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Abstract. Boundary Integral Equation formulations can be
used to describe electromagnetic shielding problems. Yet,
this approach frequently leads to integrals which contain a
singularity and an oscillating part. Those integrals are diffi- Yer Yoe

cult to handle when integrated naivly using standard integra- conducting bar
tion techniques, and in some cases even a very high number b
of integration nodes will not lead to precise results.

We present a method for the numerical quadrature of an
integral with a logarithmic singularity and a cosine oscillator:
a modified Filon-Lobatto quadrature for the oscillating parts
and an integral transformation based on the error function for e >
the singularity. Since this integral can be solved analytically, —I, +1o L, Zo
we are in a position to verify the results of our investigations,
with a focus on precision and computation time. Fig. 1. Screening bar and exciting loop.
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The z-directed dimensions of both bar and loop are sup-
posed to be infinite.

We investigate the field properties of a rectangular bar of con-
stant conductivity; and permeability:;. The space outside
the bar has the arbitrary constant permeabijlityand con-

?hUCtl'V\:\t/y;‘i"‘?to' ;I;]her V??:]OVS T)tcﬁexdjiLn?quyilsnpOI?tiltnt? 8 As all exciting currents are oscillating at one single fre-
€ lower lelt corner ot the bar, the ensions o ang qguency, all fields will show the same time dependency and

andb, as shown in Fig. 1. We name the cross-section of the .
' . h I h )
bar$ and its contout — 9. can be expressed by their complex phasors

. . . . For a complex vector potential as B = curlA, with the
An exciting loop consists of two .th|n C?”d“.?j,ors' which magpnetic fluxB, we find that for points inside the bar an ad-
carry the currents(r) apgi—z (1), with i (1) =9t{1e?®"}, I be- yioh o) term has to be added to the vector potential. The ad-
ing the phasor describing the complex current . They aritional term can be expressed as the time domain integral of
located at the gradient of a complex electrical scalar potengjét) by

1 Introduction

2 Differential equations for the vector potential

re = tx.e,.
/(grad<pi)dt = Ce,,
The angular frequenay is considered to be low enough so

that displacement currents can be neglectgd: > 1% D], with an unknown complex constadt The vector potential
whereJ is the current density inside the bar abdhe elec-  4; inside the bar can be redefined by using the Buchholz
tric flux. convention

Correspondence td:. O. Fichte .

(lars-ole.fichte@hsu-hh.de) Af = A+ / (gradyi)dr = Ai + C,
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from which the fields can be computed with

Bi=curlA} and E;=—jwAf.

From Maxwell’s equations we find that the modified vec-
tor potential inside the bar is governed by Helmholtz’ equa-
tion, which for complex fields takes the form

AAf — jouikiAf = 0. (1)
Outside the bar the equation
AAa= —pale, 2

is valid for the vector potentiad 5. The exciting current den-
sity J. can be expressed as

Je = {01(x — x¢) = 81(x + x0)}81(y) - Le:.

The symbols;(x — x,) denotes the one-dimensional Dirac
distrubution; accordinglys, andéds are the two- and three-
dimensional Dirac distribution.

Since we allow only-directed exciting currents, all vector
potentials will also be exclusively-directed. They can be
described by theig-componentsA,; and A, respectively.

1Z?
The boundary conditions fota; and A7, are

*
iz>

1 1
Aaz= A}, — C and;no -gradda, = e gradd

wheren, is a unit vector normal to the boundary.

3 Derivation of boundary integral equation (BIE)

In Green'’s second theorem

// (O AV — ¥ AD)dt

= # (P grad¥ — W gradd) - n, dF,

F=dt

we insert the single component of the vector potemiahs
W and a kernel functiolk satisfyingAK = — 83 as®. As a
result, we get an integral representation validAgr

Ag = —ﬂ (Aggradk — K graddy) - n,dF
F=o0t

+00
+ /J,a] / K =, dZ().
—00 Yo=0
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Fig. 2. Normals on boundary sections.

is inserted.
tion Gyp as

Thereby we can define a new kernel func-

1
Goo= o |n(—p ),
JT

0

with p =/(x — x)2+ (y — y,)2 and p, = const. While we
are aware that the above integral is divergent, it can be solved
by performing a suitable renormalization.

The functionGyg satisfiesAGog= —§82, as is shown in
Ehrich et al.(2000.

If we use the new kernel and define the influence of the
exciting loop as

Ae = MaIGZOLC”:ixE )
y0:0

we can write the integral representation foy as

Ag=— f (AggradGog — Gopgraddy) - n,ds + Ae.
C=0Q
We use the cross-section of the bar as integration dofain
with its facet normals defined as shown in Eig.

