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Abstract. Partial differential equations can be solved numer-
ically by means of wave digital principles. The great advan-
tage of this method is the simultaneous achievement of high
robustness, massive parallelism full localness and high ac-
curacy. Among others this method will be applied in order
to solve the Euler-equations according to one dimension in
space. Especially the so called Shock Tube Problem will be
examined. The analytical solution of this problem contains
two discontinuities, namely a shock and a contact disconti-
nuity. These result in oscillations which are due to numer-
ical integration methods of higher order. Also solutions of
the Wave Digital Method contain these oscillations, contrary
to what had been observed ofYuhui Zhu (2000). This be-
haviour is also known as Gibbs Phenomena.

The Navier-Stokes-equations, which are from a physical
point of view more exactly, additionally take viscosity terms
into account. This leads to smooth solutions near shocks. It
will be shown that this approach leads to the suppression of
the oscillations near the shock. Furthermore it will be shown
that quite good results for the computation of velocity and
pressure can be obtained.

1 Introduction

In the pastFries (1994) already solved the Shock Tube Prob-
lem by means of Wave Digital Principles. There every single
Euler-equation was represented by an energy equation of a
separate multidimensional (MD) Kirchhoff network. In or-
der to avoid oscillations near the discontinuities, Fries intro-
duced artificial terms of dissipation and heat conduction.

Whereas in this paper the Euler-equations are represented
by Kirchhoff laws, which are applied to an appropriate MD
Kirchhoff network. In a further step this network can be ex-
tended in a way that viscosity terms are taken into account.
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Concerning the differential equations this corresponds to the
transition to the Navier-Stokes-equations.

2 Equations of fluid dynamics

Starting point for the approach presented in this paper are
the equations of fluid dynamics. A special form of these has
been introduced byFettweis(2002). In the case that only one
dimension in space is considered, these equations are given
in the form
Dtec + Dx (vec) + vDxp = vf (1)

Dtei + Dx (vei) + pDxv = qf (2)

Dtρ + Dx (vρ) = 0 (3)

where
Dx = ∂/∂x , Dt = ∂/∂t,

v = velocity, p = pressure, ρ =density,
ec =

1
2ρv2 kinetic energy density,

ei = internal (thermodynamic) energy density,
f = force due to viscosity,
qf = power density supplied toei by the viscosity forces.

If f is chosen in a way which corresponds to Newton,
Eqs. (1–3) are equivalent to the Navier-Stokes-equations.
However the terms which represent heat conduction and ex-
ternal forces are not taken into account. Equation (1) repre-
sents the conservation of kinetic energy. This is equivalent to
the equation of momentum conservation, which is normally
used in fluid dynamics. However using Eq. (1) has advan-
tages in deriving an appropriate MD Kirchhoff network.

If the termsf andqf are ignored, Eqs. (1–3) are equivalent
to the Euler-equations.

In the following it is assumed that the fluid is a perfect gas.
The relation between pressure and internal energy density is
given by the following equation

ei =
p

γ − 1
, 1 < γ ≤ 2, γ = isentropic coefficient. (4)
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3 Coordinate transformation

In order to get a MD Kirchhoff network Eqs. (1–3) have to be
transformed in a suitable way. For this purpose these equa-
tions are written in dependence of vector

x = (x1, x2)
T

= (x, v0t)
T. (5)

After another transformation these depend on the MD time
vector

t = (t1, t2)
T. (6)

The transformation has to be applied in a way that the appro-
priate system gets causal concerning every component oft .
This is a necessary condition for the MD passivity of the sys-
tem. A suitable transformation which is used here is given by

x = v0Ht where H =
1

√
2

(
1 −1
1 1

)
. (7)

In order to achieve MD causality of the systemv0 has to be
chosen sufficiently large. The appropriate differential opera-
tors are resulting in(

Dx1

Dx2

)
=

1

v0
√

2

(
1 −1
1 1

) (
D1
D2

)
(8)

where D1 = ∂/∂t1 , D2 = ∂/∂t2.

4 MD Kirchhoff network

Similar as inFettweis(2002) using Eqs. (7) and (8) and ap-
plying some manipulations, Eqs. (1–3) can be transformed in
the form∑2

κ=1
√

Lκ Dκ

(√
Lκ ṽ

)
+
√

L (D1 − D2)
(√

Lp̃
)

= f̃ (9)∑2
κ=1

√
L4κ Dκ

(√
L4κ p̃

)
+
√

L (D1 − D2)
(√

Lṽ
)

= q̃f
p̃

(10)∑2
κ=1

√
L0κ Dκ

(√
L0κ ρ̃

)
= 0 (11)

where

ṽ =
v

v0

√
p

p0
, p̃ =

√
p

p0
, ρ̃ =

√
ρ

ρ0
, f̃ = v0

√
1

2pp0
f,

q̃f =
qf

√
2p0

, v0 > 0 , p0 > 0 , ρ0 > 0

and

L = 1 , L0ν = 1 ±
v

v0
, Lν =

v2
0ρ

2p
±

v0vρ

2p

L4ν =
ei

p
±

(ei − p)v

v0p
, ν = 1, 2.

Equations (9–11) can be interpreted as mesh equations of an
appropriate MD Kirchhoff network. But first of all a closer
look at the viscosity terms has to be taken.

4.1 Viscosity terms

In the case that three dimensions in space are considered, the
forces due to viscosity result from

f = (∇TS)T where ∇ = (Dx, Dy, Dz)
T.

