
Advances in Radio Science, 3, 399–400, 2005
SRef-ID: 1684-9973/ars/2005-3-399
© Copernicus GmbH 2005

Advances in
Radio Science

Principal Component Analysis In Radar Polarimetry

A. Danklmayer 1, M. Chandra 2, and E. Lüneburg3
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Abstract. Second order moments of multivariate (often
Gaussian) joint probability density functions can be de-
scribed by the covariance or normalised correlation matrices
or by the Kennaugh matrix (Kronecker matrix). In Radar Po-
larimetry the application of the covariance matrix is known
as target decomposition theory, which is a special applica-
tion of the extremely versatile Principle Component Analysis
(PCA). The basic idea of PCA is to convert a data set, con-
sisting of correlated random variables into a new set of un-
correlated variables and order the new variables according to
the value of their variances. It is important to stress that un-
correlatedness does not necessarily mean independent which
is used in the much stronger concept of Independent Com-
ponent Analysis (ICA). Both concepts agree for multivariate
Gaussian distribution functions, representing the most ran-
dom and least structured distribution.

In this contribution, we propose a new approach in apply-
ing the concept of PCA to Radar Polarimetry. Therefore,
new uncorrelated random variables will be introduced by
means of linear transformations with well determined load-
ing coefficients. This in turn, will allow the decomposition of
the original random backscattering target variables into three
point targets with new random uncorrelated variables whose
variances agree with the eigenvalues of the covariance ma-
trix. This allows a new interpretation of existing decomposi-
tion theorems.

1 Introduction

In radar and optical polarimetry there exists essentially
two different methods to characterize polarimetric scatter-
ing properties of plane electromagnetic waves scattered by
randomly distributed targets using second order multivariate
statistics (Boerner et al., 1998; Mott, 1992; Krogager, 1993;
Lüneburg, 1995). The first is the Kennaugh matrix which is
used for finding solutions for maximal and minimal power
transfer between transmitting and receiving antennas. The
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second is the covariance matrix where the analysis is used
for entropy and variance considerations and for the genera-
tion of uncorrelated random variables.

The basic problem of principal component analysis (Jol-
life, 2002) is how to find a suitable representation of mul-
tivariate data in order to make the essential structure more
visible and to identify any distinct feature. The main pur-
pose of PCA is to convert a set of possibly correlated ran-
dom variables into new uncorrelated variables. For existing
decomposition theorems cf. Cloude and Pottier (1996).

2 Principle Component Analysis (PCA)

With Principle Component Analyis one tries to find new vari-
ables which are uncorrelated but not necessary independent.
As a starting point the scattering matrix represented by the
2×2 S-Matrix is considered, describing completely the po-
larization transforming properties of a target at a single fre-
quency in the reference direction.

S =

(
SHH SHV

SV H SV V

)
(1)

The indices of the matrix elements represent the transmit and
receive polarization of the plane electromagnetic wave.

The vec operation (Horn and Johnson, 1985) is used to
arrive at the target feature vectork given by

k4(t) = vec S(t) =


SHH (t)

SV H (t)

SHV (t)

SV V (t)

 , (2)

where thevecoperation can be considered as a simple stack-
ing of the columns of the scattering matrixS.

This target feature vector is used to calculate the 4×4 co-
variance matrix explicitly according to

C4 =< k4(t)k
†
4(t) > (3)

where the dagger symbol represents complex conjugation
and transposition.
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C4 =


< |SHH (t)|2 > < SHH (t)S∗

V H (t) > < SHH (t)S∗

HV (t) > < SHH (t)S∗

V V (t) >

< SV H (t)S∗

HH (t) > < |SV H (t)|2 > < SV H (t)S∗

HV (t) > < SV H (t)S∗

V V (t) >

< SHV (t)S∗

HH (t) > < SHV (t)S∗

V H (t) > < |SHV (t)|2 > < SHV (t)S∗

V V (t) >

< SV V (t)S∗

HH (t) > < SV V (t)S∗

V H (t) > < SV V (t)S∗

HV (t) > < |SV V (t)|2 >

 (4)

Being Hermitian positive semidefinite the covariance matrix
C4 can be unitarily diagonalized.

U−1C4U = 3 ≡ diag[λ1, λ2, λ3, λ4]

with U = [x̂1, x̂2, x̂3, x̂4]. (5)

λi (i=1, ...4) are denoting the eigenvalues of the covariance
matrix andx̂i (i=1, ...4) are the eigenvectors, respectively.

Now we introduce the new target feature vectorZ(t) by a
linear transformation

Z(t) =


z1
z2
z3
z4

 = U†k(t) =


x

†
1k(t)

x
†
2k(t)

x
†
3k(t)

x
†
4k(t)

 or k(t) = U ·Z(t)(6)

The componentszi(i=1, ...4) are called the principle com-
ponents. Furthermore the spectral decomposition of the co-
variance matrix is given by

C4 = U3U†
=

4∑
i=1

λixixi+
†

=

4∑
i=1

λiC4,i (7)

whereC4iare 4×4 covariance matrices of point targets with
rank 1. The reversevec operation may be applied toxi

(i = 1..4) and the results can be interpreted as 2×2 elemen-
tary deterministic point targetsSi with span(Si)=1

xi = vec Si =


xi,1
xi,2
xi,3
xi,4

 ⇔ Si =

[
xi,1 xi,3
xi,2 xi,4

]
(i = 1,...,4) (8)

and hence using the relationk(t)=UZ(t)

S(t) =

[
Sxx Sxy

Syx Syy

]
=

4∑
i=1

zi(t)

[
xi1 xi3
xi2 xi4

]
=

4∑
i=1

zi(t) Si (9)

3 Conclusion

Having a series of coherent observations given by the scat-
tering matrixS the principle component analysis provides a

link to the incoherent method of interpretation (covariance
matrix analysis) and furthermore an equivalent coherent rep-
resentation containing a maximum of 4 possible uncorre-
lated features. The target description can be formed using
zi values andSi point scatter matrices. This contribution
provides some theory which is necessary for the application
of PCA in radar polarimetry. Further work will include the
analysis of different types of scatterers according to the pro-
posed method and an intercomparison with other methods
(Alberga, 2004).
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