing elements with
a small control unit. This composition leads to a parametriz-
able and efficient implementation and hence was used for this
work.

2.3 Chien Search and Forney Algorithm

With the known error locator polynomial it is possible to de-
termine the error locations by finding the zero positions of

λi=

2t∑
j=0

3j ·α
j ·(n−i)

=

2t∑
j=0

3j ·α
jk , k = 0, 1, 2, . . . , (n − 1) .

To finally compute the correction pattern, the error evaluator
polynomial is analyzed. The error patterne is derived from
the following formula:

ei =

{
0 if 3

(
αi

)
6= 0

α−ik
·

�
(
αi

)
3odd(αi)

if 3
(
αi

)
= 0

.

The division can be performed by inverting the signal3odd ,
using a ROM, and a succeeding multiplication of the two
signals.
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Table 1. Calculation for constant data rate.
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The control signal MC r is 1, if δ0

r ≠ 0 and kr ≥ 0, and 0 
if otherwise. The internal counter kr of the CE is 
initialized with k0 = 0. The Control Element is 
combined with the first PE (PE0), as the internal signal 
δ0

r+1 is needed to compute the control signal MC r+1. 
 
The processing element and its main part, the 
calculation unit, are shown in figure 4. The critical path 
of the complete iBA algorithm passes through one 
GF(2m) multiplier and one GF(2m) adder of this unit.  
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table 1: Calculation for constant data rate 

3 Optimization for FPGA

To map the theoretical formulas of an RS-decoder on an
implementation feasible for FPGAs, the inversionless BA,
mentioned previously, has been used for this design. Fur-
thermore, the regular structure of the iBA has been modi-
fied for resource-sharing. By implementing a fully pipelined
multiplier/adder-unit (also referred to as the calculation unit),
the maximum clock frequency could be increased.

The optimizations described in this work are examplarily
shown for an Altera APEX20KE FPGA with LEs (logic ele-
ments), containing primarily a four bit input LUT (look-up-
table) and an optional register.

3.1 Inversionless BA

The iBA architecture, presented in Sarwate and Shanbhag
(2001), replaces the division by multiplications and leads to
an arrangement of a chain of identical processing elements
(PE) and only one irregular control element (CE). A chain of
3t+1 PEs, consisting of an error locator update (ELU) and a
discrepancy computation (DC) block, compute the values for
3 and�. In order to avoid the inversion, instead of3 and�

shifted polynomialsβ·3 andβ·� are computed. The result
of the Chien Search will not be affected by that and the For-
ney Algorithm can be adapted by implementing a constant
multiplication to the formula. Hence, the polynomials will
still be referred to as3 and�. The structure of the iBA is
shown in2.3. The PEs are initialized with a polynomial

δi =


Si f or 0 ≤ i ≤ 2t − 1
0 f or 2t ≤ i ≤ 3t − 1
1 f or i = 3t

0 f or i = 3t + 1

and compute the error locator and the error evaluator polyno-
mials in 2t clock cycles. Every clock cycle the computations

δr+1
i = γ r

· δr
i+1 + 2r

i · δr
0

2r+1
i =

{
δr
i+1 if MCr

= 1
2r

i if MCr
= 0

(2 is a help polynomial) are carried out for 0≤i≤3t , where
the initial values are20

i =δ0
i for 0≤i≤3t andγ 0=1. The con-

trol element computesγ r andkr :

MCr
= 1 ⇒ γ r+1

= δr
0 andkr+1

= −(kr
+ 1)

MCr
= 0 ⇒ γ r+1

= γ r andkr+1
= kr

+ 1
.

The control signalMC r is 1, if δr
0 6= 0 andkr

≥ 0, and 0
if otherwise. The internal counterkr of the CE is initialized
with k0=0. The Control Element is combined with the first
PE (PE0), as the internal signalδr+1

0 is needed to compute
the control signal MCr+1.

