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Abstract. A multilevel fast spectral domain algorithm
(MLFSDA) is introduced for the efficient evaluation of the
matrix vector products due to the boundary integral (BI) op-
erator within a hybrid finite element - BI (FEBI) method
for the analysis of infinite periodic arrays. The MLFSDA
utilizes the diagonalization property of the spectral domain
(SD) BI representation and handles the large numbers of
Floquet modes required for large (with respect to wave-
length) periodic unit cells by similar hierarchical techniques
as applied in the multilevel fast multipole method/algorithm
(MLFMM/MLFMA). With the capability of the MLFSDA to
handle very large periodic unit cells, it becomes possible to
model finite antennas and scatterers with the infinite periodic
array model. For a cavity-backed antenna element and for a
semi-finite array of 4 cavity-backed antenna elements in the
finite direction, the dependence of the input impedances on
the unit cell sizes is investigated and it is found that array res-
onances disappear for reasonably large unit cell dimensions.
Finally, a semi-finite array of antipodal Vivaldi antenna el-
ements is considered and simulation results for infinite pe-
riodic, finite, and semi-finite array configurations are com-
pared to measured data.

1 Introduction

The infinite periodic array model is still an important ap-
proach for analysis and design of large finite arrays. With
periodic excitation, the field solution in the array becomes
also periodic and Floquet’s theorem can be employed to re-
duce the computational domain down to a single array ele-
ment (unit cell), thus significantly speeding up analysis and
reducing memory requirements. In the context of integral
equation (IE) formulations, periodic Green’s functions are
constructed, where especially spectral domain (SD) repre-
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sentations amenable to multilayered configurations are used
(Mittra, 1988; Aroudaki et al., 1995). Arbitrarily inhomo-
geneos array elements can be modelled by the hybrid finite
element - boundary integral (FEBI) technique (McGrath and
Pyati, 1994; Lucas and Fontana, 1995; Eibert et al., 1999,
2000, 2003). Most approaches work with simple half-space
Green’s functions in SD (McGrath and Pyati, 1994; Lucas
and Fontana, 1995), whereas a spatial domain Green’s func-
tion computed via the Ewald transformation is used inEibert
et al. (1999). Also, the SD half-space Green’s function has
been extended to multilayer configurations above and below
the FE mesh inEibert et al.(2003). The approach inEibert
et al. (2000, 2003) evaluates the SD BI very efficiently by
a so-called fast spectral domain algorithm (FSDA), but the
approach works efficiently only for relatively small unit cell
dimensions (with respect to wavelength), since the necessary
Floquet mode numbers increase with the size of the pertinent
unit cells.

In non-periodic IE and FEBI approaches, the use of fast
integral solvers such as the fast multipole method (FMM)
and its multilevel versions (MLFMM/MLFMA) (Chew et al.,
2001) or the adaptive integral method (AIM) (Bleszynski
et al., 1996) (similarly pre-corrected FFT methodsGedney
et al., 2003) have become standard over the past years. Peri-
odic IE and FEBI formulations can also be accelerated by fast
integral methods. However, large problems with large unit
cells require to work with large numbers of Floquet modes
(or other types of series terms in spatial domain or mixed spa-
tial/spectral representations (Ewald transformation)) and this
leads to considerably increasing computational effort, even
with the use of conventional fast integral methods.

In FSDA (Eibert et al., 2000), it was already realized
that the standard SD formulation leads to diagonalization
of the pertinent IE and BI operators. In this paper, it is
shown that the standard SD formulation can be cast in an
FMM-like representation. Thus, FSDA and multilevel FSDA
(MLFSDA) approaches can be derived by similar techniques
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Fig. 1. Cross section of array unit cell with indication of BI and
periodic boundary condition (PBC) surfaces.

as employed for FMM and MLFMM/MLFMA. Compared
to MLFMM/MLFMA, MLFSDA does not need any near-
coupling corrections and all interactions are computed on the
coarsest level with only one group. For the considered peri-
odic problems, the summation over the Floquet wavenum-
bers represents an exact integration rule and also the trans-
lation operator evolves directly from the SD representation.
In this paper, MLFSDA is employed to accelerate a FEBI
technique working with tetrahedral volume and triangular BI
elements.

