
Advances in Radio Science, 3, 325–329, 2005
SRef-ID: 1684-9973/ars/2005-3-325
© Copernicus GmbH 2005

Advances in
Radio Science

An Adiabatic Architecture for Linear Signal Processing

M. Vollmer and J. Götze

University of Dortmund, Information Processing Lab., Germany

Abstract. Using adiabatic CMOS logic instead of the more
traditional static CMOS logic can lower the power consump-
tion of a hardware design. However, the characteristic dif-
ferences between adiabatic and static logic, such as a four-
phase clock, have a far reaching influence on the design it-
self. These influences are investigated in this paper by adapt-
ing a systolic array of CORDIC devices to be implemented
adiabatically.

We present a means to describe adiabatic logic in VHDL
and use it to define the systolic array with precise timing and
bit-true calculations. The large pipeline bubbles that occur in
a naive version of this array are identified and removed to a
large degree. As an example, we demonstrate a parameter-
ization of the CORDIC array that carries out adaptive RLS
filtering.

1 Functional Simulation of Adiabatic Logic

Adiabatic logic families such as Positive Adiabatic Logic
(PFAL, Vetuli et al., 1996) use voltage ramps in order to
charge/discharge the capacitances in an energy efficent way.
In contrast, traditional static CMOS loads/unloads the capac-
itances with steep voltage slopes. In addition to two phases
where the clock ishigh or low, respectively, adiabatic logic
uses two more phases of the same duration where the clock
transitions in a ramp (Fig.1, signalsφ1 andφ2). SeeFischer
et al.(2003) for a more detailed description.

The optimum operating frequency of adiabatic logic tends
to be lower than that of static CMOS, leading to the desire
for highly parallel designs. We will present such a design for
linear signal processing in the sequel.

Due to the way basic functional blocks such asnot, and
or larger entities like a half-adder are implemented, they are
inherently synchronized with the power clock: they sample
their inputs in the rising phase of their clock and their outputs
are valid during the immediately following high phase.

When basic blocks are connected, they automatically form
a pipeline. For example, when two blocks are connected se-
rially, they form a pipeline that can consume one input every

Correspondence to:M. Vollmer
(marius.vollmer@udo.edu)

clock-cycle and produces one output every clock-cycle with
a delay of two phases. The second block needs to sample its
inputs while the outputs from the first block are valid. Thus,
its clock needs to be in the rising phase while the clock of
the first block is in its high phase. In general, an adiabatic
circuit therefore needs to provide four synchronized global
power clocks such that in every phase all of the four phase
kinds (low, rising, high, falling) are available.

Figure 1 shows this situation for two inverters. It also
shows the dual rail encoding that adiabatic logic families use:
for every input signal, one also needs to provide the logically
inverted signal. For a logicone, a signal follows its associ-
ated power clock, for a logiczero, it stays at ground.

To verify the lower energy dissipation of adiabatic logic
as compared to static logic, one needs to perform transient
simulations on the transistor and wire level with, e.g., SPICE.
When designing larger circuits, like the array of CORDICs
in the sequel, it is advantageous to first concentrate only on
the functional aspects. This allows a simulation to complete
much faster and thus mistakes can be made and corrected
more quickly.

We have therefore created a simple set of conventions for
VHDL that allow the description of logic blocks that are im-
plicitly synchronized with a four phase clock. Figure2shows
the simplifications relative to Fig.1 and Fig.3 shows simu-
lated wave forms. The dual rail encoding is not modeled, and
there is only one global clock net. Signals are valid during
two phases since VHDL events happen at phase transitions
and the sampled signal must be stable at this point. Never-
theless, the phase relations of two blocks can be observed in
simulated waveforms and misalignments can be detected.

Figure4 shows the VHDL code for a adiabatic inverter and
Fig. 5 shows how to instantiate the two inverters of Fig.2.
Thephase generic of a component aligns it with one of the
four phases of the global clock.

Building on this conventions, a parameterizable array of
CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.



326 M. Vollmer and J. G̈otze: An Adiabatic Architecture for Linear Signal Processing

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 2

Figure 4 shows the VHDL code for a adiabatic inverter and Figure 5 shows how to instantiate the two inverters of
Figure 2. Thephase generic of a component aligns it with one of the four phases ofthe global clock.

