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Abstract. Second order moments of multivariate (often second is the covariance matrix where the analysis is used
Gaussian) joint probability density functions can be de-for entropy and variance considerations and for the genera-
scribed by the covariance or normalised correlation matricegion of uncorrelated random variables.

or by the Kennaugh matrix (Kronecker matrix). In Radar Po- The basic problem of principal component analysis (Jol-
larimetry the application of the covariance matrix is known life, 2002) is how to find a suitable representation of mul-
as target decomposition theory, which is a special applicativariate data in order to make the essential structure more
tion of the extremely versatile Principle Component Analysis visible and to identify any distinct feature. The main pur-
(PCA). The basic idea of PCA is to convert a data set, conpose of PCA is to convert a set of possibly correlated ran-
sisting of correlated random variables into a new set of un-dom variables into new uncorrelated variables. For existing
correlated variables and order the new variables according tdecomposition theorems cf. Cloude and Pottier (1996).

the value of their variances. It is important to stress that un-

correlatedness does not necessarily mean independent which

is used in the much stronger concept of Independent Com?  Principle Component Analysis (PCA)

ponent Analysis (ICA). Both concepts agree for multivariate With Principle Component Analyis one tries to find new vari-

Gaussian distribution functions, representing the most ran- . :
S ables which are uncorrelated but not necessary independent.
dom and least structured distribution.

. L . As a starting point the scattering matrix represented by the
In this contribution, we propose a new approach in apply- gp 9 P y

. ; 2x2 S-Matrix is considered, describing completely the po-
Ir?egwthueng(())rr:gﬁﬂégfrapr?dg r;O \Zﬁgziezo\i;”rgitr%trggjgsgofy;Iarization transforming properties of a target at a single fre-
means of linear transformations with well determined Ioad—quenCy inthe reference direction.

ing coefficients. This in turn, will allow the decomposition of Suu Sy
the original random backscattering target variables into threeg - < )
point targets with new random uncorrelated variables whose ) .
variances agree with the eigenvalues of the covariance mal e indices of the matrix elements represent the transmit and

trix. This allows a new interpretation of existing decomposi- '€C€ive polarization of the plane electromagnetic wave.
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tion theorems. 'I_'he vec operation (Horn and J_ohnson, 1985) is used to
arrive at the target feature vectbgiven by
S @)
1 Introduction ka(t) = vec S(t) = Syu (1) , 2)
Suv (1)
In radar and optical polarimetry there exists essentially Syv ()

Mo dlfferer_lt methods to charactenze_ polarimetric scatter- hara thevecoperation can be considered as a simple stack-
ing properties of plane electromagnetic waves scattered b

o ) o Yng of the columns of the scattering matt§x

randomly distributed targets using second order multivariate This target feature vector is used to calculate thd £0-
st_gtlstlcs (Boerner et al.', 19_98; Mott, 1992; Kroga}ger, _199_3;variance matrix explicitly according to

LUneburg, 1995). The first is the Kennaugh matrix which is

used for finding solutions for maximal and minimal power ¢, =< k4(t)k£(t) > ©)

transfer between transmitting and receiving antennas. The
where the dagger symbol represents complex conjugation
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< 1Sur®? > < SurOS) () > < SurO)S;y @) > < Sur(O)S}, (1) >
Ca <SyuOSHy®) > < ISya®FF > < Sva®)SH, ) > < Syu®)S}, ) > (4)

< SH\/(I)S;}H(I) > < SH\/(I)S;’;H([) >
<Syv@®OSHy®) > < Syv(O)Sy @) > < Syv()Syy

< ISuv(@®)? >

< SHv([)S;k/V(Z‘) >
< ISyv(@)? >

(t) >

Being Hermitian positive semidefinite the covariance matrix
C4 can be unitarily diagonalized.

U™lC4U = A = diagirq, A2, A3, A4l
with U = [x1, X2, X3, X4].

()

Ai (i=1, ...4) are denoting the eigenvalues of the covariance
matrix andx; (i=1, ...4) are the eigenvectors, respectively.
Now we introduce the new target feature vecdr) by a
linear transformation
T

71 ngk(t)
Z=| 2| =uTk@) = i%ig; ork(t) = U-Z(1)(6)
24 k)

The components; (i=1, ...4) are called the principle com-

link to the incoherent method of interpretation (covariance
matrix analysis) and furthermore an equivalent coherent rep-
resentation containing a maximum of 4 possible uncorre-
lated features. The target description can be formed using
z; values andS; point scatter matrices. This contribution
provides some theory which is necessary for the application
of PCA in radar polarimetry. Further work will include the
analysis of different types of scatterers according to the pro-
posed method and an intercomparison with other methods
(Alberga, 2004).
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ponents. Furthermore the spectral decomposition of the co-

variance matrix is given by

4 4
Ca=UAU" =) hixixi+' =) hiCa; )
i=1 i=1
whereCy;are 4x4 covariance matrices of point targets with
rank 1. The revers@ec operation may be applied toi
(i=1..4) and the results can be interpreted a2 2lemen-
tary deterministic point target§ with span(S;)=1

Xi1
xX; Xi1 X i
X; = vec S[ = 02 == S[ = 143 (| = 1,...,4) (8)
Xi,3 Xi,2 Xi,4
Xi,4

and hence using the relatidrir)=U Z(z)
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]:Zzi(t)[ i|=ZZi(t) Si (9)
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