With MLFSDA, unit cells with dimensions of many wave-
lengths can be efficiently handled. Thus, it is possible to
model multilayer FSS with dissimilar periodicities by the su-
percell approach, where a period common to all individual
layers is defined and several array elements in the various
layers are placed in the computational unit cell. This ap-
proach is probably not as efficient as the cascading technique
in Ma et al.(2005), but has increased modelling flexibility.

With the capability to handle large unit cells, it becomes
possible to place entire finite configurations in a periodic unit
cell, which is large enough to decouple the periodic images.
Thus, the advantages of the periodic modelling approach
(Floquet mode series instead of SD integral) can also be used
to compute finite configurations such as finite antenna arrays.

The paper is organized as follows. After presenting some
basic equations, the MLFSDA technique and the modelling
of finite and semi-finite configurations are discussed. In the
results section, the transmission coefficient of an 8-layer FSS
with dissimilar periodicities is computed and compared to
measured data. For the examples of a cavity-backed patch
antenna element and a corresponding quadruple patch array,
it is investigated which unit cell sizes are necessary to de-
couple the periodic images in finite and semi-finite configu-
rations, respectively. Finally, a semi-finite array of antipodal
Vivaldi antenna elements is investigated.

2 Formulation

2.1 Hybrid FEBI formulation

The hybrid FEBI formulation for infinite periodic array con-
figurations employing Floquet’s theorem to reduce the prob-
lem to a single unit cell of the array (see Fig.1) can be found
in many references such asMcGrath and Pyati(1994); Lucas
and Fontana(1995); Eibert et al.(1999, 2003). The period-
icity in the xy–plane is defined by the lattice vectorsρa, ρb

via the shifting relation

ρmn = m ρa + n ρb , r = ρ + zẑ = xx̂ + yŷ + zẑ , (1)

wherem andn are integers. Assuming the periodicity con-
ditions given inEibert et al.(1999), electromagnetic analy-
sis can be carried out by enforcing stationarity of a standard
FE functional in terms of the electric field intensityE with
BI termination for the FE portion of the unit cell, shown in
Fig. 1.

2.2 Multilevel fast spectral domain algorithm

In a standard implementation of the hybrid FEBI method, the
BI contribution results in fully populated matrix blocks for
the unknowns in the top and bottom BI surfaces and therefore
it is desirable to evaluate the BI expression in an alternative
manner. It is well known that the standard SD formulation di-
agonalizes the BI operator and this property was already uti-
lized for the formulation of an FSDA inEibert et al.(2000).
In this section, an MLFSDA is derived which allows very fast
evaluation of the BI contributions during the computation of
matrix-vector products in an iterative equation solver, even
for large unit cells.

We start with the SD representation of the spatial Green’s
function in the BI

−

Gp(ρ, ρ′) =

∫
kx

∫
ky

−̃

Gp(kx, ky)

× e−jkx (x−x′)e−jky (y−y′) dkxdky , (2)

where

−̃

Gp(kx, ky) =
1

A

∞∑
p=−∞

∞∑
q=−∞

−̃

G(kx, ky) δ(kt − ktpq) (3)

in the case of an infinite periodic array problem with

A = |ρa × ρb|, kt = kx x̂ + ky ŷ, ktpq

= kt00 +
2π

A

[
p(ρb × ẑ) + q(ẑ × ρa)

]
,

and
−̃

G the corresponding non-periodic SD Green’s function
(seeEibert et al., 1999, 2003) and introduce the decomposi-
tion

ρ − ρ′
= (ρ − ρg) + (ρg − ρ′

g) − (ρ′
− ρ′

g) (4)
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based on a regular grouping of the basis functions in the BI
surfaces.ρg is the group center close to observation point
ρ and ρ′

g is the group center close to the source pointρ′.
Substituting these expressions into the discretized BI contri-
bution (e.g. seeEibert et al., 1999) gives∫∫
S

bm(ρ) ·

∫∫
S

−

Gp(ρ, ρ′) · bn(ρ
′) ds′ds

=

∫
kx

∫
ky

b̃
∗

m(kx, ky) ·
−

Tmg,ng(kx, ky) · b̃n(kx, ky) dkxdky (5)

with

b̃n(kx, ky) =

∫∫
S

bn(ρ)ejkx (x−xng)ejky (y−yng) ds (6)

and the corresponding translation operator

−

Tmg,ng(kx, ky) =
−̃

Gp(kx, ky)

