
Advances in Radio Science, 3, 271–276, 2005
SRef-ID: 1684-9973/ars/2005-3-271
© Copernicus GmbH 2005

Advances in
Radio Science

Implementation and modeling of parametrizable high-speed Reed
Solomon decoders on FPGAs

A. Flocke, H. Blume, and T. G. Noll

Chair of Electrical Engineering and Computer Systems, RWTH Aachen University, 52062 Aachen, Germany

Abstract. One of the most important error correction codes
in digital signal processing is the Reed Solomon code. A lot
of VLSI implementations have been described in literature.
This paper introduces a highly parametrizable RS-decoder
for FPGAs. By implementing resource-sharing and by using
a fully pipelined multiplier/adder-unit in GF(2m) it was pos-
sible to achieve high throughput rates up to 1.3 Gbit/s on a
standard FPGA, while using only an attractive small amount
of logical elements (LE). The implementation, written in a
hardware description language (HDL), is based on an inver-
sionless Berlekamp Algorithm (iBA), whose structure leads
to a chain of identical processing elements (PE). The critical
path of one PE runs only through one adder and one multi-
plier. A detailed description of a resource-sharing method-
ology for this Berlekamp Algorithm and the achievable gain
are presented in this paper.

The benchmarking for the design was done for differ-
ent 8bit-codes against state-of-the-art FPGA-solutions and
showed a gain of up to a factor of six regarding the
AT-product, compared to other implementations.

1 Introduction

Today’s applications for digital signal processing become
more and more demanding, aiming for higher throughputs
on the one hand and for lower power and smaller devices on
the other hand. Efficient algorithms combined with state-of-
the-art silicon technology are essential to cope with the re-
quirements of modern digital signal processing applications.
Besides processing power and energy efficiency, flexibility
is a critical factor as well. Consumer electronics have to be
market-ready, while details for technical standards may still
change or it is not clear, which one of two competing stan-
dards has to be supported. Reconfigurable hardware, e.g. em-
bedded FPGA-cores in Systems on Chip (SoC), can be one
attractive compromise between flexibility on the one hand
and efficiency on the other hand.

Correspondence to:A. Flocke
(flocke@eecs.rwth-aachen.de)

An important objective in digital signal processing is the
protection of data against errors. The Reed Solomon (RS)-
Code, developed in 1958 by I. S. Reed and G. Solomon, is
a key component for fault-tolerant data communication. It
is particularly suitable for the correction of burst errors and
hence used for example to protect data on CDs and DVDs or
in network communications. RS applications cover various
fields from e.g. coding graphical address stickers with six
bit symbol width, over 172 kB/s audio CD decoding, up to
10 Gbit/s high speed optical cable communication.

The algorithm presented in this paper is based on a
four-step approach: Transformation of the codeword to the
frequency domain, computation of the error locator- and
evaluator-polynomial, back transformation to the time do-
main and computation of the correction values, that are fi-
nally superposed with the received codeword. The decoding
is done in the frequency domain by a reformulated inver-
sionless Berlekamp Algorithm (Blahut, 1992; Sarwate and
Shanbhag, 2001). This structure is highly parametrizable and
thus very suitable for this implementation.

In this generic implementation the values for symbol size
(2 ≤m≤9), code word lengthk<2m–1 (shortened codes are
supported) and error correction capabilityt≤b(2m–1–k)/2c

(see Fig. 1) can be changed to any possible combination
within the limitations given above, where larger values than
m=9 are possible, but have not been analyzed in this work.
The primitive polynomial can be altered as well as the gen-
erator polynomial to meet certain RS-standard requirements.

By optimizing the basic design, implementing resource-
sharing and pipelining, the number of utilized LEs dropped
significantly, leading to a high performance implementation.
The methodology for implementing the optimized structure,
using resource-sharing, and the achievable gain are described
in detail in this paper.

This paper is structured as follows: Sect.2 is sketching
briefly the principle functionality of a RS-decoder. In Sect.3
the optimization for an FPGA implementation is described
and Sect.4 presents the results and benchmarks for different
RS-decoder implementations.

272 A. Flocke et al.: Parametrizable high-speed Reed Solomon decoders on FPGAs

 1

Implementation and Modeling of Parametrizable High-
Speed Reed Solomon Decoders on FPGAs

A. Flocke, H. Blume, T.G. Noll

Chair of Electrical Engineering and Computer Systems

RWTH Aachen University
52062 Aachen, Germany

flocke@eecs.rwth-aachen.de

ABSTRACT

One of the most important error correction codes in
digital signal processing is the Reed Solomon code. A
lot of VLSI implementations have been described in
literature. This paper introduces a highly parametrizable
RS-decoder for FPGAs. By implementing resource-
sharing and by using a fully pipelined multiplier/adder-
unit in GF(2m) it was possible to achieve high
throughput rates up to 1.3 Gbit/s on a standard FPGA,
while using only an attractive small amount of logical
elements (LE). The implementation, written in a
hardware description language (HDL), is based on an
inversionless Berlekamp Algorithm (iBA), whose
structure leads to a chain of identical processing
elements (PE). The critical path of one PE runs only
through one adder and one multiplier. A detailed
description of a resource-sharing methodology for this
Berlekamp Algorithm and the achievable gain are
presented in this paper.
The benchmarking for the design was done for different
8bit-codes against state-of-the-art FPGA-solutions and
showed a gain of up to a factor of six regarding the AT-
product, compared to other implementations.

Keywords

Reed Solomon, FPGA, Resource-Sharing, Modeling

1 Introduction

Today’s applications for digital signal processing
become more and more demanding, aiming for higher
throughputs on the one hand and for lower power and
smaller devices on the other hand. Efficient algorithms
combined with state-of-the-art silicon technology are
essential to cope with the requirements of modern
digital signal processing applications. Besides
processing power and energy efficiency, flexibility is a
critical factor as well. Consumer electronics have to be
market-ready, while details for technical standards may
still change or it is not clear, which one of two

competing standards has to be supported.
Reconfigurable hardware, e.g. embedded FPGA-cores
in Systems on Chip (SoC), can be one attractive
compromise between flexibility on the one hand and
efficiency on the other hand.

An important objective in digital signal processing is
the protection of data against errors. The Reed Solomon
(RS)-Code, developed in 1958 by I.S. Reed and G.
Solomon, is a key component for fault-tolerant data
communication. It is particularly suitable for the
correction of burst errors and hence used for example to
protect data on CDs and DVDs or in network
communications. RS applications cover various fields
from e.g. coding graphical address stickers with six bit
symbol width, over 172 kB/s audio CD decoding, up to
10 Gbit/s high speed optical cable communication.

