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Abstract. A time domain Method of Moments algorithm
(TD-MoM) is combined with the time domain version of the
Uniform Theory of Diffraction (TD-UTD). By use of the TD-
MoM the fields radiated from thin wire structures positioned
in free space are determined. The TD-UTD is applied to cal-
culate the fields scattered by a perfectly conducting screen.
Both techniques are hybridized by adding possible reflected
and diffracted fields in the TD-MoM algorithm and by using
the TD-MoM solution to calculate the fields which impinge
on to the screen. To show the accuracy of the developed hy-
brid method, numerical results are compared to results ob-
tained by established frequency domain numerical codes.

1 Introduction

Any numerical technique has specific advantages and disad-
vantages: e.g. techniques based on the MoM enable the com-
putation of currents flowing on antennas and scatterers with
high accuracy but they require a relatively large amount of
memory and CPU-time. Asymptotic methods like the UTD
are applicable for the calculation of fields scattered by large
and simple bodies with only a small amount of memory and
CPU-time but they cannot be used to determine the radi-
ation properties of antennas. For many years it has been
state of the art to hybridize numerical techniques in order to
keep the advantages of the individual methods and to com-
pensate their disadvantages. In the frequency domain there
have been many developed hybrid methods, e.g. combination
of the UTD with the MoM and the Finite Element Method
(Alaydrus et al., 2002). In contrast to the frequency domain
relatively few time domain hybrid methods have been de-
veloped until now and there is no equivalent to the long es-
tablished frequency domain UTD and MoM hybrid methods.
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Therefore, we present a hybrid method combing both tech-
niques in the time domain.

In this hybrid method the TD-MoM is applied to calculate
the fields radiated by thin wire structures in free space. The
scattering of these fields is described with the time domain
version of the UTD and fields which are scattered back to
the antenna are taken into account in the TD-MoM solution
procedure. By this full hybridization of both techniques is
achieved and the influence of the surroundings both on the
currents flowing on the wire structures and on the fields in
the observation points is taken into account.

We present several examples to show the accuracy and the
efficiency of the proposed hybrid method and it is shown that
the TD-MoM can be faster than its frequency domain coun-
terpart when applied to broadband problems.

2 TD-MoM

In this paper the TD-MoM is applied to structures involving
thin wires with circular cross-sections. Therefore, several as-
sumptions are used which are discussed in detail in the liter-
ature (e.g.Gómez et. al., 1992). The most important are that
the tangential electric field on the surface of the wires is zero
and that the current distribution can be substituted by equiv-
alent currents along the axes of the wires. In the following
we shortly repeat the well known MoM-procedure which can
be applied also to patch-antennas by using the corresponding
spatial basis functions. The electric fields radiated by cur-
rents flowing on antennas and scatterers are calculated by us-
ing a time domain electric field integral equation (TD-EFIE):
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The spatial dependency ofJ (r ′, t) is approximated by a
sum of spatial basis functions multiplied with unknown
coefficients:

J (r ′, t) =

Ns∑
i=1

Ji(t)βi(r
′), (2)

thus

∇J (r ′, t) = ∇
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′). (3)

Substituting the current distribution in Eq. (1) by Eq. (2) and
by using Eq. (3) one receives:
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Using the additional approximation

J (r ′, t) =
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Nt∑
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and taking the temporal derivate of the electric field yields:
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A scalar equation is derived by multiplying Eq. (6) with the
test functionβk and integrating the result over the domain
Ak of the test function:∫
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It is now assumed that all coefficientsJi,j are known forj<n

and that Eq. (7) is specialized fort=n4T , where4T is the
time step size:
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All known preceding coefficients (i.e. coefficients corre-
sponding to time steps earlier than the actual time stepn) are
written on the right side and all unknownactualcoefficients
(i.e. currents allocated to the actual time step) are written on
the left side of Eq. (8). By fulfilling Eq. (8) at the domainsAk

of all test functionsβk, the currents at the actual time step can
be calculated by solving the resulting system of linear equa-
tions. In the next time step this system of linear equations is
built and solved once again. Incoming fields (e.g. produced
by a scatterer) and voltage-sources on the wires can be taken
into account by adding them to the fields produced by theold
and thus known currents.