The processing element and its main part, the calculation
unit, are shown in Fig. 4. The critical path of the complete
iBA algorithm passes through one GF(2m) multiplier and one
GF(2m) adder of this unit.

The last processing element can be simplified, because the
second multiplication is always zero (δ0

3t+1=0). As shown

in Fig. 5, the computation of2r+1
i is reduced to a hold sig-

nal, that becomes and stays low, when MCr is high for the
first time. This simplified design uses less than 10% of the
number of LEs that a normal PE uses. The area-reduction is
noticeable in the complete design, if only a few PEs are used
(see Sect.3.2).

3.2 Resource-sharing

For an optimal implementation of the decoding process, it is
important, that the data rates of the four consecutive blocks
match. Otherwise, blocks that can run at a higher data rate
will be idle for a certain amount of time. Let the data rate for
the syndrome computation block beD symbols/s. For ev-
ery codeword, 2t syndromes are computed, so the data rate
for the key equation block isD·

2t
2m−1

syndromes
/
s. With

the computational complexity according to Sect.2.1 and
Sect.3.1 (⊕ denotes a GF addition,⊗ a GF multiplication),
the required computing power for an operation is the prod-
uct of computational complexity and data rate. Finally, the
required number of PEs can be derived as shown in Table 1.

For example for an 8bit-Code witht=8 the num-
ber of MAC units for the syndrome computation is
#PEsyndrome=16. For the key equation with the iBA,
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Fig. 6. Schematic of iBA (resource-sharing).
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2# =keyPE  processing elements are required for a 

constant data rate. So instead of 25# , =iBAkeyPE , there 
will be only two PEs, calculating the equations given in 
chapter 3.1. The complete implementation is shown in 
figure 7. The intermediate results have to be stored in a 
register chain. Some of these registers can be used to 
pipeline the critical path through the calculation unit. 
The small processing element PE’last is added to the 
chain in order to save a normal PE’ in some other codes 
of the generic design space. The control unit is 
integrated in the PE’0, the control signals are then fed 
back to the other PE’s. 
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4 Results 

The design flow, used for the following results, involves 
mainly two programs: Scirocco from Synopsys for 
logical simulation of the VHDL-code on a functional 
level and Quartus II from Altera for synthesis, place and 
route, gate level simulation and device programming. 
The code was tested on hardware with an APEX 
20K300EQC240-1, that was analyzed with an 16702A 
logic analyzer from HP. All values concerning the 
number of maximum clock frequency and the number 
of utilized logic elements are evaluated by the Quartus 
software. 
 
In real systems maximum throughput rate is not always 
a key objective. Usually, a given specification has to be 
met (e.g. real time applications or a certain bit rate). 
Nevertheless, the maximum achievable throughput rate 
can be a valuable information as time sharing or 
parallelization-concepts can be applied to the 
implementation.  

4.1 Optimized RS-Decoder with Resource-
sharing 

The improvement, achieved by the implementation of 
resource sharing is shown exemplarily for 8-bit codes, 
which are mostly used in practice.  
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Fig. 7. Reduction of utilized LEs for 8-bit codes.

#PEkey=2 processing elements are required for a constant
data rate. So instead of #PEkey, iBA=25, there will be only
two PEs, calculating the equations given in Sect.3.1. The
complete implementation is shown in Fig. 6. The intermedi-
ate results have to be stored in a register chain. Some of these
registers can be used to pipeline the critical path through the
calculation unit. The small processing element PE’last is
added to the chain in order to save a normal PE’ in some
other codes of the generic design space. The control unit is
integrated in the PE’0, the control signals are then fed back
to the other PE’s.