Building on this conventions, a parameterizable array of CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.

not not
in

in

mid

mid

out

out

φ1 φ2

φ1

φ2

in

in

mid

mid

out

out

Figure 1. Two adiabatic inverters.

not notin mid out

clk

φ1 φ2

Figure 2. Two adiabatic inverters in VHDL.

Figure 3. Simulated wave forms for Figure 2.

architecture default of adi_inv is
begin

process
begin

o <= ’X’;
loop
wait on clk;
if clk = eval_phase (phase) then

o <= not i;
elsif clk = reco_phase (phase) then

o <= ’X’;
end if;

end loop;
end process;

end default;

Figure 4. VHDL code for an adiabatic inverter.

inv1: entity work.adi_inv
generic map (

phase => ph2)
port map (

clk => clk,
i => s_in,
o => s_mid);

inv2: entity work.adi_inv
generic map (

phase => ph2+1)
port map (

clk => clk,
i => s_mid,
o => s_out);

Figure 5. VHDL code for instantiating two inverters.

V
1
→

V
′ 1

V
2
→

V
′ 2

W1 W2

W
′

2

. . . , ort, hyp, lin, set

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V
′

1 V
′

2

0 W
′

2

]

Figure 6. The adiabatic architecture.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

Figure 7. The CORDIC cells. Left: vector, right: rotation.

Fig. 1. Two adiabatic inverters.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 2

Figure 4 shows the VHDL code for a adiabatic inverter and Figure 5 shows how to instantiate the two inverters of
Figure 2. Thephase generic of a component aligns it with one of the four phases ofthe global clock.

Building on this conventions, a parameterizable array of CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.

not not
in

in

mid

mid

out

out

φ1 φ2

φ1

φ2

in

in

mid

mid

out

out

Figure 1. Two adiabatic inverters.

not notin mid out

clk

φ1 φ2

Figure 2. Two adiabatic inverters in VHDL.

Figure 3. Simulated wave forms for Figure 2.

architecture default of adi_inv is
begin

process
begin

o <= ’X’;
loop
wait on clk;
if clk = eval_phase (phase) then

o <= not i;
elsif clk = reco_phase (phase) then

o <= ’X’;
end if;

end loop;
end process;

end default;

Figure 4. VHDL code for an adiabatic inverter.

inv1: entity work.adi_inv
generic map (

phase => ph2)
port map (

clk => clk,
i => s_in,
o => s_mid);

inv2: entity work.adi_inv
generic map (

phase => ph2+1)
port map (

clk => clk,
i => s_mid,
o => s_out);

Figure 5. VHDL code for instantiating two inverters.

V
1
→

V
′ 1

V
2
→

V
′ 2

W1 W2

W
′

2

. . . , ort, hyp, lin, set

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V
′

1 V
′

2

0 W
′

2

]

Figure 6. The adiabatic architecture.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

Figure 7. The CORDIC cells. Left: vector, right: rotation.

Fig. 2. Two adiabatic inverters in VHDL.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 2

Figure 4 shows the VHDL code for a adiabatic inverter and Figure 5 shows how to instantiate the two inverters of
Figure 2. Thephase generic of a component aligns it with one of the four phases ofthe global clock.

Building on this conventions, a parameterizable array of CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.

not not
in

in

mid

mid

out

out

φ1 φ2

φ1

φ2

in

in

mid

mid

out

out

Figure 1. Two adiabatic inverters.

not notin mid out

clk

φ1 φ2

Figure 2. Two adiabatic inverters in VHDL.

Figure 3. Simulated wave forms for Figure 2.

architecture default of adi_inv is
begin

process
begin

o <= ’X’;
loop
wait on clk;
if clk = eval_phase (phase) then

o <= not i;
elsif clk = reco_phase (phase) then

o <= ’X’;
end if;

end loop;
end process;

end default;

Figure 4. VHDL code for an adiabatic inverter.

inv1: entity work.adi_inv
generic map (

phase => ph2)
port map (

clk => clk,
i => s_in,
o => s_mid);

inv2: entity work.adi_inv
generic map (

phase => ph2+1)
port map (

clk => clk,
i => s_mid,
o => s_out);

Figure 5. VHDL code for instantiating two inverters.

V
1
→

V
′ 1

V
2
→

V
′ 2

W1 W2

W
′

2

. . . , ort, hyp, lin, set

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V
′

1 V
′

2

0 W
′

2

]

Figure 6. The adiabatic architecture.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

Figure 7. The CORDIC cells. Left: vector, right: rotation.