3 TD-UTD

In this chapter a short overview of the theoretical background
of the time domain UTD and of its application to the diffrac-
tion of transient fields by a perfectly conducting screen is
given.

3.1 Geometrical optical fields

The well known geometrical optical description of a wave in
the frequency domain is given by the fieldE0 in the reference
point multiplied with the divergence factor, a potential phase
jump and the phase factore−jks .

E(s, ω) = E0(ω)

√
ρ1ρ2

(ρ1 + s)(ρ2 + s)
jne−jks, (9)

where n is the number of caustics the wave crosses after hav-
ing passed the reference point,s is the distance of the obser-
vation point from the reference point andρ1 andρ1 are the
principal radii of curvature for the corresponding waveform
at the reference point. When applying the inverse Fourier
transform separate analysis is necessary according to the
number of caustics passed. To avoid this inconvenience one
can use the analytic time function representation of the elec-
tric field:

+
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s

c
)

√
ρ1ρ2
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The real time function representation can be found by taking
the real part of the analytic signal representation:

E(s, t) = Re{
+

E(s, t)}. (11)

3.2 UTD description of the field radiated by a source in
presence of a perfectly conducting wedge

The field radiated by a source in presence of a perfectly con-
ducting wedge can be approximated as the sum of the direct,
the reflected and the diffracted field:
+

E(s, t) =
+

ELOS(s, t)Ui +
+

ER(s, t)UR +
+

ED(s, t), (12)

with Ui = 1 if line of sight (LOS) is given between source
and observation point andUi = 0 if no direct field reaches
the observation point.UR is one, if a reflected field reaches
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the observation point and it is zero, otherwise. BothUi and
UR, as well as possible reflection and diffraction points are
found by using a ray-tracing algorithm. After performing
ray-tracing the reflected field is found by multiplying the

field
+

ER0 in the reflection point with the dyadic reflection co-
efficient, the divergence factor and a potential phase jump
jnr :

+
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+
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c
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R jnr . (13)

Due to the frequency dependence of the diffraction coeffi-
cient the diffracted field is found by convolution of the field
+

ED0 in the diffraction point with the diffraction coefficient.
The result is multiplied with the divergence factor and a po-
tential phase jump:
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c
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The dyadic diffraction coefficient
↔

d (t −
s+sd

c
) is an ana-

lytic function in time which is derived by taking the inverse
analytic Laplace Transform of the FD-diffraction coefficient
(Rousseau and Pathak, 1995). The dyadic diffraction coeffi-
cient is given by:

↔

d (t) = −β ′β
+

ds(t) − φ′φ
+

dh(t). (15)

For details it is referred to the literature (e.g.Kouyoumjian
and Pathak, 1974).

3.3 Edge diffraction of a spherical wave by a flat PEC
screen with straight edge

The scalar diffraction coefficients for a perfectly conducting
flat screen (see Fig.1) are given by:
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to work with the real time function
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Fig. 1. Diffraction by a perfectly conducting flat screen.

This impulse response becomes singular fort = 0 and steep-
ens with decreasingxm. Using Eqs. (16), (17), (18) and (20)
leads to:

ds,h(t) =
−1

2n
√

2π sinβ0


2L cos

(
ϕ−ϕ

′

2

)
/
√
πc

√
t(t + xA/c)

u(t)

∓
2L
(

ϕ+ϕ
′

2

)
/
√
πc

√
t(t + xB/c)

u(t)




=
−1

2n
√

2π sinβ0

[A(t)∓B(t)] . (21)

At the radiation or shadow boundary eitherA(t) or B(t)
must be impulsive in time coresponding to the FD-UTD
where one of both becomes frequency independent. Con-
sequently, for observation points very close to a shadow or
reflection boundary numerical integration is not suited to per-
form the convolution in Eq.(14). With∫ ∞
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1√
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For the reflection boundary follows:
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√

2Lπδ(t). (24)

In the proposed hybrid method the fields emitted by the an-
tenna currents are modelled as spherical waves and thusL
becomes

L =
ss′

s + s′
sin2 β0. (25)

4 Hybrid Method

Hybridization of the TD-UTD and the TD-MoM leads to a
method which can consider the full influence of the surround-
ing on the antenna currents and on the fields emitted by these

Fig. 1. Diffraction by a perfectly conducting flat screen.