Matrix S corresponds to the so called stress tensor which is
normally used in mechanics (Böhme, 1990). Due to the vis-
cosity forces energy is dissipated which results from

qf = (S∇)Tv.

Every component of matrixS depends on the considered ma-
terial behaviour. In this case the Newtonian fluid is taken
into account. This approach assumes a linear dependence
between mechanical stresses and gradients of velocity.
If one dimension in space is considered, the following ap-
proach is given

f = Dxsxx where sxx = ηDxv. (12)

Thus the energy densityqf is given by

qf = η(Dxv)2. (13)

Introducing another variablew, where

w + ηDxv = 0, (14)

η viscosity coefficient> 0,

one obtains a differential equation inw, which is not hyper-
bolic in the sense that a finite propagation velocity has to be
assumed. With this, the energy densityqf can also be written
in dependence ofw, where

qf =
w2

η
, (15)

which is equivalent to Eq. (13). In order to get a hyperbolic
equation, which is a necessary condition for MD causality,
Eq. (14) has to be extended. An approach to do this results
from an analogy to the classical transmission line. Using this
approach one obtains

lDtw +
1

η
w + Dxv = 0, l > 0, (16)

where some estimate forl will have to be used. Due to the
fact that viscosity is now modeled in an extended (and pys-
ically not unrealistic) way,qf is no longer fully equivalent
to Eq. (13).

After introducing normalized variables, applying the coor-
dinate transformation (7), (8) and doing some manipulations
Eq. (16) is given by√

Lc(D1 + D2)
√

Lcw̃

+

√
Lc(D1 − D2)

√
Lcṽ + Rw̃ = 0 (17)
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Fig. 1. MD Kirchhoff network
which represents the equations of fluid
dynamics.

where

w̃ = l

√
p

p0
w , Lc =

1

2lp
, R =

1

ηl2p
√

2
.

Also this equation can be interpreted as a mesh equation of
an appropriate MD Kirchhoff network. Equation (12) can be
written in the form

f̃ = −

√
Lc(D1 + D2)

√
Lcw̃, (18)

andq̃f results from

q̃f = Rw̃2, (19)

which corresponds to the energy dissipated in ResistanceR.
At this point all equations are known in order to get two re-
sulting MD Kirchhoff networks which are shown in Fig.1.
At first glance they seem to be independent. However they
are implicitly coupled by the inductances which depend on
the variablesρ, p, v. The dashed part of the network repre-
sents the terms of viscosity. In the case that viscosity is not
taken into account this part has to be shorted. The energy
densityqf is introduced into the network by the represented
voltage source whereu0 =

q̃f
p̃

.
After introducing wave variables and applying the trape-

zoidal rule a signal flow diagram can be derived. In a further
step this can be realized on a computer.

5 Simulation results

The Shock Tube Problem is a classical benchmark problem
for numerical algorithms in fluid dynamics. It consists of an
infinitely large tube which is filled with gas and separated by
a diaphragm. The state of the gas on the left side of the di-
aphragm is different from that on the right side. This results
in a discontinous initial distribution. In this paper this distri-
bution is chosen as specified inHirsch(1990). With this, one
obtains

ρl = 1.0 , pl = 1.0 , vl = 0.0,

ρr = 0.125 , pr = 0.1 , vr = 0.0,

for the left and right side of the tube respectively. The isen-
tropic coefficient which has been introduced in Eq. (4) has
been chosenγ = 1.4. At t = 0 the diaphragm is removed
and the gas propagates in the tube. According to the Euler-
equations during this propagation two discontinuities called
shock and contact discontinuity arise. The analytical solu-
tion of this problem is given byHirsch (1990). The Figs.2
and3 show the results for pressure, velocity and density at
t = 0.14. Where the analytical solution is plotted with dashed
lines and the solution of the Wave Digital Method is plotted
with solid lines.

First of all the results without taking into account viscosity
are shown in Fig.2. Similar as inFries (1994) strong oscil-
lations near the discontinuities occur. Apart from that the
curves approximately correspond to the analytical solution.

Whereas in Fig.3 viscosity terms are taken into account.
The friction coefficientη is chosen 0.0001 andl is chosen 1.
Near the shock no oscillations occur, because the unsteady
curve has changed to a steady curve, which better corre-
sponds to reality. For this the discretization has been chosen
very fine. However the oscillations near the contact discon-
tinuity still occur. This is due to the fact that the velocity is
constant in this area. Thus the viscosity terms cannot have
any influence here.

6 Conclusions

The computed results show that the MD Kirchhoff network
which represents the Euler-equations can be successfully ex-
tended. The derived network takes viscosity into account
and represents the Navier-Stokes-equations. Using this it has
been shown that the computation of the Shock Tube Prob-
lem leads to quite good results. Especially the oscillations
near the shock have been suppressed. However a very fine
discretisation is required in order to get very steep gradients
near the shock. Near the contact discontinuity these oscilla-
tions still occur.
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pressure vs. x velocity vs. x density vs. x

Fig. 2. Numerical Results without taking viscosity into account.

pressure vs. x velocity vs. x density vs. x

Fig. 3. Numerical Results taking viscosity into account.

Probably taking into account other physical phenomena
as for example heat conduction, will result in steady solu-
tions. Using this, oscillations near contact discontinuities
could also be suppressed. On the other hand there are many
problems in fluid dynamics which do not contain contact dis-
continuities. So in all probability the Wave Digital Method
can be applied successfully to these problems.
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