The algorithm presented in this paper is based on a four-
step approach: Transformation of the codeword to the
frequency domain, computation of the error locator- and
evaluator-polynomial, back transformation to the time
domain and computation of the correction values, that
are finally superposed with the received codeword. The
decoding is done in the frequency domain by a
reformulated inversionless Berlekamp Algorithm [1],
[2]. This structure is highly parametrizable and thus
very suitable for this implementation.

k 2t
parityinformation

codeword
n=2m-1

figure 1: RS codeword

In this generic implementation the values for symbol
size (2 ≤ m ≤ 9), code word length k < 2m – 1 (shortened
codes are supported) and error correction capability
t ≤ ⎣ (2m – 1 – k) / 2 ⎦ (see figure 1) can be changed to
any possible combination within the limitations given
above, where larger values than m = 9 are possible, but

Fig. 1. RS codeword.

2 Algorithm

Derived from BCH-codes (Clark and Cain, 1981; Hamming,
1980), RS-codes (Reed and Chen, 1999) are able to cor-
rect symbols instead of bits. As all bits in a symbol can
be corrupt, the decoding algorithm not only has to iden-
tify the wrong symbols but also has to restore the original
value, whereas binary codes only have to invert the corrupt
bit. Thus, instead of simple Boolean operations, Galois-Field
arithmetic (Blahut, 1992; Clark and Cain, 1981; Roman,
1992) has to be used to compute the two dimensional code-
words of a symbol code. In Fig. 2 the complete decoding
process of an RS-decoder is depicted. Three different types
of information have to be extracted from a received code-
word: The number of errors and, if errors have occurred, their
positions in the codeword and their values. The corrupt in-
put datar is stored in a FIFO-RAM and simultaneously sent
to the syndrome computation, where the syndromes of the
error pattern are separated from the information part of the
codeword. With these syndromesS the error locations and
magnitudes can be determined. Therefore, the key equation
has to be solved. The Chien-Search locates the positions of
incorrect symbols, by finding the zero points of the error lo-
cator polynomial3. The Forney-Algorithm finally computes
the correction pattern out of the error evaluator polynomial�

and the odd coefficients of3. This pattern is added to the de-
layed input and results in an error-free codeword, if not more
thant errors have occurred. Otherwise the decoding process
will fail. It depends on the error pattern, whether this failure
is detectable or not.

2.1 Syndrome Computation

Assuming a corrupt transmission, the received codewordr

consists of the original codewordy which is superposed by
the error patterne:

rj = yj + ej .

The syndromeS is defined as the multiplication of the trans-
pose of a received wordr with the parity check matrixH
(Hamming, 1980)

ST
= H · rT

= H ·

(
yT

+ eT
)

= H · eT

and depends only on the error patterne. Practically, this
operation is a partial transformation of the codeword to the

 2

have not been analyzed in this work. The primitive
polynomial can be altered as well as the generator
polynomial to meet certain RS-standard requirements.

By optimizing the basic design, implementing resource-
sharing and pipelining, the number of utilized LEs
dropped significantly, leading to a high performance
implementation. The methodology for implementing the
optimized structure, using resource-sharing, and the
achievable gain are described in detail in this paper.

This paper is structured as follows: Chapter 2 is
sketching briefly the principle functionality of a RS-
decoder. In chapter 3 the optimization for an FPGA
implementation is described and chapter 4 presents the
results and benchmarks for different RS-decoder
implementations.

2 Algorithm

Derived from BCH-codes [3], [4], RS-codes [5] are able
to correct symbols instead of bits. As all bits in a
symbol can be corrupt, the decoding algorithm not only
has to identify the wrong symbols but also has to restore
the original value, whereas binary codes only have to
invert the corrupt bit. Thus, instead of simple Boolean
operations, Galois-Field arithmetic [1], [3], [6] has to be
used to compute the two dimensional codewords of a
symbol code.

2t MAC-
Units

2t MAC-
Units

Syndrom-
Computation

Berlekamp
Algorithm

Berlekamp
Algorithm

Key-Equation

Chien-
Search
Chien-
Search

Error
Locations

FIFO
RAM
FIFO
RAM

ROMROM
Inverter

Forney
Algorithm
Forney

Algorithm

Error
Magnitudes

Input

Output

Λ
ΩS

e
oddΛ 1−Λodd

r

r y

figure 2: Block diagram of a RS decoder

In figure 2 the complete decoding process of an RS-
decoder is depicted. Three different types of
information have to be extracted from a received
codeword: The number of errors and, if errors have
occurred, their positions in the codeword and their
values. The corrupt input data r is stored in a FIFO-
RAM and simultaneously sent to the syndrome
computation, where the syndromes of the error pattern
are separated from the information part of the
codeword. With these syndromes S the error locations
and magnitudes can be determined. Therefore, the key
equation has to be solved. The Chien-Search locates the
positions of incorrect symbols, by finding the zero
points of the error locator polynomial Λ. The Forney-

Algorithm finally computes the correction pattern out of
the error evaluator polynomial Ω and the odd
coefficients of Λ. This pattern is added to the delayed
input and results in an error-free codeword, if not more
than t errors have occurred. Otherwise the decoding
process will fail. It depends on the error pattern,
whether this failure is detectable or not.

2.1 Syndrome Computation
Assuming a corrupt transmission, the received
codeword r consists of the original codeword y which is
superposed by the error pattern e:

jjj eyr += .

The syndrome S is defined as the multiplication of the
transpose of a received word r with the parity check
matrix H [4]

() TTTTT eeyrS ⋅=+⋅=⋅= HHH

and depends only on the error pattern e. Practically, this
operation is a partial transformation of the codeword to
the frequency domain. The computation of the
syndrome follows Horner’s rule. Each syndrome is
computed by:

()
()()() .12,,2,0110

22

0

−=+++=

==

−

−

=
∑

tirrr

rrS

n
iii

j

ij
j

i
i

m

KK ααα

αα

This structure describes a recursive operation, that
multiplies and accumulates a constant value αi with the
input data rj=0..2

m
– 2. The 2t (where t is the number of

maximum correctable errors) syndromes are computed
in parallel by one MAC (Multiply ACcumulate)-unit
each. After the whole code word is processed, all
syndromes have been calculated simultaneously.