This impulse response becomes singular fort=0 and steep-
ens with decreasingxm. Using Eqs. (16), (17), (18) and (20)
leads to:

ds,h(t) =
−1

2n
√

2π sinβ0

2L cos

(
ϕ−ϕ

′

2

)
/
√

πc

√
t(t + xA/c)

u(t)

∓

2L

(
ϕ+ϕ

′

2

)
/
√

πc

√
t(t + xB/c)

u(t)


=

−1

2n
√

2π sinβ0
[A(t) ∓ B(t)] . (21)

At the radiation or shadow boundary eitherA(t) orB(t) must
be impulsive in time coresponding to the FD-UTD where
one of both becomes frequency independent. Consequently,
for observation points very close to a shadow or reflection
boundary numerical integration is not suited to perform the
convolution in Eq. (14). With∫

∞

0

1
√

t
(
t +

xm

c

)dt = π

√
c

xm

(22)

one can derive for the shadow boundary:

A(t) = δ(t)

2L cos

(
φ−φ

′

2

)
√

πc
π

√√√√ c

2L cos2
(

φ−φ
′

2

)
=

√
2Lπδ(t). (23)

For the reflection boundary follows:

B(t) =
√

2Lπδ(t). (24)

In the proposed hybrid method the fields emitted by the an-
tenna currents are modelled as spherical waves and thusL

becomes

L =
ss′

s + s′
sin2 β0. (25)



434 A. Becker and V. Hansen: TD-MoM+TD-UTD

4 A. Becker and V. Hansen: TD-MoM+TD-UTD

currents. By using ray tracing and by adding possible re-
flected and diffracted fields to Eq.(8) one receives:

Ns∑
j=1

Ji,nULOS,i,kA(i, n, k) = −
∫

Ak

βk(r)
∂
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E(r, n�T )
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βk(r) ED+R(i, j, r)|t=n�T . (26)

ULOS,i,k = 1 if LOS is given between the basis function
βi and the test functionβk andULOS,i,k = 0, otherwise.
ED+R(i, j, n) describes the fields radiated byJi,j which
reaches the domain of the test functionβk (at the time step
nT ) after reflection or diffraction. When using Eq.(26) in-
stead of Eq. (8) in the TD-MoM solution process the in-
fluence of the surrounding on the antenna currents is con-
sidered. According to Eq.(12) the fields in the observation
points are found by addition of possible direct, reflected and
diffracted fields. The direct fields are calculated by using
Eq.(1). The reflected and diffracted fields are found by cal-
culating the fields in the reflection/diffraction points with
Eq.(1) and by applying Eq.(13) or Eq.(14), respectively.

5 Numerical Examples

In this section the properties of the proposed hybrid method
are evaluated by comparing results with results obtained by
using long established frequency domain algorithms. For this
purpose the dipole array shown in figure 2 is studied, posi-
tioned in different surroundings. The spatial discretization

Fig. 2. Geometry of dipole array.

size�S was chosen to�S = 0.67cm for both the hybrid
method and the reference methods.

5.1 Dipole array in free space

First we consider the array positioned in free space. The ap-
plied voltage is a gaussian pulse; its spectrum is shown in
figure 3. The applied voltage has the following properties:

– Its spectrum is extremely broad.

– Its corresponding wavelength contains components for
which the spatial discretization�S is larger thanλ

10 .

– It contains a large DC-component.

Fig. 3. Spectrum of the applied voltage.