× e−jkx (xmg−xng)e−jky (ymg−yng) . (7)

Also, bn are the usual Rao-Wilton-Glisson basis functions
used to descretize the BI. Equation (5) has the same structure
as diagonalized FMM representations (Chew et al., 2001),
except that the FMM integration over the Ewald sphere is
replaced by SD lateral wavenumber integration, i.e. a trun-
cated Floquet mode series in the case of the considered in-
finite periodic problem (see Eq, (3)). Thus, by applying
the same principles as done in FMM or MLFMM/MLFMA,
fast and multilevel fast spectral domain algorithms (FSDAs
and MLFSDAs) can be realized to evaluate the BI. However,
some important differences are observed. Most importantly,
the translation operator in Eq. (5) is known analytically and
the whole representation Eq. (5) is exact for all interactions,
including near- and self-terms. Moreover, for infinite peri-
odic problems the integration rule for the computation of the
SD integral in Eq. (5) is also exactly given by the Floquet
mode representation of the periodic Green’s function (see
Eq. (3)). Consequently, a particular error analysis is not nec-
essary for FSDA and MLFSDA, since the algorithms give
the same results as conventional SD implementations. In
MLFSDA, we must only guarantee that the required inter-
polation and anterpolation steps are carried out without in-
troducing additional errors.

FSDA has already been presented inEibert et al.(2000).
Due to the exact validity of Eq. (5), this algorithm does not
work with any grouping and computes all interactions among
all basis functions at once. This algorithm is well suited for
periodic problems with small unit cells, however, becomes
inefficient for large unit cells, where an increasing number of
Floquet modes is needed. In MLFSDA, large unit cells are
covered by a regular square grid of groups and a hierarchical
grouping structure is introduced. Since FSDA and MLFSDA
do not suffer from low-frequency break-down, the size of the

BI
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metal

Fig. 2. Cross section of array unit cell for finite array modelling
with indication of BI surfaces.

groups on the finest level can be chosen on the same order
as the sizes of the discretization subdomains. On higher lev-
els, lower level groups are combined until there is only one
group on the coarsest levelL. All interactions according to
Eq. (5) are computed for the single group on the coarsest
level, where the SD sample density is chosen according to
the size of this group. One level below, every other sample is
left out and so on until the finest level is reached. The sam-
pling density on the lower levels is determined by the sizes of
the groups on these levels. The sample densities on the vari-
ous levels are determined according to the Shannon sampling
theorem, where sufficient oversampling must be provided for
the interpolation and anterpolation procedures to work.

2.3 Computation of finite and semi-finite configurations by
increasing the infinite array period

With the MLFSDA, it is possible to compute periodic array
problems with large unit cells. For many array problems,
this is not important, since the period is often on the or-
der of a half wavelength. However, large unit cells are re-
quired if multilayer FSSs with dissimilar periodicities shall
be computed by the supercell approach and we can even
place an entire finite or semi-finite configuration in one unit
cell. Since the influence of the periodic unit cell images on
the finite configuration must be small in this case, the period
in the computational periodic array model must be chosen
very large and a model according to Fig.2 evolves from the
original model in Fig.1. Due to the use of a Green’s function
with metallic backing in the BI, the finite array in the unit
cell is embedded in a metallic plate with thickness according
to the height of the FE domain. In practical computations,
we found that the influence of the periodic images on the
finite array vanishes for reasonably large periodic array pe-
riods, especially if little (negligible for finite configuration)
losses are assumed in some of the material layers modelled
in the BI.
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Fig. 3. Near-infrared 8-layer low-pass FSS with dissimilar peri-
odicities,εr = 2.31, tanδ = 0.035 in FEBI computations, incidence
angle 30o with respect to normal, power average of TE and TM.
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Fig. 4. Cavity-backed patch antenna element.

3 Results

The first example is the near-infrared 8-layer FSS with dis-
similar periodicities depicted in Fig.3 and already consid-
ered inAroudaki et al.(1995). For a valid infinite periodic
model, the supercell approach must be applied for this prob-
lem. The dimensions of the used (smallest) supercell are
90µm by 90µm resulting in up to 18 by 18 patch elements
in the upper two layers.