4 Results

The design flow, used for the following results, involves
mainly two programs: Scirocco from Synopsys for logical
simulation of the VHDL-code on a functional level and Quar-
tus II from Altera for synthesis, place and route, gate level
simulation and device programming. The code was tested
on hardware with an APEX 20K300EQC240-1, that was an-
alyzed with an 16702A logic analyzer from HP. All values
concerning the number of maximum clock frequency and the
number of utilized logic elements are evaluated by the Quar-
tus software.
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Compared to the code without resource-sharing, the 
AT-product increases in average by a factor of four 
(figure 7, figure 8). The maximum clock frequency 
increased only by a factor of two, though the critical 
path through the LEs could be fully pipelined. This is 
due to the fact, that the critical path of the whole 
decoder was then determined by the inverter-ROM, 
which can not be further pipelined. 
The maximum achievable throughput rate is roughly 
1Gbit/s on an APEX 20KE device. On a standard 
Stratix FPGA the maximum throughput for an 8-bit 
code with eight correctable errors (255,239,8) is about 
1.3 Gbit/s. 
 
When the optimized code is compared against other 
Reed-Solomon decoder implementations, the realization 
introduced in this paper shows comparable qualities in 
terms of LE utilization and maximum clock frequency. 
In figure 9, three different codes (m = 8) with t = 8, 16 
are compared with other state-of-the-art solutions [13], 
[14]. Two codes (255,239,8), (255,223,16) are 
compliant to CCSDS (Consultative Committee for 
Space Data Systems) standards and a shortened code 
(204,188,8) is compliant to the DVB (Digital Video 
Broadcasting) standard. All values for [13] and the 
implementation presented in this paper have been 
compiled for an APEX 20KE device. The values for the 
DVB code have been taken from the data sheet [14]. 

 

figure 9: Comparison with other FPGA IP-cores  

5 Summary 

In this paper a highly parametrizable RS-Decoder for 
FPGAs has been introduced. The implementation, based 
on an inversionless Berlekamp Algorithm for solving 
the key equation, achieves high throughput rates while 
consuming, compared with other FPGA-
implementations, only a small amount of logical 
elements. The maximum throughput was about 1Gbit/s 
on an APEX 20K300E device with speed grade 1.  
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In real systems maximum throughput rate is not always a
key objective. Usually, a given specification has to be met
(e.g. real time applications or a certain bit rate). Neverthe-
less, the maximum achievable throughput rate can be a valu-
able information as time sharing or parallelization-concepts
can be applied to the implementation.

4.1 Optimized RS-Decoder with Resource-sharing

The improvement, achieved by the implementation of re-
source sharing is shown exemplarily for 8-bit codes, which
are mostly used in practice.

Compared to the code without resource-sharing, the
AT-product increases in average by a factor of four (Fig. 7,
Fig. 8). The maximum clock frequency increased only by a
factor of two, though the critical path through the LEs could
be fully pipelined. This is due to the fact, that the critical path
of the whole decoder was then determined by the inverter-
ROM, which can not be further pipelined.

The maximum achievable throughput rate is roughly
1Gbit/s on an APEX 20KE device. On a standard Stratix
FPGA the maximum throughput for an 8-bit code with eight
correctable errors (255,239,8) is about 1.3 Gbit/s.
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When the optimized code is compared against other Reed-
Solomon decoder implementations, the realization intro-
duced in this paper shows comparable qualities in terms of
LE utilization and maximum clock frequency.

In Fig. 9, three different codes (m=8) witht=8, 16
are compared with other state-of-the-art solutions (Web-
site Altera, Website Amphion). Two codes (255,239,8),
(255,223,16) are compliant to CCSDS (Consultative Com-
mittee for Space Data Systems) standards and a shortened
code (204,188,8) is compliant to the DVB (Digital Video
Broadcasting) standard. All values for Website Altera and
the implementation presented in this paper have been com-
piled for an APEX 20 KE device. The values for the DVB
code have been taken from the data sheet (Website Am-
phion).

5 Summary

In this paper a highly parametrizable RS-Decoder for
FPGAs has been introduced. The implementation, based on
an inversionless Berlekamp Algorithm for solving the key
equation, achieves high throughput rates while consuming,
compared with other FPGA-implementations, only a small
amount of logical elements. The maximum throughput was
about 1 Gbit/s on an APEX 20 K300E device with speed
grade 1.
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