The time step is chosen according to the Courant limit
(�T = 1.28126·10−11sec), although it can be larger without
leading to instabilities (see Figure 16 in chapter 5.3). In Fig-
ure 4 the resulting source current is compared to the result
obtained by using the frequency domain MoM based code
MININEC and the inverse FFT. The center-point currents of
the second dipole are compared in Figure 9. The results agree
very well. In Figure 5 both source currents are compared
in the frequency domain and it becomes obvious that both
agree best at lower frequencies. The calculation time of our
time domain MoM was around 8 seconds (3000 time steps,
which equals 11.5 light meter) compared to around 32 sec-
onds for MININEC (on the same computer, 400 frequency
steps, same spatial discretization). In Figure 6 and Figure
7 the real and the imaginary part of the input impedance are
shown, respectively. Around750MHz one can see the influ-
ence of the second dipole on the input impedance of the first
one. For frequencies up to around1.2GHz the relative error
of the magnitude of the input impedance is smaller than 2%
(see Figure 8). For higher frequencies the results of the TD-
MoM and the FD-MoM diverge more; the TD-MoM shows
some kind of dispersion effect: For high frequencies the res-
onance frequencies of the antenna are lower than obtained by
using MININEC.

Fig. 4. Temporal behaviour of the source current.

5.2 Dipole array above perfectly conducting ground

As a second example the input impedance of the same array
10cm above perfectly conducting ground (see Figure 10) is
investigated. For excitation the same pulse as in 5.1. was

Fig. 2. Geometry of dipole array.
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currents. By using ray tracing and by adding possible re-
flected and diffracted fields to Eq.(8) one receives:
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currents. By using ray tracing and by adding possible re-
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Eq.(1) and by applying Eq.(13) or Eq.(14), respectively.

5 Numerical Examples

In this section the properties of the proposed hybrid method
are evaluated by comparing results with results obtained by
using long established frequency domain algorithms. For this
purpose the dipole array shown in figure 2 is studied, posi-
tioned in different surroundings. The spatial discretization

Fig. 2. Geometry of dipole array.

size�S was chosen to�S = 0.67cm for both the hybrid
method and the reference methods.

5.1 Dipole array in free space

First we consider the array positioned in free space. The ap-
plied voltage is a gaussian pulse; its spectrum is shown in
figure 3. The applied voltage has the following properties:

– Its spectrum is extremely broad.

– Its corresponding wavelength contains components for
which the spatial discretization�S is larger thanλ

10 .

– It contains a large DC-component.

Fig. 3. Spectrum of the applied voltage.

The time step is chosen according to the Courant limit
(�T = 1.28126·10−11sec), although it can be larger without
leading to instabilities (see Figure 16 in chapter 5.3). In Fig-
ure 4 the resulting source current is compared to the result
obtained by using the frequency domain MoM based code
MININEC and the inverse FFT. The center-point currents of
the second dipole are compared in Figure 9. The results agree
very well. In Figure 5 both source currents are compared
in the frequency domain and it becomes obvious that both
agree best at lower frequencies. The calculation time of our
time domain MoM was around 8 seconds (3000 time steps,
which equals 11.5 light meter) compared to around 32 sec-
onds for MININEC (on the same computer, 400 frequency
steps, same spatial discretization). In Figure 6 and Figure
7 the real and the imaginary part of the input impedance are
shown, respectively. Around750MHz one can see the influ-
ence of the second dipole on the input impedance of the first
one. For frequencies up to around1.2GHz the relative error
of the magnitude of the input impedance is smaller than 2%
(see Figure 8). For higher frequencies the results of the TD-
MoM and the FD-MoM diverge more; the TD-MoM shows
some kind of dispersion effect: For high frequencies the res-
onance frequencies of the antenna are lower than obtained by
using MININEC.

Fig. 4. Temporal behaviour of the source current.