Unfortunately, material losses and fabrication tolerances
are not very well known for this FSS. Our FEBI-MLFSDA
computations were performed for a dielectric substrate with
εr = 2.31− j0.08. A truncated Floquet mode series rang-
ing from –7 to 7 was used for the representation of the basis
function radiation patterns on the finest level and the Floquet
mode series representing the Green’s function on the coarsest
level ranged from –53 to 53. The discretization model con-
sisted of about 3.6 Mio volume unknowns including 20223
BI unknowns. The utilized RAM was about 2.8 GByte in-
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Fig. 5. Input impedance of cavity-backed patch antenna element
according to Fig.4 for infinite periodic array configurations with
increasing unit cell dimensions.

cluding about 1.8 GByte for storing the search vectors in
the GMRES solver. Field transmission results are given in
Fig.3 and compared to measured results fromAroudaki et al.
(1995) and approximate MoM results fromAroudaki et al.
(1995), obtained using only one patch in every layer. Es-
pecially near the passband edge of the low-pass, our FEBI-
MLFSDA supercell results capture the measured behavior
more accurately.

The next problem is intended to demonstrate the feasibil-
ity of the approach discussed in Sect.2.3for the treatment of
finite configurations. A simple cavity-backed patch antenna
element excited by a probe current as depicted in Fig.4 is
considered. Reference computations were carried out by a
3-D hybrid FEBI code for finite problems, where the cavity-
backed patch antenna element was placed in a thick finite
metallic ground plane of size 160 mm by 200 mm with height
5 mm. Infinite periodic array computations with the FEBI-
MLFSDA code were performed for equally increasing unit
cell sizes in the two array dimensions in order to reduce
the coupling between the unit cell patch and its periodic im-
ages. The input impedance results in Fig.5 contain clearly
visible array resonances for unit cell sidelengths (uc) of 4
and 16 times the cavity sidelengths (cav), but the curves for
uc=64 cav do not show anymore obstruction by array res-
onances and agree pretty well with the finite ground plane
reference results. When the unit cell has the same size as the
cavity, the input impedance is also smooth but shows a no-
ticeable frequency shift compared to the finite ground plane
results. Due to anterpolation of the translation operator in the
setup phase, the sample density required on the coarsest level
could be kept very small (-6 to +6), no matter how large the
unit cell was chosen.

Next, a finite by infinite array consisting of 4 patch ele-
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Fig. 6. Input impedances of finite by infinite patch array (4 elements
in finite direction) consisting of patch elements according to Fig.4
obtained with infinite periodic array model with a unit cell 16 times
larger than the size of the array in the finite direction.

ments according to Fig.4 in the finite direction is considered.
In the infinitey direction, the patch elements are separated by
metallic walls, whereas no metallic walls are present in the
finite x direction. Figs.6 and7 show the input impedances
of the 4 patch elements within the unit cell chosen for the
infinite periodic FEBI-MLFSDA computations. The results
in Fig. 6 computed with a periodic unit cell sidelength (uc)
of 16 times the size of the array in the finite direction are
clearly influenced by array resonances due to the periodic
images in the computational model. However, after increas-
ing the sidelength of the periodic unit cell to 512 times the
array size in the finite direction, no more array resonances
can be observed in the input impedance results in Fig.7.

The final example is a semi-finite phased-array antenna
of antipodal Vivaldi elements as illustrated in Fig.8 and
discussed inWilden et al.(2004). The array consists of 8
equally-fed elements on one substrate in the finite direction
and up to 256 active elements in the other direction (peri-
odic boundaries indicated by dashed lines in the figure). The
advantage of the antipodal Vivaldi elements is that they can
be fed by microstrip lines. However, a 180◦ phase shift is
required between neighboring feed ports. The fabricated an-
tenna elements are fed by 1 to 8 power dividers, where the
necessary phase shifts are realized by rat-race couplers. In
our simulations, each Vivaldi element was fed by a short
piece of coaxial line (excited by impressed line currents in
the FE mesh) and forward and backward travelling waves on
the coax line were extracted by the matrix pencil method in
order to determine the pertinentS parameters. First simu-
lations were performed for a double element of the antipo-
dal Vivaldi radiators. Figure9 shows simulation results for
a free-standing double element computed by a hybrid FEBI
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Fig. 7. Input impedances of finite by infinite patch array (4 elements
in finite direction) consisting of patch elements according to Fig.4
obtained with infinite periodic array model with a unit cell 512 times
larger than the size of the array in the finite direction.
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Fig. 8. Front (black) and rear (dark grey) side metallizations of 8-
element column of antipodal Vivaldi elements. The dashed lines in
the top view represent the periodic boundaries, the through lines at
left and right sides indicate the electric boundaries in the FE do-
main for the semi-finite simulations (dimensions in mm, substrate:
Rogers Duroid,εr = 2.2, 0.5 mm thick).