By taking into account the boundary conditions discussed
above, we get an integral representation for the vector poten-
tial outside the bar:

Ag= — y{ [(Af — C)gradGzo
C=9Q
Ma %
—Goo— gradAf] -n,ds + Ae.  (3)
Hi

The integrand of the surface integral at the right hand sid&; can pe shown that

of the above equation does not dependzorHence thez-
directed integration is only affecting the kernel functi&n
for which the elementary Kernel function

fl (CgradGyg) - n,ds =0,

C=0Q

1
K=-—,
Ar
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S0 we can omit this term in Eq3).
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In a last step we take the normal derivativeAaf on each

Ya
of the four contour sections @ and move the observation "
point to the very same section, i.e. f(z) =In|z — [ cos(10mz)
\
Dy =y, 3y =y, +b, }
D x=x4+a, 4 x =x4. A |
1WA :
As a result, we get four independent integral equations | \/ ‘ } | \/ } t
\ | \
Eno - graddf =n, - grad f (AF gradGo 0\ 7 “E 1 a‘
Mi z] Lzh
I C=0Q 2o

MHa * (4)
— Goo— gradd;’) n, ds + Ae}L_ Vet tay
Hi THgVI=rg Ty Fig. 3. Oscillating function with singularity.

X, y=yqVy=yq+>b

We find a solution to Eqg.1) by separation, using a prod-
uct of functions depending only on one coordinate for the
descrition ofA .

The values of the coefficients,,,, d;,, andb,,, needed for
the solution of the matrix equation, can be obtained analyti-
cally (sedrichte et al.2004). The calculations resulting from

. 00 the analytical approach are discussed in detdfiainte (@).
Aj (e, ye) = Z [vincoshBy (b—ye)) Once the values of these coefficients are known, they can
n=1 be used to express the vector potential outside the shielding
+v3, CoSH B yc) | coSayxc) bar as a series of known functiods (x, v), k=1, ..., 4:
+[v2, cosh(B, (a—xc))
~ . M
+U4ﬂ Coshﬂll xc)] Coiaﬂyc) ’ (5) Aa(x’ y) = UlnAl(-xv y) + vznAz(x’ y)
_nr — |2 . n=1
ap = —, 18"_ ay +JwK/’L|7
a + v3,A3(x, y) + vanAa(x, y).
~ nw [~o | .
ap = —, = ,/a% + JwkK L. . . . .
: b Pn n T ORI This method, using analytical solutions, has been used to cal-
Then, the unknown constants,, i = 1. .... 4 will have to culate the shielding effects of a conducting Waichte et al,

be determined. 2009.

We can now insert the result far" into Eq. @). Using the

orthogonality of the cosine functions ) .
4 Numerical treatment of integrals

2r 0 n#p
When we insert the series representationAdf into the
co co d¢ = = 0, L .
/ Sné) cospe)ds Ton=p# BIE (4), we can transform the resulting integrals into expres-
0 2r n=p=0 sions like

we can isolate one coefficient,, on the left hand side of a

Eqg. @). Expanding the right hand side into a series of cosine/ cosng) - InE)de ,n [ N. @)
functions by multiplication with ca®:,,x.) (or coga, y.),

respectively) and computing its integral along one of the con-

tour sections we get Standard schemes for numerical integration do not lead to
4 o appropriate results due to the oscillatory nature of the cosine

m X . ; g

R vimdim = Z Z[Vinm vinl + bp.  m / N. function and the smgglarlty of thg Io.garlthmlc.ternlw. .

Mi Tin=l An example of an integrand is displayed in Fig. 3, with

f(x)=In]x — 5| cog10mx).

In a novel approach we use numerical integration methods
which deliver highly precise results. First, a decomposition
Tv=b, (6) of the domain of the integral is necessary. It is divided into

three subdomains: the singularity is in the non-oscillating
with matrix I' and vectors, b of finite dimensions. Equa- subdomairixz, xzn]. The edge points of this domain are the
tion (6) represents a system of linear equations from whichhighest zero off below the singularity and the lowest zero
the 4v unknown coefficients;,, can be computed. of f above it.

If we take only the firstV series elements into account, this
equation can be written as a matrix equation

www.adv-radio-sci.net/4/11/2006/ Adv. Radio Sci., 4, 132006
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The remaining two subdomaif8, x,|] and[x.h, a] repre- quadrature of the highly oscillating integrals, since the accu-
sent the non-singular oscillating parts of the integral: racy of this method is improving with the number of zeros of
the integrand.

a Xz|
/cos(né) Ing) de = /cos(né) -In(&)dg 4.2 Treatment of the subdomain containing the singularity
0 0 The subdomain of the original integral which contains the
Tiow singularity is handled separately, acoording to a method pre-
*zh a sented irEhrich et al.(1997).
+ / cogné) - In(&)dg +fcos(n§) -In(&)dg First the integral is mapped to the doméh 1]. Then a
o o Gauss quadrature is applied: the whole integrand is approx-

imated by Legendre’s polynomials and the zeros of Legen-
Ising I dre’s polynomial of theN-th order,c;, are taken as abscis-