2.2 Solving the Key Equation
The main component of an RS-decoder is the key
equation block. It solves a set of 2t linearly dependent
equations

() () () tXXXX 2modSΛΩ ⋅=

with the two polynomials Λ(X), that describes the error
locations, and Ω(X) that identifies the error magnitudes.
There are numerous algorithms described in literature
that find the minimum-degree solution to the equation
above. One of the fastest and hence often preferred
algorithm is the so called “Berlekamp Massey

Algorithm” (BMA) that solves () () 0
12

=⋅∑
−t

XX
ν

SΛ ,

Fig. 2. Block diagram of a RS decoder .

frequency domain. The computation of the syndrome fol-
lows Horner’s rule. Each syndrome is computed by:

Si = r
(
αi

)
=

2m−2∑
j=0

rjα
ij

= r0 + αi
(
r1 + αi

(
. . . + αi (rn−1)

))
| i = 0, 2, . . . , 2t − 1 .

This structure describes a recursive operation, that multi-
plies and accumulates a constant valueαi with the input data
rm
j=0...2−2. The 2t (wheret is the number of maximum cor-

rectable errors) syndromes are computed in parallel by one
MAC (Multiply ACcumulate)-unit each. After the whole
code word is processed, all syndromes have been calculated
simultaneously.

2.2 Solving the Key Equation

The main component of an RS-decoder is the key equation
block. It solves a set of 2t linearly dependent equations

� (X) = 3 (X) · S(X)
∣∣

modX2t

with the two polynomials3(X), that describes the error lo-
cations, and�(X) that identifies the error magnitudes. There
are numerous algorithms described in literature that find the
minimum-degree solution to the equation above. One of
the fastest and hence often preferred algorithm is the so
called “Berlekamp Massey Algorithm” (BMA) that solves
2t−1∑

ν

3 (X) ·S(X)=0, whereν≤t is the number of errors that

have occurred. For this implementation a further develop-
ment of the BMA, the “Berlekamp Algorithm” (BA), that
concurrently computes3 and�, is used.

2.2.1 Berlekamp Algorithm

The problem of finding the minimum-degree solution to the
key equation is the same as trying to find the smallest Lin-
ear Feedback Shift Register (LFSR)3(X), that generates the
first 2t terms ofS. The initial LFSR that predictsS1 from S0
is tested, whether it can predictS2 as well. When it passes
the test, it is still the best solution and the test continues with

A. Flocke et al.: Parametrizable high-speed Reed Solomon decoders on FPGAs 273

 3

where ν ≤ t is the number of errors that have occurred.
For this implementation a further development of the
BMA, the “Berlekamp Algorithm” (BA), that
concurrently computes Λ and Ω, is used.

2.2.1 Berlekamp Algorithm
The problem of finding the minimum-degree solution to
the key equation is the same as trying to find the
smallest Linear Feedback Shift Register (LFSR) Λ(X),
that generates the first 2t terms of S. The initial LFSR
that predicts S1 from S0 is tested, whether it can predict
S2 as well. When it passes the test, it is still the best
solution and the test continues with the successive
syndromes, until it fails. At this point, the registers have
to be modified in such a manner that the next syndrome
is predicted correctly and the previous predictions do
not change. Furthermore, the length of the LFSR should
increase by the least possible amount.
Starting from the initial values Λ0(X) = 1 and Ω0(X) = 0
the BA computes the solution for the key equation in r
= 2t steps by calculating a so called discrepancy
polynomial

() ∑
−Λ

=
−− ⋅Λ=∆

1deg

0
1

r

j
jr

j
rr SX

and then updating Λ and Ω as necessary by solving

,
)(
)(

)1(
1

)(
)(

)(
)(

)1(
1

)(
)(

1

1
1

1

1
1

⎥
⎦

⎤
⎢
⎣

⎡Ω
⋅⎥
⎦

⎤
⎢
⎣

⎡
−∆
∆−

=⎥
⎦

⎤
⎢
⎣

⎡Ω

⎥
⎦

⎤
⎢
⎣

⎡Λ
⋅⎥
⎦

⎤
⎢
⎣

⎡
−∆
∆−

=⎥
⎦

⎤
⎢
⎣

⎡Λ

−

−
−

−

−
−

XA
X

X
X

XA
X

XB
X

X
X

XB
X

r

r

r

r

r

r

r

r

r

r

r

r

δδ

δδ

(for a detailed description refer to [1], [3], [7]). The
problem with both algorithms (BMA and BA) is the
multiplication with the inverse discrepancy polynomial
∆r

–1(X) that has to be performed in every step of the
computation, when the polynomials Λr and Ωr are

updated. This division in the GF-domain needs a lot of
resources, and furthermore, the BA leads to an irregular
structure that is very hard to implement in a
parametrizable RS decoder. Sarwate and Shanbhag [2]
introduced an architecture for the BA, where the
division is replaced by multiplications. Thus the BA can
be described in a very regular structure of identical
processing elements with a small control unit. This
composition leads to a parametrizable and efficient
implementation and hence was used for this work.

2.3 Chien Search and Forney Algorithm
With the known error locator polynomial it is possible
to determine the error locations by finding the zero
positions of

())1(,,2,1,0,
2

0

2

0
−=⋅Λ=⋅Λ= ∑∑

==

−⋅ nk
t

j

jk
j

t

j

inj
ji Kααλ .

To finally compute the correction pattern, the error
evaluator polynomial is analyzed. The error pattern e is
derived from the following formula:

()
()
() ()⎪

⎩

⎪
⎨

⎧

=Λ
Λ
Ω

⋅

≠Λ
= − 0

00
i

i
odd

i
ik

i

i if

if
e α

α
α

α

α
.

The division can be performed by inverting the signal
Λodd , using a ROM, and a succeeding multiplication of
the two signals.

3 Optimization for FPGA

To map the theoretical formulas of an RS-decoder on an
implementation feasible for FPGAs, the inversionless
BA, mentioned previously, has been used for this
design. Furthermore, the regular structure of the iBA
has been modified for resource-sharing. By
implementing a fully pipelined multiplier/adder-unit
(also referred to as the calculation unit), the maximum
clock frequency could be increased.
The optimizations described in this work are
examplarily shown for an Altera APEX20KE FPGA

3tPE -13tPE 2tPE tPE -1tPE 0PEr
t3δ

r
t 13 −δ r

t2δ
r
t 1−δr

tδ
0

rrr MC,, 0δγ

)2(ttΛ)2(0 tΛ)2(1 tt−Ω)2(0 tΩ

polynomiallocatorerror

4444 34444 21

polynomialevaluatorerror

44444 344444 21

r
0δ

after 2t clock cycles:

DCELU

CE

r
t 13 +δ 3tPE -13tPE 2tPE tPE -1tPE 0PEr

t3δ
r
t 13 −δ r

t2δ
r
t 1−δr

tδ
0

rrr MC,, 0δγ

)2(ttΛ)2(0 tΛ)2(1 tt−Ω)2(0 tΩ

polynomiallocatorerror

4444 34444 21

polynomialevaluatorerror

44444 344444 21

r
0δ

after 2t clock cycles:

DCELU

CE

r
t 13 +δ

figure 3: iBA structure Fig. 3. iBA structure.