Fig. 3. Simulated wave forms for Fig.2.

2 Systolic Architecture

The presented architecture is an array of locally connected
CORDIC devices that resembles the familiar triangular ar-
ray for computing a QR decomposition (Haykin, 1996). It is
depicted in Fig.6 together with its inputs and outputs.

Such a device is able to find a transformation2 and apply
it to matricesV1, V2, W1, W2 of real numbers such that

2

[
V1 V2

W1 W2

]
=

[
V′

1 V′
2

0 W′
2

]
. (1)

In this equation,V1, which must be upper triangular, andV2
represent the values in the internal registers of the architec-
ture. The matricesW1 andW2 represent the input values.
The transformation2 is chosen such that theW2 matrix is
annihilated. After applying2, the matricesV′

1 (again upper
triangular) andV′

2 represent the new values of the internal
registers, and the matrixW′

2 represents the outputs.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 2

Figure 4 shows the VHDL code for a adiabatic inverter and Figure 5 shows how to instantiate the two inverters of
Figure 2. Thephase generic of a component aligns it with one of the four phases ofthe global clock.

Building on this conventions, a parameterizable array of CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.

not not
in

in

mid

mid

out

out

φ1 φ2

φ1

φ2

in

in

mid

mid

out

out

Figure 1. Two adiabatic inverters.

not notin mid out

clk

φ1 φ2

Figure 2. Two adiabatic inverters in VHDL.

Figure 3. Simulated wave forms for Figure 2.

architecture default of adi_inv is
begin

process
begin

o <= ’X’;
loop
wait on clk;
if clk = eval_phase (phase) then

o <= not i;
elsif clk = reco_phase (phase) then

o <= ’X’;
end if;

end loop;
end process;

end default;

Figure 4. VHDL code for an adiabatic inverter.

inv1: entity work.adi_inv
generic map (

phase => ph2)
port map (

clk => clk,
i => s_in,
o => s_mid);

inv2: entity work.adi_inv
generic map (

phase => ph2+1)
port map (

clk => clk,
i => s_mid,
o => s_out);

Figure 5. VHDL code for instantiating two inverters.

V
1
→

V
′ 1

V
2
→

V
′ 2

W1 W2

W
′

2

. . . , ort, hyp, lin, set

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V
′

1 V
′

2

0 W
′

2

]

Figure 6. The adiabatic architecture.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

Figure 7. The CORDIC cells. Left: vector, right: rotation.

Fig. 4. VHDL code for an adiabatic inverter.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 2

Figure 4 shows the VHDL code for a adiabatic inverter and Figure 5 shows how to instantiate the two inverters of
Figure 2. Thephase generic of a component aligns it with one of the four phases ofthe global clock.

Building on this conventions, a parameterizable array of CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.

not not
in

in

mid

mid

out

out

φ1 φ2

φ1

φ2

in

in

mid

mid

out

out

Figure 1. Two adiabatic inverters.

not notin mid out

clk

φ1 φ2

Figure 2. Two adiabatic inverters in VHDL.

Figure 3. Simulated wave forms for Figure 2.

architecture default of adi_inv is
begin

process
begin

o <= ’X’;
loop
wait on clk;
if clk = eval_phase (phase) then

o <= not i;
elsif clk = reco_phase (phase) then

o <= ’X’;
end if;

end loop;
end process;

end default;

Figure 4. VHDL code for an adiabatic inverter.

inv1: entity work.adi_inv
generic map (

phase => ph2)
port map (

clk => clk,
i => s_in,
o => s_mid);

inv2: entity work.adi_inv
generic map (

phase => ph2+1)
port map (

clk => clk,
i => s_mid,
o => s_out);

Figure 5. VHDL code for instantiating two inverters.

V
1
→

V
′ 1

V
2
→

V
′ 2

W1 W2

W
′

2

. . . , ort, hyp, lin, set

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V
′

1 V
′

2

0 W
′

2

]

Figure 6. The adiabatic architecture.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

Figure 7. The CORDIC cells. Left: vector, right: rotation.

Fig. 5. VHDL code for instantiating two inverters.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 2

Figure 4 shows the VHDL code for a adiabatic inverter and Figure 5 shows how to instantiate the two inverters of
Figure 2. Thephase generic of a component aligns it with one of the four phases ofthe global clock.