Here, x, is the largest root of the integrand below the singu- S8S- The corresponding weighting factors of the Gaussian

larity andx,, the smallest root above the singularity. integration are namedy. With these expressiongsing is

Note that by combination of the integral we only need 9Ven by:
three subdomains. 1

4.1 Treatment of the subdomain with oscillating integrand /In(x)cos(ﬁx)dx
0

We apply a Filon-Lobatto quadrature describediserles NJ2

(2004 to the oscillating parts of the integral. As a first =Y y(or(IN(x) COM7x)) | x—ay

step the boundaries of the integral are mapped to the do- k=1

main{0, 1: + Br(In(x) COKTx) [x=p,)-

Xzl

The constantsy, gx andy; are:
Tow = / cosng) - In(e)de

0 o — 1 [1 Flgci} 'eqz(qc,()z} ’
1 2 Flq}
q
— s [ cosmiz &) - InGrat k. o dy
0 n q{k 2
Bk = T()eq s
Then we approximate the logarithmic function in the inte- w; g 1 ) )
gral usingN Legendre polynomials: Vi = T(q) e @™
N
g: . .
IN(xz&) ~ Z P (=) In(cxz), By using the functionf'(¢),
= s ok
_ CR
whereP; denotes the Legendre polynomial of order FE&=£) @D
For the first two abscissas we choose the start- and the k=0
endpoint of the integration domain. The remaining 2 ab-  the error function, as defined iAbramowitz and Stegun
scissasy, k=1,..., N — 1, are the roots oP,,_, (x). (1970,
Thus, we can approximate the lower integral by: ‘
N 2 2
fow ~ 213 b In(exh), ERRE) = 7= / e,
k=1 0
with known weight factorsy: can be expressed as

1

ben) = / Pe() cos(nE k.

0

ERFE) = ——c ¥ F(©)
= —€ .
T
The constany is an arbitrary real constant which has to
The integrall,j, which covers the part of the integral for be chosen in advance. This method for dealing with the
& > xz(i+1), IS treated likewise. logarithmic singularity is discussed in depthihrich et al.
The use of Filon-Lobatto quadrature results in a fairly (1997 and a value ofy = 7 has been established as an opti-
low number of integration nodes neccessary for numericalmal value for precision and computation time.
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Table 1. Integration nodes and computation time References

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical

Number relative precision Functions, New York 1970.
of 10E—3 10E—_7 10E—10 Ehrich, M., Fichte, L. O., and lier, M.: Contribution to Bound-
ary Integrals by the Singularity of Kernels satisfying Helmholtz’
Zeros  k Us k sk Us Equation, CJMW'2000 China-Japan Joint Meeting on Mi-
10 14 4E—3 21 016 23 022 crowaves, Nanjing, PR China, CD-ROM, 2000.

Ehrich, M., Kuhlmann, J., and Netzler, D.: High accuracy inte-

50 44 124 120 343 162 804 gration of boundary integral equations describing axisymmetric

100 50 16.4 109 291 170 1001 field problems, Asia-Pacific Microwave Conf., Hong Kong, Mi-
crowave Conf. Proc., CD-ROM, 1997.

Fichte, L. O.: Berechnung der Stromverteilung in einem System

While this method for computing singular integral has rechteckiger Massivleiter bei Wechselstrom mit Hilfe der Rand-
been used in the past, the combination with the Filon-Lobatto integralgleichungsmethode, PhD-Thesis, to be published.

. . - |Fichte, L. O., Ehrich, M., and Kurz, S.: An Analytical Solution
integration amounts to a new approach for the numerica to the Eddy Current Problem of a Conducting Bar, EMC 2004
quadrature of singular oscillating integrals.

Intern. Symposium on Electromagnetic Compatibility, Sendai
Conf. Proc., CD-ROM, 2004.

Fichte, L. O., Lange, S., Steinmetz, T., Clemens, M.: Shielding
Properties of a Conducting Bar calculated with a Boundary In-

The presented method has been used for the numerical apy, tegral Equation Method, Adv. in Radio Sci., 3, 119-123, 2005.

. . - L. anson, G. W. and Yakovlev, A. B.: Operator Theory for Electro-
proximation of an integral as appearing in EqThe results magnetics, Springer, New York, 2002.

are .displayed. in Table 1. Here,is the l"!umber of zeros of |serles, A.: On the numerical quadrature of highly-oscillating inte-
the integralk is the number of polynomials used for the ap-  grals, IMA J. of Numerical Anal., 24, 365-391, 2004.
proximation and is the computation time in seconds (on a

1 GHz Pentium system with 500 MB RAM).

5 Numerical results

6 Conclusion

A plane magneto-quasistatic eddy current problem has been
described by a boundary integral equation. To obtain a so-
lution to this integral equation, one has to solve a kind of
integral which is highly oscillating and contains a singular-
ity. A novel method for the approximation of those integrals
has been developed. The results have been compared to ana-
lytical solutions.
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