 4

with LEs (logic elements), containing primarily a four
bit input LUT (look-up-table) and an optional register.

3.1 Inversionless BA
The iBA architecture, presented in [2], replaces the
division by multiplications and leads to an arrangement
of a chain of identical processing elements (PE) and
only one irregular control element (CE). A chain of
3t + 1 PEs, consisting of an error locator update (ELU)
and a discrepancy computation (DC) block, compute the
values for Λ and Ω. In order to avoid the inversion,
instead of Λ and Ω shifted polynomials β·Λ and β·Ω are
computed. The result of the Chien Search will not be
affected by that and the Forney Algorithm can be
adapted by implementing a constant multiplication to
the formula. Hence, the polynomials will still be
referred to as Λ and Ω. The structure of the iBA is
shown in figure 3. The PEs are initialized with a
polynomial

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=
=

−≤≤
−≤≤

=

130
31

1320
120

tifor
tifor
titfor
tiforSi

iδ

and compute the error locator and the error evaluator
polynomials in 2t clock cycles. Every clock cycle the
computations

rr

i
r
i

rr
i 01

1 δδγδ ⋅Θ+⋅= +
+

⎩
⎨
⎧

=Θ
=

=Θ ++

0
111

rr
i

rr
ir

i MCif
MCifδ

(Θ is a help polynomial) are carried out for 0 ≤ i ≤ 3t,
where the initial values are Θi

0 = δi
0 for

0 ≤ i ≤ 3t and γ 0 = 1. The control element computes γ r

and kr:

1 and 0

)1(and 1
11

1
0

1

+==⇒=

+−==⇒=
++

++

rrrrr

rrrrr

kkMC

kkMC

γγ

δγ
.

The control signal MC r is 1, if δ0

r ≠ 0 and kr ≥ 0, and 0
if otherwise. The internal counter kr of the CE is
initialized with k0 = 0. The Control Element is
combined with the first PE (PE0), as the internal signal
δ0

r+1 is needed to compute the control signal MC r+1.

The processing element and its main part, the
calculation unit, are shown in figure 4. The critical path
of the complete iBA algorithm passes through one
GF(2m) multiplier and one GF(2m) adder of this unit.

T
0

1

T

δ0
r

δr
i+1

MCr

δi
r

γr

Calculation
Unit

Θi
r

δi
r+1

Θi
r+1

t critical

figure 4: Schematic of a processing element

T

0

1
T

δ0
r

MCr

δi
r

δi
r+1

HOLD SIGNAL

(“00...00")

figure 5: Schematic of PE3t

The last processing element can be simplified, because

 syndrome computation block key equation block

data rate s
symbolsD s

syndromestD m 12
2
−

⋅

computational complexity ()
symbol

t ⊕+⊗⋅2 () ()
syndromet ⊕+⊗⋅+ 213

computing power ()⊕+⊗⋅⋅ tD 2 () ()⊕+⊗⋅+⋅
−

⋅ 213
12

2 ttD m

PE computing power ()⊕+⊗=:syndromePE ()⊕+⊗= 2:keyPE

of PEs per block tPEsyndrome 2# = ()
⎥⎥
⎤

⎢⎢
⎡

−
+⋅

=
12

132# mkey
ttPE

table 1: Calculation for constant data rate

Fig. 4. Schematic of a processing element.

the successive syndromes, until it fails. At this point, the
registers have to be modified in such a manner that the next
syndrome is predicted correctly and the previous predictions
do not change. Furthermore, the length of the LFSR should
increase by the least possible amount.

Starting from the initial values30(X)=1 and�0(X)=0 the
BA computes the solution for the key equation inr=2t steps
by calculating a so called discrepancy polynomial

1r (X) =

deg3r−1∑
j=0

3
j

r−1 · Sr−j

and then updating3 and� as necessary by solving[
3r(X)

Br(X)

]
=

[
1 −1rX

1−1
r δ (1 − δ)X

]
·

[
3r−1(X)

Br−1(X)

]
[

�r(X)

Ar(X)

]
=

[
1 −1rX

1−1
r δ (1 − δ)X

]
·

[
�r−1(X)

Ar−1(X)

]
,

(for a detailed description refer to Blahut (1992), Clark and
Cain (1981) and Berlekamp (1968). The problem with both
algorithms (BMA and BA) is the multiplication with the in-
verse discrepancy polynomial1−1

r (X) that has to be per-
formed in every step of the computation, when the polynomi-
als3r and�r are updated. This division in the GF-domain

 4

with LEs (logic elements), containing primarily a four
bit input LUT (look-up-table) and an optional register.

3.1 Inversionless BA
The iBA architecture, presented in [2], replaces the
division by multiplications and leads to an arrangement
of a chain of identical processing elements (PE) and
only one irregular control element (CE). A chain of
3t + 1 PEs, consisting of an error locator update (ELU)
and a discrepancy computation (DC) block, compute the
values for Λ and Ω. In order to avoid the inversion,
instead of Λ and Ω shifted polynomials β·Λ and β·Ω are
computed. The result of the Chien Search will not be
affected by that and the Forney Algorithm can be
adapted by implementing a constant multiplication to
the formula. Hence, the polynomials will still be
referred to as Λ and Ω. The structure of the iBA is
shown in figure 3. The PEs are initialized with a
polynomial

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=
=

−≤≤
−≤≤

=

130
31

1320
120

tifor
tifor
titfor
tiforSi

iδ

and compute the error locator and the error evaluator
polynomials in 2t clock cycles. Every clock cycle the
computations

rr

i
r
i

rr
i 01

1 δδγδ ⋅Θ+⋅= +
+

⎩
⎨
⎧

=Θ
=

=Θ ++

0
111

rr
i

rr
ir

i MCif
MCifδ

(Θ is a help polynomial) are carried out for 0 ≤ i ≤ 3t,
where the initial values are Θi

0 = δi
0 for

0 ≤ i ≤ 3t and γ 0 = 1. The control element computes γ r

and kr:

1 and 0

)1(and 1
11

1
0

1

+==⇒=

+−==⇒=
++

++

rrrrr

rrrrr

kkMC

kkMC

γγ

δγ
.