5.2 Dipole array above perfectly conducting ground

As a second example the input impedance of the same array
10cm above perfectly conducting ground (see Figure 10) is
investigated. For excitation the same pulse as in 5.1. was

Fig. 4. Temporal behaviour of the source current.
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Fig. 5. Spectrum of the source current.

Fig. 6. Real part of the input impedance.

used. The result is compared to the input impedance of the
same array calculated with MININEC (Figure 11 and Figure
12). Additionally, the input impedances of the same array
in free space are plotted to show the influence of ground.
The results agree well and the strong influence of the ground
plane on the input impedance around750MHz is considered
very well.

5.3 Dipole array in front of a perfectly conducting screen

The last example is the same array, excited with the same
impulse but this time in front of a perfectly conducting screen
(Figure 13). The normalized radiation patterns are compared
to the results obtained by using the frequency domain MoM
UTD based hybrid method FEKO. As one can see in Figure
14 and Figure 15 the results agree very well. In Figure 16 the
radiation pattern calculated using different time step sizes is
shown forf = 653MHz. Obviously, in the application of
the proposed hybrid method it is possible to use much larger
time steps than given by the Courant limit.

6 Conclusions

The hybrid method presented in this paper combines a time
domain Method of Moments algorithm with the time domain
version of the Uniform Theory of Diffraction. Several exam-
ples were presented and it was shown that our hybrid method
can be applied for calculating the transient radiation prop-
erties of antennas in complex surroundings. Despite of us-
ing extremely broadband excitation pulses with strong DC-
component the radiation patterns and input impedances agree
very well to long established frequency domain codes. The

Fig. 7. Imaginary part of input impedance

Fig. 8. Relative error of the magnitude of the input impedance as a
function of the relative length of the dipole

proposed method can easily be extended to be applied to
patch antennas and more complicated UTD-bodies.
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4 Hybrid Method

Hybridization of the TD-UTD and the TD-MoM leads
to a method which can consider the full influence of the
surroundings on the antenna currents and on the fields
emitted by these currents. By using ray tracing and by
adding possible reflected and diffracted fields to Eq. (8) one
receives:
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ULOS,i,k=1 if LOS is given between the basis function
βi and the test functionβk and ULOS,i,k=0, otherwise.
ED+R(i, j, r)|t=n4T describes the fields radiated byJi,j

which reaches the domain of the test functionβk (at the time
stepnT ) after reflection or diffraction. When using Eq. (26)
instead of Eq. (8) in the TD-MoM solution process the in-
fluence of the surroundings on the antenna currents is taken
into account. According to Eq. (12) the fields in the observa-
tion points are found by addition of possible direct, reflected
and diffracted fields. The direct fields are calculated by us-
ing Eq. (1). The reflected and diffracted fields are found by
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Fig. 9. Temporal behaviour of the center-point current on the second
dipole

Fig. 10. Geometry of dipole array above perfectly conducting
ground.

Fig. 11. Real part of the input impedance of the dipole array above
perfectly conducting ground.

Fig. 12. Imaginary part of the input impedance of the dipole array
above perfectly conducting ground.

Fig. 13. Geometry of dipole array in front of a perfectly conducting
screen.

Fig. 14. Normalized far field radiation pattern of the array in front
of a perfectly conducting screen (f=753MHz).

Fig. 15. Normalized far field radiation pattern of the array in front
of a perfectly conducting screen (f=1896MHz).

Fig. 16. Normalized far field radiation pattern of the array in front
of a perfectly conducting screen (f=753MHz) calculated using dif-
ferent time step sizes�T .

Fig. 9. Temporal behaviour of the center-point current on the second
dipole
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of a perfectly conducting screen (f=1896MHz).

Fig. 16. Normalized far field radiation pattern of the array in front
of a perfectly conducting screen (f=753MHz) calculated using dif-
ferent time step sizes�T .

Fig. 10. Geometry of dipole array above perfectly conducting
ground.
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Fig. 11. Real part of the input impedance of the dipole array above
perfectly conducting ground.
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of a perfectly conducting screen (f=1896MHz).