code for finite configurations and compares it to the passive
reflection coefficient directly measured at the input of a mid-
dle element of an 8-element column, where the remaining
elements were terminated by 50� plugs. The agreement of
simulated and mesured results is very reasonable.

Figure10compares simulated infinite periodic results (ob-
tained by FEBI-MLFSDA according to periodic array dimen-
sions as indicated in Fig.8) and measured active reflection
results. The measured active reflection coefficient was found
for a middle element of a finite array of 9 8-element columns
by considering the coupling to all elements in the finite ar-
ray. Given the relatively small size of the measured array,
it is remarkable that the simulated array resonance peak at
about 10 GHz is also found in the measured data. Simulated
array resonances at other frequencies are not that obvious in
the measured results.
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Fig. 9. Simulated and measured reflection coefficients for antipodal
Vivaldi antenna element.
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Fig. 10. Simulated and measured reflection coefficients for antipo-
dal Vivaldi antenna array.

Further FEBI-MLFSDA simulations were performed for
the semi-finite array configuration (see Fig.8). The com-
puted reflection coefficients of the 8 elements in the column
were combined according to the 1 to 8 power divider used
to feed the fabricated antenna. The resulting active reflection
coefficient (FEBI semi-finite (sum)) is shown in Fig.11 and
compared to measured results obtained at the input port of
the power divider (Measured active (sum)). Again, the cou-
pling to 9 columns was considered to determine measured
active results. For comparison, also the simulated infinite
periodic element results are included. Interesting to note is,
that the simulated semi-finite sum results show considerably
weaker array resonances than the infinite periodic element
results. In the measured active sum results determined at the
input port of the power divider, almost no array resonances
are found and the active reflection coefficient is below -10 dB
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Fig. 11. Simulated and measured reflection coefficients for antipo-
dal Vivaldi antenna array.

in most parts of the considered frequency range. The averag-
ing among the 8 array elements in the finite array direction
obviously suppresses the array resonances.

4 Conclusions

The hybrid finite element - boundary integral (FEBI) method
for the analysis of infinite periodic arrays was extended by a
multilevel fast spectral domain algorithm (MLFSDA) which
accelerates the matrix vector product evaluation for the BI
operator. The MLFSDA utilizes the diagonalization prop-
erty of the spectral domain BI representation and employs
similar multilevel procedures as applied in the multilevel
fast multipole method/algorithm (MLFMM/MLFMA). With
MLFSDA, large (with respect to wavelength) periodic unit
cells can be treated by the FEBI method, which are for in-
stance necessary for the modelling of multilayer frequency
selective surfaces (FSSs) with dissimilar periodicities by the
supercell method. Moreover, it is now possible to solve finite
electromagnetic antenna and scattering problems by the infi-
nite periodic approach und utilize its simplified evaluation of
the BI operator (Floquet mode series instead of spectral inte-
gral). The finite antenna or scatterer is placed in the periodic
unit cell and the dimensions of the unit cell are chosen large
enough to reduce coupling between the periodic images to a
negligible level. For a finite and a semi-finite cavity-backed
patch antenna problem, the necessary sizes of the computa-
tional unit cells were studied. Finally, a semi-finite array of
antipodal Vivaldi antenna elements was investigated. Since
the presented FEBI method works with mutilayered Green’s
functions including metallic backing in the BI surfaces, the
approach is very well suited for antennas and scatterers em-
bedded in a thick metallic plate and not so well for free-
standing configurations. However, the MLFSDA has the po-
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tential so speed-up the evaluation of various infinite periodic
integral equation operators (e.g. electric field integral equa-
tion for planar circuits and antennas in multilayered media).
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