The control signal MC r is 1, if δ0

r ≠ 0 and kr ≥ 0, and 0
if otherwise. The internal counter kr of the CE is
initialized with k0 = 0. The Control Element is
combined with the first PE (PE0), as the internal signal
δ0

r+1 is needed to compute the control signal MC r+1.

The processing element and its main part, the
calculation unit, are shown in figure 4. The critical path
of the complete iBA algorithm passes through one
GF(2m) multiplier and one GF(2m) adder of this unit.

T
0

1

T

δ0
r

δr
i+1

MCr

δi
r

γr

Calculation
Unit

Θi
r

δi
r+1

Θi
r+1

t critical

figure 4: Schematic of a processing element

T

0

1
T

δ0
r

MCr

δi
r

δi
r+1

HOLD SIGNAL

(“00...00")

figure 5: Schematic of PE3t

The last processing element can be simplified, because

 syndrome computation block key equation block

data rate s
symbolsD s

syndromestD m 12
2
−

⋅

computational complexity ()
symbol

t ⊕+⊗⋅2 () ()
syndromet ⊕+⊗⋅+ 213

computing power ()⊕+⊗⋅⋅ tD 2 () ()⊕+⊗⋅+⋅
−

⋅ 213
12

2 ttD m

PE computing power ()⊕+⊗=:syndromePE ()⊕+⊗= 2:keyPE

of PEs per block tPEsyndrome 2# = ()
⎥⎥
⎤

⎢⎢
⎡

−
+⋅

=
12

132# mkey
ttPE

table 1: Calculation for constant data rate

Fig. 5. Schematic of PE3t .

needs a lot of resources, and furthermore, the BA leads to
an irregular structure that is very hard to implement in a
parametrizable RS decoder. Sarwate and Shanbhag (2001)
introduced an architecture for the BA, where the division is
replaced by multiplications. Thus the BA can be described in
a very regular structure of identical processing elements with
a small control unit. This composition leads to a parametriz-
able and efficient implementation and hence was used for this
work.

2.3 Chien Search and Forney Algorithm

With the known error locator polynomial it is possible to de-
termine the error locations by finding the zero positions of

λi=

2t∑
j=0

3j ·α
j ·(n−i)

=

2t∑
j=0

3j ·α
jk , k = 0, 1, 2, . . . , (n − 1) .

To finally compute the correction pattern, the error evaluator
polynomial is analyzed. The error patterne is derived from
the following formula:

ei =

{
0 if 3

(
αi

)
6= 0

α−ik
·

�
(
αi

)
3odd(αi)

if 3
(
αi

)
= 0

.

The division can be performed by inverting the signal3odd ,
using a ROM, and a succeeding multiplication of the two
signals.

274 A. Flocke et al.: Parametrizable high-speed Reed Solomon decoders on FPGAs

Table 1. Calculation for constant data rate.

 4

with LEs (logic elements), containing primarily a four
bit input LUT (look-up-table) and an optional register.

3.1 Inversionless BA
The iBA architecture, presented in [2], replaces the
division by multiplications and leads to an arrangement
of a chain of identical processing elements (PE) and
only one irregular control element (CE). A chain of
3t + 1 PEs, consisting of an error locator update (ELU)
and a discrepancy computation (DC) block, compute the
values for Λ and Ω. In order to avoid the inversion,
instead of Λ and Ω shifted polynomials β·Λ and β·Ω are
computed. The result of the Chien Search will not be
affected by that and the Forney Algorithm can be
adapted by implementing a constant multiplication to
the formula. Hence, the polynomials will still be
referred to as Λ and Ω. The structure of the iBA is
shown in figure 3. The PEs are initialized with a
polynomial

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+=
=

−≤≤
−≤≤

=

130
31

1320
120

tifor
tifor
titfor
tiforSi

iδ

and compute the error locator and the error evaluator
polynomials in 2t clock cycles. Every clock cycle the
computations

rr

i
r
i

rr
i 01

1 δδγδ ⋅Θ+⋅= +
+

⎩
⎨
⎧

=Θ
=

=Θ ++

0
111

rr
i

rr
ir

i MCif
MCifδ

(Θ is a help polynomial) are carried out for 0 ≤ i ≤ 3t,
where the initial values are Θi

0 = δi
0 for

0 ≤ i ≤ 3t and γ 0 = 1. The control element computes γ r

and kr:

1 and 0

)1(and 1
11

1
0

1

+==⇒=

+−==⇒=
++

++

rrrrr

rrrrr

kkMC

kkMC

γγ

δγ
.

The control signal MC r is 1, if δ0

r ≠ 0 and kr ≥ 0, and 0
if otherwise. The internal counter kr of the CE is
initialized with k0 = 0. The Control Element is
combined with the first PE (PE0), as the internal signal
δ0

r+1 is needed to compute the control signal MC r+1.

The processing element and its main part, the
calculation unit, are shown in figure 4. The critical path
of the complete iBA algorithm passes through one
GF(2m) multiplier and one GF(2m) adder of this unit.

T
0

1

T

δ0
r

δr
i+1

MCr

δi
r

γr

Calculation
Unit

Θi
r

δi
r+1

Θi
r+1

t critical

figure 4: Schematic of a processing element

T

0

1
T

δ0
r

MCr

δi
r

δi
r+1

HOLD SIGNAL

(“00...00")

figure 5: Schematic of PE3t

The last processing element can be simplified, because

 syndrome computation block key equation block

data rate s
symbolsD s

syndromestD m 12
2
−

⋅

computational complexity ()
symbol

t ⊕+⊗⋅2 () ()
syndromet ⊕+⊗⋅+ 213

computing power ()⊕+⊗⋅⋅ tD 2 () ()⊕+⊗⋅+⋅
−

⋅ 213
12

2 ttD m

PE computing power ()⊕+⊗=:syndromePE ()⊕+⊗= 2:keyPE

of PEs per block tPEsyndrome 2# = ()
⎥⎥
⎤

⎢⎢
⎡

−
+⋅

=
12

132# mkey
ttPE

table 1: Calculation for constant data rate

3 Optimization for FPGA

To map the theoretical formulas of an RS-decoder on an
implementation feasible for FPGAs, the inversionless BA,
mentioned previously, has been used for this design. Fur-
thermore, the regular structure of the iBA has been modi-
fied for resource-sharing. By implementing a fully pipelined
multiplier/adder-unit (also referred to as the calculation unit),
the maximum clock frequency could be increased.

The optimizations described in this work are examplarily
shown for an Altera APEX20KE FPGA with LEs (logic ele-
ments), containing primarily a four bit input LUT (look-up-
table) and an optional register.