Building on this conventions, a parameterizable array of CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.

not not
in

in

mid

mid

out

out

φ1 φ2

φ1

φ2

in

in

mid

mid

out

out

Figure 1. Two adiabatic inverters.

not notin mid out

clk

φ1 φ2

Figure 2. Two adiabatic inverters in VHDL.

Figure 3. Simulated wave forms for Figure 2.

architecture default of adi_inv is
begin

process
begin

o <= ’X’;
loop
wait on clk;
if clk = eval_phase (phase) then

o <= not i;
elsif clk = reco_phase (phase) then

o <= ’X’;
end if;

end loop;
end process;

end default;

Figure 4. VHDL code for an adiabatic inverter.

inv1: entity work.adi_inv
generic map (

phase => ph2)
port map (

clk => clk,
i => s_in,
o => s_mid);

inv2: entity work.adi_inv
generic map (

phase => ph2+1)
port map (

clk => clk,
i => s_mid,
o => s_out);

Figure 5. VHDL code for instantiating two inverters.

V
1
→

V
′ 1

V
2
→

V
′ 2

W1 W2

W
′

2

. . . , ort, hyp, lin, set

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V
′

1 V
′

2

0 W
′

2

]

Figure 6. The adiabatic architecture.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

Figure 7. The CORDIC cells. Left: vector, right: rotation.Fig. 6. The adiabatic architecture.

The CORDICs can be programmed at run-time to con-
struct transformations2 with different additional properties,
see the next section. A circular cell in Fig.6 represents a
vector CORDIC: it finds a elementary 2×2 transformation
that annihilates a single element ofW1. A square cell repre-
sents arotation CORDIC that applies the elementary trans-
formation found by the circular cells in its row.

The CORDIC cells have an internal feedback loop as de-
picted in Fig.7. In a way, these loops create the internal



M. Vollmer and J. G̈otze: An Adiabatic Architecture for Linear Signal Processing 327

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 2

Figure 4 shows the VHDL code for a adiabatic inverter and Figure 5 shows how to instantiate the two inverters of
Figure 2. Thephase generic of a component aligns it with one of the four phases ofthe global clock.

Building on this conventions, a parameterizable array of CORDIC cells has been developed that can be programmed
to carry out a number of signal processing tasks.

not not
in

in

mid

mid

out

out

φ1 φ2

φ1

φ2

in

in

mid

mid

out

out

Figure 1. Two adiabatic inverters.

not notin mid out

clk

φ1 φ2

Figure 2. Two adiabatic inverters in VHDL.

Figure 3. Simulated wave forms for Figure 2.

architecture default of adi_inv is
begin

process
begin

o <= ’X’;
loop
wait on clk;
if clk = eval_phase (phase) then

o <= not i;
elsif clk = reco_phase (phase) then

o <= ’X’;
end if;

end loop;
end process;

end default;

Figure 4. VHDL code for an adiabatic inverter.

inv1: entity work.adi_inv
generic map (

phase => ph2)
port map (

clk => clk,
i => s_in,
o => s_mid);

inv2: entity work.adi_inv
generic map (

phase => ph2+1)
port map (

clk => clk,
i => s_mid,
o => s_out);

Figure 5. VHDL code for instantiating two inverters.

V
1
→

V
′ 1

V
2
→

V
′ 2

W1 W2

W
′

2

. . . , ort, hyp, lin, set

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V
′

1 V
′

2

0 W
′

2

]

Figure 6. The adiabatic architecture.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

2−0 2−0

+/− /0 +/− /0

2−1 2−1

+/− /0 +/− /0

Figure 7. The CORDIC cells. Left: vector, right: rotation.
Fig. 7. The CORDIC cells. Left: vector, right: rotation.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 3

2 Systolic Architecture

The presented architecture is an array of locally connectedCORDIC devices that resembles the familiar triangular array
for computing a QR decomposition (Haykin, 1996). It is depicted in Figure 6 together with its inputs and outputs.