Fig. 16. Normalized far field radiation pattern of the array in front
of a perfectly conducting screen (f=753MHz) calculated using dif-
ferent time step sizes�T .

Fig. 12. Imaginary part of the input impedance of the dipole array
above perfectly conducting ground.

calculating the fields in the reflection/diffraction points with
Eq. (1) and by applying Eq. (13) or Eq. (14), respectively.

5 Numerical Examples

In this section the properties of the proposed hybrid method
are evaluated by comparing results with results obtained by
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using long established frequency domain algorithms. For
this purpose the dipole array shown in Fig. 2 is studied, po-
sitioned in different surroundings. The spatial discretiza-
tion size4S was chosen to4S=0.67cm for both the hybrid
method and the reference methods.

5.1 Dipole array in free space

First we consider the array positioned in free space. The ap-
plied voltage is a gaussian pulse; its spectrum is shown in
Fig. 3. The applied voltage has the following properties:

– Its spectrum is extremely broad.

– Its corresponding wavelength contains components for
which the spatial discretization4S is larger thanλ

10.

– It contains a large DC-component.
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Fig. 16. Normalized far field radiation pattern of the array in front
of a perfectly conducting screen (f=753 MHz) calculated using dif-
ferent time step sizes4T .

The time step is chosen according to the Courant limit
(4T =1.28126·10−11 s), although it can be larger without
leading to instabilities (see Fig. 16 in Sect. 5.3). In Fig. 4 the
resulting source current is compared to the result obtained
by using the frequency domain MoM based code MININEC
and the inverse FFT. The center-point currents of the second
dipole are compared in Fig.9. The results agree very well.
In Fig. 5 both source currents are compared in the frequency
domain and it becomes obvious that both agree best at lower
frequencies. The calculation time of our time domain MoM
was around 8 seconds (3000 time steps, which equals 11.5
light meter) compared to around 32 s for MININEC (on the
same computer, 400 frequency steps, same spatial discretiza-
tion). In Figs. 6 and 7 the real and the imaginary part of the
input impedance are shown, respectively. Around 750 MHz
one can see the influence of the second dipole on the input
impedance of the first one. For frequencies up to around
1.2 GHz the relative error of the magnitude of the input
impedance is smaller than 2% (see Fig.8). For higher fre-
quencies the results of the TD-MoM and the FD-MoM di-
verge more; the TD-MoM shows some kind of dispersion
effect: For high frequencies the resonance frequencies of the
antenna are lower than obtained by using MININEC.

5.2 Dipole array above perfectly conducting ground

As a second example the input impedance of the same array
10cm above perfectly conducting ground (see Fig.10) is
investigated. For excitation the same pulse as in Sect. 5.1.
was used. The result is compared to the input impedance
of the same array calculated with MININEC (Figs.11 and
12). Additionally, the input impedances of the same array
in free space are plotted to show the influence of ground.
The results agree well and the strong influence of the ground
plane on the input impedance around 750 MHz is taken into
account very well.

5.3 Dipole array in front of a perfectly conducting screen

The last example is the same array, excited with the same
impulse but this time in front of a perfectly conducting screen
(Fig. 13). The normalized radiation patterns are compared
to the results obtained by using the frequency domain MoM
UTD based hybrid method FEKO. As one can see in Figs.14
and15 the results agree very well. In Fig.16 the radiation
pattern calculated using different time step sizes is shown for
f =653 MHz. Obviously, in the application of the proposed
hybrid method it is possible to use much larger time steps
than given by the Courant limit.

6 Conclusions

The hybrid method presented in this paper combines a time
domain Method of Moments algorithm with the time domain
version of the Uniform Theory of Diffraction. Several ex-
amples were presented and it was shown that our hybrid
method can be applied for calculating the transient radia-
tion properties of antennas in complex surroundings. Despite
of using extremely broadband excitation pulses with strong
DC-component the radiation patterns and input impedances
agree very well to long established frequency domain codes.
The proposed method can easily be extended to be applied to
patch antennas and more complicated UTD-bodies.
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