3.1 Inversionless BA

The iBA architecture, presented in Sarwate and Shanbhag
(2001), replaces the division by multiplications and leads to
an arrangement of a chain of identical processing elements
(PE) and only one irregular control element (CE). A chain of
3t+1 PEs, consisting of an error locator update (ELU) and a
discrepancy computation (DC) block, compute the values for
3 and�. In order to avoid the inversion, instead of3 and�

shifted polynomialsβ·3 andβ·� are computed. The result
of the Chien Search will not be affected by that and the For-
ney Algorithm can be adapted by implementing a constant
multiplication to the formula. Hence, the polynomials will
still be referred to as3 and�. The structure of the iBA is
shown in2.3. The PEs are initialized with a polynomial

δi =


Si f or 0 ≤ i ≤ 2t − 1
0 f or 2t ≤ i ≤ 3t − 1
1 f or i = 3t

0 f or i = 3t + 1

and compute the error locator and the error evaluator polyno-
mials in 2t clock cycles. Every clock cycle the computations

δr+1
i = γ r

· δr
i+1 + 2r

i · δr
0

2r+1
i =

{
δr
i+1 if MCr

= 1
2r

i if MCr
= 0

(2 is a help polynomial) are carried out for 0≤i≤3t , where
the initial values are20

i =δ0
i for 0≤i≤3t andγ 0=1. The con-

trol element computesγ r andkr :

MCr
= 1 ⇒ γ r+1

= δr
0 andkr+1

= −(kr
+ 1)

MCr
= 0 ⇒ γ r+1

= γ r andkr+1
= kr

+ 1
.

The control signalMC r is 1, if δr
0 6= 0 andkr

≥ 0, and 0
if otherwise. The internal counterkr of the CE is initialized
with k0=0. The Control Element is combined with the first
PE (PE0), as the internal signalδr+1

0 is needed to compute
the control signal MCr+1.

The processing element and its main part, the calculation
unit, are shown in Fig. 4. The critical path of the complete
iBA algorithm passes through one GF(2m) multiplier and one
GF(2m) adder of this unit.

The last processing element can be simplified, because the
second multiplication is always zero (δ0

3t+1=0). As shown

in Fig. 5, the computation of2r+1
i is reduced to a hold sig-

nal, that becomes and stays low, when MCr is high for the
first time. This simplified design uses less than 10% of the
number of LEs that a normal PE uses. The area-reduction is
noticeable in the complete design, if only a few PEs are used
(see Sect.3.2).

3.2 Resource-sharing

For an optimal implementation of the decoding process, it is
important, that the data rates of the four consecutive blocks
match. Otherwise, blocks that can run at a higher data rate
will be idle for a certain amount of time. Let the data rate for
the syndrome computation block beD symbols/s. For ev-
ery codeword, 2t syndromes are computed, so the data rate
for the key equation block isD·

2t
2m−1

syndromes
/
s. With

the computational complexity according to Sect.2.1 and
Sect.3.1 (⊕ denotes a GF addition,⊗ a GF multiplication),
the required computing power for an operation is the prod-
uct of computational complexity and data rate. Finally, the
required number of PEs can be derived as shown in Table 1.

For example for an 8bit-Code witht=8 the num-
ber of MAC units for the syndrome computation is
#PEsyndrome=16. For the key equation with the iBA,

A. Flocke et al.: Parametrizable high-speed Reed Solomon decoders on FPGAs 275

Fig. 6. Schematic of iBA (resource-sharing).

 5

the second multiplication is always zero (δ0
3t+1 = 0). As

shown in figure 5, the computation of Θi
r+1 is reduced to

a hold signal, that becomes and stays low, when MC r is
high for the first time. This simplified design uses less
than 10% of the number of LEs that a normal PE uses.
The area-reduction is noticeable in the complete design,
if only a few PEs are used (see chapter 3.2).

3.2 Resource-sharing
For an optimal implementation of the decoding process,
it is important, that the data rates of the four consecutive
blocks match. Otherwise, blocks that can run at a higher
data rate will be idle for a certain amount of time. Let
the data rate for the syndrome computation block be
D symbols/s. For every codeword, 2t syndromes are
computed, so the data rate for the key equation block is

s
syndromestD m 12

2
−

⋅ . With the computational

complexity according to chapter 2.1 and chapter 3.1
(⊕ denotes a GF addition, ⊗ a GF multiplication), the
required computing power for an operation is the
product of computational complexity and data rate.
Finally, the required number of PEs can be derived as
shown in table 1.

For example for an 8bit-Code with t=8 the number of
MAC units for the syndrome computation is

16# =syndromePE . For the key equation with the iBA,
2# =keyPE processing elements are required for a

constant data rate. So instead of 25# , =iBAkeyPE , there
will be only two PEs, calculating the equations given in
chapter 3.1. The complete implementation is shown in
figure 7. The intermediate results have to be stored in a
register chain. Some of these registers can be used to
pipeline the critical path through the calculation unit.
The small processing element PE’last is added to the
chain in order to save a normal PE’ in some other codes
of the generic design space. The control unit is
integrated in the PE’0, the control signals are then fed
back to the other PE’s.

figure 6: Schematic of iBA (resource-sharing)

4 Results

The design flow, used for the following results, involves
mainly two programs: Scirocco from Synopsys for
logical simulation of the VHDL-code on a functional
level and Quartus II from Altera for synthesis, place and
route, gate level simulation and device programming.
The code was tested on hardware with an APEX
20K300EQC240-1, that was analyzed with an 16702A
logic analyzer from HP. All values concerning the
number of maximum clock frequency and the number
of utilized logic elements are evaluated by the Quartus
software.

In real systems maximum throughput rate is not always
a key objective. Usually, a given specification has to be
met (e.g. real time applications or a certain bit rate).
Nevertheless, the maximum achievable throughput rate
can be a valuable information as time sharing or
parallelization-concepts can be applied to the
implementation.

4.1 Optimized RS-Decoder with Resource-
sharing

The improvement, achieved by the implementation of
resource sharing is shown exemplarily for 8-bit codes,
which are mostly used in practice.

A[LE] = 520t + 200

A[LE] = 245t + 210

0k

2k

4k

6k

8k

10k

12k

2 4 6 8 12 16 20
t maximum correctable errors

A
 [n

o.
 o

f L
E]

FIFO
SYNDROME
KEY
CHIEN
FORNEY

without resource
sharing

figure 7: Reduction of utilized LEs for 8-bit codes

with pipelined
calculation unit

without pipelined
calculation unit

0

20

40

60

80

100

120

140

2 4 6 8 12 16 20
t maximum correctable errors

f m
ax

im
um

 fr
eq

ue
nc

y
[M

H
z]

figure 8: Maximum clock frequency (8-bit-codes)

Fig. 7. Reduction of utilized LEs for 8-bit codes.