Such a device is able to find a transformationΘ and apply it to matricesV 1, V 2, W 1, W 2 of real numbers such that

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V ′

1 V ′

2

0 W ′

2

]

. (1)

In this equation,V 1, which must be upper triangular, andV 2 represent the values in the internal registers of the architec-
ture. The matricesW 1 andW 2 represent the input values. The transformationΘ is chosen such that theW 2 matrix is
annihilated. After applyingΘ, the matricesV ′

1 (again upper triangular) andV ′

2 represent the new values of the internal
registers, and the matrixW ′

2 represents the outputs.
The CORDICs can be programmed at run-time to construct transformationsΘ with different additional properties,

see the next section. A circular cell in Figure 6 represents avector CORDIC: it finds a elementary2 × 2 transforma-
tion that annihilates a single element ofW 1. A square cell represents arotation CORDIC that applies the elementary
transformation found by the circular cells in its row.

The CORDIC cells have an internal feedback loop as depicted in Figure 7. In a way, these loops create the internal
registers that storeV 1 andV 2. In a static design, there will be a real register to form the loop, but in an adiabatic design,
the adders themselves are pipelined and behave inherently as registers.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

Figure 8. Area-optimized device.

The more micro-rotation stages there are in the CORDICs, thelonger the
pipeline inside each cell becomes. Waiting for the result tobe fed back to the
input creates large pipeline bubbles. Figure 9 depicts thiseffect. It shows sim-
ulated waveforms of the signals between the stages of one CORDIC. It can be
seen that one must wait for a value to slowly ripple through all stages until the
next meaningful computation can be started.

To get around this unfortunate situation, one can observe that a given stage
in a given CORDIC cell can do the work of its right neighbor during the time
it would otherwise sit idle. So instead of distributing the control information
to the right, a circular cell can feed this information back to itself and assume
the role of its neighbors in subsequent cycles. Those neighbors can be removed
from the design. Figure 8 shows the result: a single column ofCORDIC devices
that can be in both thevector androtation modes. Figure 10 confirms that the
bubbles have disappeared. The length of the original bubbledetermines how
many columns can be collapsed into one.

Figure 9. Pipeline bubbles. Figure 10. No pipeline bubbles.

3 Linear Transformations for Signal Processing

As mentioned in the previous section, properties of the transformation matrixΘ in Equation (1) can be controlled at
run-time such that a number ofmodes are created that the array can be in. The modes and possible applications of them
are listed below.

Fig. 8. Area-optimized device.

registers that storeV1 andV2. In a static design, there will
be a real register to form the loop, but in an adiabatic design,
the adders themselves are pipelined and behave inherently as
registers.

The more micro-rotation stages there are in the CORDICs,
the longer the pipeline inside each cell becomes. Wait-
ing for the result to be fed back to the input creates large
pipeline bubbles. Figure9 depicts this effect. It shows sim-
ulated waveforms of the signals between the stages of one
CORDIC. It can be seen that one must wait for a value to
slowly ripple through all stages until the next meaningful
computation can be started.

To get around this unfortunate situation, one can observe
that a given stage in a given CORDIC cell can do the work of
its right neighbor during the time it would otherwise sit idle.
So instead of distributing the control information to the right,
a circular cell can feed this information back to itself and
assume the role of its neighbors in subsequent cycles. Those
neighbors can be removed from the design. Figure8 shows
the result: a single column of CORDIC devices that can be
in both thevectorand rotation modes. Figure10 confirms
that the bubbles have disappeared. The length of the original
bubble determines how many columns can be collapsed into
one.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 3

2 Systolic Architecture

The presented architecture is an array of locally connectedCORDIC devices that resembles the familiar triangular array
for computing a QR decomposition (Haykin, 1996). It is depicted in Figure 6 together with its inputs and outputs.

Such a device is able to find a transformationΘ and apply it to matricesV 1, V 2, W 1, W 2 of real numbers such that

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V ′

1 V ′

2

0 W ′

2

]

. (1)

In this equation,V 1, which must be upper triangular, andV 2 represent the values in the internal registers of the architec-
ture. The matricesW 1 andW 2 represent the input values. The transformationΘ is chosen such that theW 2 matrix is
annihilated. After applyingΘ, the matricesV ′

1 (again upper triangular) andV ′

2 represent the new values of the internal
registers, and the matrixW ′

2 represents the outputs.
The CORDICs can be programmed at run-time to construct transformationsΘ with different additional properties,

see the next section. A circular cell in Figure 6 represents avector CORDIC: it finds a elementary2 × 2 transforma-
tion that annihilates a single element ofW 1. A square cell represents arotation CORDIC that applies the elementary
transformation found by the circular cells in its row.

The CORDIC cells have an internal feedback loop as depicted in Figure 7. In a way, these loops create the internal
registers that storeV 1 andV 2. In a static design, there will be a real register to form the loop, but in an adiabatic design,
the adders themselves are pipelined and behave inherently as registers.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

Figure 8. Area-optimized device.

The more micro-rotation stages there are in the CORDICs, thelonger the
pipeline inside each cell becomes. Waiting for the result tobe fed back to the
input creates large pipeline bubbles. Figure 9 depicts thiseffect. It shows sim-
ulated waveforms of the signals between the stages of one CORDIC. It can be
seen that one must wait for a value to slowly ripple through all stages until the
next meaningful computation can be started.

To get around this unfortunate situation, one can observe that a given stage
in a given CORDIC cell can do the work of its right neighbor during the time
it would otherwise sit idle. So instead of distributing the control information
to the right, a circular cell can feed this information back to itself and assume
the role of its neighbors in subsequent cycles. Those neighbors can be removed
from the design. Figure 8 shows the result: a single column ofCORDIC devices
that can be in both thevector androtation modes. Figure 10 confirms that the
bubbles have disappeared. The length of the original bubbledetermines how
many columns can be collapsed into one.

Figure 9. Pipeline bubbles. Figure 10. No pipeline bubbles.

3 Linear Transformations for Signal Processing

As mentioned in the previous section, properties of the transformation matrixΘ in Equation (1) can be controlled at
run-time such that a number ofmodes are created that the array can be in. The modes and possible applications of them
are listed below.

Fig. 9. Pipeline bubbles.

Book: Kleinheubacher Berichte

MS No.: KH2004-A-00022

First author: Vollmer 3

2 Systolic Architecture

The presented architecture is an array of locally connectedCORDIC devices that resembles the familiar triangular array
for computing a QR decomposition (Haykin, 1996). It is depicted in Figure 6 together with its inputs and outputs.

Such a device is able to find a transformationΘ and apply it to matricesV 1, V 2, W 1, W 2 of real numbers such that

Θ

[

V 1 V 2

W 1 W 2

]

=

[

V ′

1 V ′

2

0 W ′

2

]

. (1)

In this equation,V 1, which must be upper triangular, andV 2 represent the values in the internal registers of the architec-
ture. The matricesW 1 andW 2 represent the input values. The transformationΘ is chosen such that theW 2 matrix is
annihilated. After applyingΘ, the matricesV ′

1 (again upper triangular) andV ′

2 represent the new values of the internal
registers, and the matrixW ′

2 represents the outputs.
The CORDICs can be programmed at run-time to construct transformationsΘ with different additional properties,

see the next section. A circular cell in Figure 6 represents avector CORDIC: it finds a elementary2 × 2 transforma-
tion that annihilates a single element ofW 1. A square cell represents arotation CORDIC that applies the elementary
transformation found by the circular cells in its row.

The CORDIC cells have an internal feedback loop as depicted in Figure 7. In a way, these loops create the internal
registers that storeV 1 andV 2. In a static design, there will be a real register to form the loop, but in an adiabatic design,
the adders themselves are pipelined and behave inherently as registers.

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

2−0 2−0

+/− /0 +/− /0

CTRL

2−1 2−1

+/− /0 +/− /0

CTRL

Figure 8. Area-optimized device.

The more micro-rotation stages there are in the CORDICs, thelonger the
pipeline inside each cell becomes. Waiting for the result tobe fed back to the
input creates large pipeline bubbles. Figure 9 depicts thiseffect. It shows sim-
ulated waveforms of the signals between the stages of one CORDIC. It can be
seen that one must wait for a value to slowly ripple through all stages until the
next meaningful computation can be started.

To get around this unfortunate situation, one can observe that a given stage
in a given CORDIC cell can do the work of its right neighbor during the time
it would otherwise sit idle. So instead of distributing the control information
to the right, a circular cell can feed this information back to itself and assume
the role of its neighbors in subsequent cycles. Those neighbors can be removed
from the design. Figure 8 shows the result: a single column ofCORDIC devices
that can be in both thevector androtation modes. Figure 10 confirms that the
bubbles have disappeared. The length of the original bubbledetermines how
many columns can be collapsed into one.

Figure 9. Pipeline bubbles. Figure 10. No pipeline bubbles.