#PEkey=2 processing elements are required for a constant
data rate. So instead of #PEkey, iBA=25, there will be only
two PEs, calculating the equations given in Sect.3.1. The
complete implementation is shown in Fig. 6. The intermedi-
ate results have to be stored in a register chain. Some of these
registers can be used to pipeline the critical path through the
calculation unit. The small processing element PE’last is
added to the chain in order to save a normal PE’ in some
other codes of the generic design space. The control unit is
integrated in the PE’0, the control signals are then fed back
to the other PE’s.

4 Results

The design flow, used for the following results, involves
mainly two programs: Scirocco from Synopsys for logical
simulation of the VHDL-code on a functional level and Quar-
tus II from Altera for synthesis, place and route, gate level
simulation and device programming. The code was tested
on hardware with an APEX 20K300EQC240-1, that was an-
alyzed with an 16702A logic analyzer from HP. All values
concerning the number of maximum clock frequency and the
number of utilized logic elements are evaluated by the Quar-
tus software.

 5

the second multiplication is always zero (δ0
3t+1 = 0). As

shown in figure 5, the computation of Θi
r+1 is reduced to

a hold signal, that becomes and stays low, when MC r is
high for the first time. This simplified design uses less
than 10% of the number of LEs that a normal PE uses.
The area-reduction is noticeable in the complete design,
if only a few PEs are used (see chapter 3.2).

3.2 Resource-sharing
For an optimal implementation of the decoding process,
it is important, that the data rates of the four consecutive
blocks match. Otherwise, blocks that can run at a higher
data rate will be idle for a certain amount of time. Let
the data rate for the syndrome computation block be
D symbols/s. For every codeword, 2t syndromes are
computed, so the data rate for the key equation block is

s
syndromestD m 12

2
−

⋅ . With the computational

complexity according to chapter 2.1 and chapter 3.1
(⊕ denotes a GF addition, ⊗ a GF multiplication), the
required computing power for an operation is the
product of computational complexity and data rate.
Finally, the required number of PEs can be derived as
shown in table 1.

For example for an 8bit-Code with t=8 the number of
MAC units for the syndrome computation is

16# =syndromePE . For the key equation with the iBA,
2# =keyPE processing elements are required for a

constant data rate. So instead of 25# , =iBAkeyPE , there
will be only two PEs, calculating the equations given in
chapter 3.1. The complete implementation is shown in
figure 7. The intermediate results have to be stored in a
register chain. Some of these registers can be used to
pipeline the critical path through the calculation unit.
The small processing element PE’last is added to the
chain in order to save a normal PE’ in some other codes
of the generic design space. The control unit is
integrated in the PE’0, the control signals are then fed
back to the other PE’s.

figure 6: Schematic of iBA (resource-sharing)

4 Results

The design flow, used for the following results, involves
mainly two programs: Scirocco from Synopsys for
logical simulation of the VHDL-code on a functional
level and Quartus II from Altera for synthesis, place and
route, gate level simulation and device programming.
The code was tested on hardware with an APEX
20K300EQC240-1, that was analyzed with an 16702A
logic analyzer from HP. All values concerning the
number of maximum clock frequency and the number
of utilized logic elements are evaluated by the Quartus
software.

In real systems maximum throughput rate is not always
a key objective. Usually, a given specification has to be
met (e.g. real time applications or a certain bit rate).
Nevertheless, the maximum achievable throughput rate
can be a valuable information as time sharing or
parallelization-concepts can be applied to the
implementation.

4.1 Optimized RS-Decoder with Resource-
sharing

The improvement, achieved by the implementation of
resource sharing is shown exemplarily for 8-bit codes,
which are mostly used in practice.

A[LE] = 520t + 200

A[LE] = 245t + 210

0k

2k

4k

6k

8k

10k

12k

2 4 6 8 12 16 20
t maximum correctable errors

A
 [n

o.
 o

f L
E]

FIFO
SYNDROME
KEY
CHIEN
FORNEY

without resource
sharing

figure 7: Reduction of utilized LEs for 8-bit codes

with pipelined
calculation unit

without pipelined
calculation unit

0

20

40

60

80

100

120

140

2 4 6 8 12 16 20
t maximum correctable errors

f m
ax

im
um

 fr
eq

ue
nc

y
[M

H
z]

figure 8: Maximum clock frequency (8-bit-codes) Fig. 8. Maximum clock frequency (8-bit-codes).

 6

Compared to the code without resource-sharing, the
AT-product increases in average by a factor of four
(figure 7, figure 8). The maximum clock frequency
increased only by a factor of two, though the critical
path through the LEs could be fully pipelined. This is
due to the fact, that the critical path of the whole
decoder was then determined by the inverter-ROM,
which can not be further pipelined.
The maximum achievable throughput rate is roughly
1Gbit/s on an APEX 20KE device. On a standard
Stratix FPGA the maximum throughput for an 8-bit
code with eight correctable errors (255,239,8) is about
1.3 Gbit/s.

When the optimized code is compared against other
Reed-Solomon decoder implementations, the realization
introduced in this paper shows comparable qualities in
terms of LE utilization and maximum clock frequency.
In figure 9, three different codes (m = 8) with t = 8, 16
are compared with other state-of-the-art solutions [13],
[14]. Two codes (255,239,8), (255,223,16) are
compliant to CCSDS (Consultative Committee for
Space Data Systems) standards and a shortened code
(204,188,8) is compliant to the DVB (Digital Video
Broadcasting) standard. All values for [13] and the
implementation presented in this paper have been
compiled for an APEX 20KE device. The values for the
DVB code have been taken from the data sheet [14].

figure 9: Comparison with other FPGA IP-cores

5 Summary

In this paper a highly parametrizable RS-Decoder for
FPGAs has been introduced. The implementation, based
on an inversionless Berlekamp Algorithm for solving
the key equation, achieves high throughput rates while
consuming, compared with other FPGA-
implementations, only a small amount of logical
elements. The maximum throughput was about 1Gbit/s
on an APEX 20K300E device with speed grade 1.