3 Linear Transformations for Signal Processing

As mentioned in the previous section, properties of the transformation matrixΘ in Equation (1) can be controlled at
run-time such that a number ofmodes are created that the array can be in. The modes and possible applications of them
are listed below.

Fig. 10. No pipeline bubbles.

3 Linear Transformations for Signal Processing

As mentioned in the previous section, properties of the trans-
formation matrix2 in Eq. (1) can be controlled at run-time
such that a number ofmodesare created that the array can be
in. The modes and possible applications of them are listed
below.

– In theorthogonalmode,2 is chosen to be orthogonal,
such that the following relationships can be established:

V
′H
1 V′

1 = VH
1 V1 + WH

1 W1

and

V
′H
1 V′

2 = VH
1 V2 + WH

1 W2. (2)

Thus, this mode can be used to carry out a QR decom-
positionX=QR of an arbitrary matrix by lettingV1=0
andW1=X. Then we will findV′

1=R. Additionally, we
will find V′

2=QH W2 which allows us to solve the least
squares problem minw ‖Xw−y‖ by settingW2=y and
using a subsequent transformation in thelinear mode
(see below).



328 M. Vollmer and J. G̈otze: An Adiabatic Architecture for Linear Signal Processing

This mode can also be used to perform a QR updat-
ing step, which is most concisely expressed as starting
from an upper triangularR1 such thatRH

1 R1=XH
1 X1

and efficiently finding an upper triangularR2 such that
RH

2 R2=XH
1 X1+XH

2 X2. This can be achieved by letting
V1=R1 andW1=X2, leading toV′

1=R2. V2 andW2
can be used in the same manner as above to update the
right hand side such that the solution to a least-squares
problem can be updated.

Note that the QR updating step can be used repeat-
edly to compute an upper triangularR such that
RH R=

∑
i XH

i Xi without having to access the internal
registers, apart from the initializationV1=0. In fact, the
device effectively computes the QR decomposition ofX
by successively updating the solution one row at a time
until all rows ofX have been accounted for.

Channel estimation, channel equalization, data detec-
tors and adaptive filters can use the methods mentioned
above, for example.

– In the linear mode,2 has the form

2 =

[
I
1 I

]
(3)

leading to the computation of theSchur Complement

W′
2 = W2 − W1V−1

1 V2.

This can be used to compute matrix-matrix multiplica-
tions, matrix inverses, and solutions to systems of linear
equations, and combinations thereof. For example, the
first step of solving the least squares problem‖Xw−y‖

has left the device in the stateV1=R andV2=QH y (see
above). The solution can be completed with a trans-
formation in the linear mode by lettingW1=−I and
W2=0. ThenW′

2=R−1QH y=(XH X)−1XH y. By let-
ting X be square, this method can clearly be used to
solve arbitrary systems of linear equations with an arbi-
trary number of right hand sides.

To compute the arbitrary matrix-matrix productAB,
one can start withV1=0, V2=0 and input W1=I ,
W2=B in a orthogonal run, leading toV1=I , V2=B.
A subsequent linear run withW1=A, W2=0 will yield
W′

2=AB.

This mode is useful for filters and other signal transfor-
mations such as an FFT, for example.

– In thehyperbolicmode,2 fulfills

2H J2=J with J=

[
I

−I

]
. (4)

This mode can be used to compute a QR downdating
step, which can reverse a updating step. Similar to the
updating step described above, an application of the de-
vice in hyperbolic mode will give us the upper triangu-
lar R2 such thatRH

2 R2=XH
1 X1−XH

2 X2 when starting
from RH

1 R1=XH
1 X1.

The hyperbolic mode can also be used to carry out one
step of theSchur Algorithmand can thus be used to
efficiently compute the QR decomposition of a matrix
with a Toeplitz-derived structure (Kailath and Chun,
1994). These matrices appear in time-invariant single-
and multi-user systems (Vollmer et al., 1999, 2001).

– Thesetmode is provided to initialize the array. It per-
forms the assignments

V′
1 = diag(W1) and V′

2 = 0

whereW1 ∈ R1×n is a row-vector whose elements are
put on the diagonal ofV′

1.

Initializing the diagonal ofV1 is useful to compute the
best linear estimatorin white noise, for example, which
is similar to a least-squares solution and is given by the
formula

w = (XH X + σ 2I)−1XH y.

Setting V1=σ I , V2=0 via a run in the set mode,
and then inputtingW1=X, W2=y for a run in
the orthogonal mode will lead toV1=R such that
RH R=σ 2I+XH X and V2=R−H XH y. This can be
transformed into the desired solution with a final run
in the linear mode: as previously,W2=−I andW2=0
will lead toW′

2=V−1
1 V2=R−1R−H XH y=w.

– The copy mode finally can be used to retrieveV2 in
case it is needed, such as with the Schur algorithm or
when theQ factor of a QR decomposition is needed ex-
plicitely. It sets

V′
1 = V1, V′

2 = V2, W′
2 = V2.

4 Example: Adaptive RLS Filter

A adaptive RLS filter alternates between estimating and
equalizing the transmission channel. The filter that equal-
izes the channel is modeled as a FIR filter and the esti-
mation is performed while a known training sequencey1
is transmitted. The coefficientsw of the equalization fil-
ter are chosen such that‖X1w−y1‖ is minimized whereX1
is the convolution matrix of the signal received during the
training period. The convolution matrixX of a sequence
{. . . , xi−1, xi, xi+1, . . . } has a Toeplitz structure:

X =


xi xi−1 xi−2 · · ·

xi+1 xi xi−1 · · ·

xi+2 xi+1 xi · · ·

...
...

...


The equalization is then performed by computingy2=X2w

whereX2 is the convolution matrix of the received signal
during the payload period.

The CORDIC device presented above is well suited
to carry out this task. The estimation phase first sets



M. Vollmer and J. G̈otze: An Adiabatic Architecture for Linear Signal Processing 329

V1=0, V2=0 and then carries out the QR decomposition of
W1=X1 andW2=y1 as explained above, givingV1=R and
V2=QH y. The equalization phase runs a subsequent lin-
ear mode transformation withW1=−X2, W2=0, computing
W′

2=X2R−1QH y1=X2w=y2.
The convolution matricesX1 andX2 are constructed im-

plicitly by connecting the outputs of a delay-line to the inputs
of the device. The device can be simply switched from the
training mode to the filter mode by inputting zeros instead of
the training sequence and switching the mode fromorthogo-
nal to linear.

In order to allow the filter to gradually forget the past, it is
customary to change the scaling factor in of each CORDIC
such that each elementary orthogonal rotation reduces the
length of the involved vector by a factor of 0.97, say.

5 Conclusions

The well-known systolic QR array can be generalized to also
be able to compute a wide variety of linear signal process-
ing tasks. Implementing this generalized array with adiabatic
logic offers opportunities for significant low-level optimiza-
tions that find uses for hardware resource that would other-
wise sit idle. The array has been simulated with a bit-true and
phase-true VHDL model by making use of a general VHDL
package that allows the description of adiabatic logic on a
functional level.

The result is a highly parallel, highly efficient data flow
processor that can compute things like matrix/matrix prod-
ucts, matrix inverses, solutions to systems of linear equa-
tions, QR decompositions, least-squares solutions to overde-
termined systems of equations, QR up- and down-dating
steps, the core tasks of the Block-Schur algorithm, and Best
Linear (Unbiased) Estimates.

References

Fischer, J., Amirante, E., Bargali-Stoffi, A., and Schmitt-
Landsiedel, D.: Adiabatic circuits: converter for static CMOS
signals, in: Kleinheubacher Berichte 2002, Advances in Radio
Sciences, 247–251, 2003.

Haykin, S.: Adaptive Filter Theory, Prentice Hall, third edn., 1996.
Kailath, T. and Chun, J.: Generalized Displacement Structure for

Block-Toeplitz, Toeplitz-Block, and Toeplitz-Derived Matrices,
SIAM J. Matrix Anal. Appl, 15, 114–128, 1994.

Vetuli, A., Pascoli, S. D., and Reyneri, L. M.: Positive feedback
in adiabatic logic, in: Electronics Letters, vol. 32, 1867–1869,
1996.

Vollmer, M., Haardt, M., and G̈otze, J.: Schur algorithms for Joint
Detection in TD-CDMA based mobile radio systems, Annals of
Telecommunications (special issue on multi user detection), 54,
365–378, 1999.

Vollmer, M., Haardt, M., and G̈otze, J.: Comparative Study of Joint-
Detection Techniques for TD-CDMA Based Mobile Radio Sys-
tems, IEEE J. Select. Areas Commun., 19, 1461–1475, 2001.