6 References

[1] Blahut, R.E.: Algebraic Methods for Signal
Processing and Communications Coding.
Springer-Verlag, 1992

[2] Sarwate, D.V.; Shanbhag, N.R.: High-Speed
Architectures for Reed-Solomon Decoders.
IEEE Transactions VLSI Systems, Vol.9 No.5
October 2001

[3] Clark, G.C.; Cain, J.B.: Error-Correction
Coding for Digital Communications. Plenum
Press, 1981

[4] Hamming, R.W.; Coding and Information
Theory. Prentice-Hall, 1980

[5] Reed, I.S.; Chen, X.: Error-Control Coding for
Data Networks. Kluwer Academic Publishers,
1999

[6] Roman, S.: Coding and Information Theory.
Springer-Verlag 1992

[7] Berlekamp, E.R.: Algebraic Coding Theory.
McGraw-Hill, 1968

[8] Takagi, N.; Yoshiki, J.;Takagi, K.: A Fast
Algorithm for Multiplicative Inversion in
GF(2m) Using Normal Basis. IEEE
Transactions on Computers, Vol.50 No.5, Mai
2001, pp. 394-398

[9] Wilhelm, W.; A New Scalable VLSI
Architecture for Reed-Solomon Decoders.
IEEE Journal of Solid-State Circuits, Vol. 34,
No. 3, March 1999, pp. 388-396

[10] Altera Corporation: Integrating Product-Term
Logic in APEX20K Devices, Application Note
112.
http://www.altera.com/literature /an/an112.pdf,
1999

[11] Altera Corporation: Designing with ESBs in
APEX II Devices, Application Note 179.
http://www.altera.com/literature /an/an179.pdf,
1999

[12] Veendrick, H.: Deep-Submicron CMOS ICs
From Basics to ASICs. Kluwer academic
publishers, 2000, pp. 338-339

[13] Website Altera:
http://www.altera.com/products/ip/ipm-
index.html

[14] Website Amphion:
http://www.amphion.com/cs3210.html

255,239 8

204,188 8255,223 16

0 k

1 k

2 k

3 k

4 k

5 k

6 k

7 k

5 10 15

T = 1/D = 1/f [ms/MSample]

A
 /

[N
o.

 o
f L

E]

[13] V3.3.3
[14]
this work

5k/27,8

Fig. 9. Comparison with other FPGA IP-cores.

In real systems maximum throughput rate is not always a
key objective. Usually, a given specification has to be met
(e.g. real time applications or a certain bit rate). Neverthe-
less, the maximum achievable throughput rate can be a valu-
able information as time sharing or parallelization-concepts
can be applied to the implementation.

4.1 Optimized RS-Decoder with Resource-sharing

The improvement, achieved by the implementation of re-
source sharing is shown exemplarily for 8-bit codes, which
are mostly used in practice.

Compared to the code without resource-sharing, the
AT-product increases in average by a factor of four (Fig. 7,
Fig. 8). The maximum clock frequency increased only by a
factor of two, though the critical path through the LEs could
be fully pipelined. This is due to the fact, that the critical path
of the whole decoder was then determined by the inverter-
ROM, which can not be further pipelined.

The maximum achievable throughput rate is roughly
1Gbit/s on an APEX 20KE device. On a standard Stratix
FPGA the maximum throughput for an 8-bit code with eight
correctable errors (255,239,8) is about 1.3 Gbit/s.

276 A. Flocke et al.: Parametrizable high-speed Reed Solomon decoders on FPGAs

When the optimized code is compared against other Reed-
Solomon decoder implementations, the realization intro-
duced in this paper shows comparable qualities in terms of
LE utilization and maximum clock frequency.

In Fig. 9, three different codes (m=8) witht=8, 16
are compared with other state-of-the-art solutions (Web-
site Altera, Website Amphion). Two codes (255,239,8),
(255,223,16) are compliant to CCSDS (Consultative Com-
mittee for Space Data Systems) standards and a shortened
code (204,188,8) is compliant to the DVB (Digital Video
Broadcasting) standard. All values for Website Altera and
the implementation presented in this paper have been com-
piled for an APEX 20 KE device. The values for the DVB
code have been taken from the data sheet (Website Am-
phion).

5 Summary

In this paper a highly parametrizable RS-Decoder for
FPGAs has been introduced. The implementation, based on
an inversionless Berlekamp Algorithm for solving the key
equation, achieves high throughput rates while consuming,
compared with other FPGA-implementations, only a small
amount of logical elements. The maximum throughput was
about 1 Gbit/s on an APEX 20 K300E device with speed
grade 1.

References

Altera Corporation: Integrating Product-Term Logic in APEX20K
Devices, Application Note 112,http://www.altera.com/literature/
an/an112.pdf, 1999a.

Altera Corporation: Designing with ESBs in APEX II Devices, Ap-
plication Note 179,http://www.altera.com/literature/an/an179.
pdf, 1999b.

Berlekamp, E. R.: Algebraic Coding Theory, McGraw-Hill, 1968.
Blahut, R. E.: Algebraic Methods for Signal Processing and Com-

munications Coding, Springer-Verlag, 1992.
Clark, G. C. and Cain, J. B.: Error-Correction Coding for Digital

Communications, Plenum Press, 1981.
Hamming, R. W.: Coding and Information Theory, Prentice-Hall,

1980.
Reed, I. S. and Chen, X.: Error-Control Coding for Data Networks,

Kluwer Academic Publishers, 1999.
Roman, S.: Coding and Information Theory, Springer-Verlag, 1992.
Sarwate, D. V. and Shanbhag, N. R.: High-Speed Architectures

for Reed-Solomon Decoders, IEEE Transactions VLSI Systems,
Vol. 9, No. 5, October 2001.

Takagi, N., Yoshiki, J., and Takagi, K.: A Fast Algorithm for Multi-
plicative Inversion in GF(2m) Using Normal Basis, IEEE Trans-
actions on Computers, Vol. 50, No. 5 Mai, 394–398, 2001.

Veendrick, H.: Deep-Submicron CMOS ICs From Basics to ASICs,
Kluwer academic publishers, 338–339, 2000.

Website Altera: http://www.altera.com/products/ip/ipm-index.
html.

Website Amphion:http://www.amphion.com/cs3210.html.
Wilhelm, W.: A New Scalable VLSI Architecture for Reed-

Solomon Decoders, IEEE Journal of Solid-State Circuits, Vol.
34, No. 3, 388–396, March 1999.

http://www.altera.com/literature/an/an112.pdf
http://www.altera.com/literature/an/an112.pdf
http://www.altera.com/literature/an/an179.pdf
http://www.altera.com/literature/an/an179.pdf
http://www.altera.com/products/ip/ipm-index.html
http://www.altera.com/products/ip/ipm-index.html
http://www.amphion.com/cs3210.html

