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Abstract. The transient simulation of electro-quasistatic
fields requires a formulation that takes both dielectric effects
as well as nonlinear conductive effects into account. The
successive solution of large linear systems of equations with
similar or even identical system matrices has to be performed
repeatedly if this formulation is discretized by the Finite-
Element method and an Implicit-Runge-Kutta method, re-
spectively. The solution processes can be accelerated by
using subspace recycling techniques and subspace projec-
tion extrapolation techniques. Numerical results for three-
dimensional high-voltage applications are presented and the
efficiency of these techniques is shown.

1 Introduction

For the analysis of technical devices operated by using
slowly varying electromagnetic fields, electromagnetic wave
propagation can be neglected if the characteristic dimension
of the device under consideration is much smaller than the
distance an electromagnetic wave covers during the char-
acteristic time of the device. The characteristic time is
the reciprocal of the highest frequency at which the de-
vice is operated (Dirks, 1996). This leads to the well-
known quasistationary approximation to Maxwell’s equa-
tions where changes in the current or charge distribution have
effect instantly in space. This can be enforced in Maxwell’s
equations by discarding the solenoidal part of the displace-
ment current in Ampere’s law while keeping its irrotational
part. Whereas in the static case, i.e. all time derivatives
occuring in Maxwell’s equations vanish (∂

∂t
D ≡

∂
∂t

B ≡ 0),
the quasistationary approximation can further be classified
in electro-quasistatic fields (EQS) and magneto-quasistatic
fields (MQS) considering the governing electric or magnetic
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energy densitywe andwm, respectively. If the electric en-
ergy densitywe exceeds the magnetic energywm for a given
problem, the electro-quasistatic assumption is applicable,
whereas the magneto-quasistatic assumption is applicable for
wm � we. The EQS assumption is expressed in Maxwell’s
equations by discarding the induction voltage in Faraday’s
law, ∂

∂t
B ≡ 0. Typically, high electric energy densities and

low magnetic energy densities occur if the dielectric relax-
ation timeτrelax= ε/κ is much greater and the magnetic dif-
fusion timeτdiff = µκd2 is much smaller than the device’s
characteristic time. Here, the permeabilityµ, the permittiv-
ity ε, the conductivityκ and the characteristic spatial dimen-
siond are used.

2 Transient electro-quasistatic fields

Faraday’s law under the EQS assumption yields

rotE = 0.

Hence, a description of electro-quasistatic fields is
possible by a scalar potential functionϕ (r) with
E (r) = − gradϕ (r). Looking at Ampere’s law,

rotH = J +
∂

∂t
D,

together with the material constitutive laws,

D (r, t) = εE (r, t) ,

J (r, t) = κ (E (r, t)) E (r, t) ,

a conditional equation for the scalar potentialϕ under the
EQS assumption follows,

div (κ (ϕ) gradϕ) + div

(
ε grad

∂

∂t
ϕ (t)

)
= 0.

This equation is geometrically discretized using the Finite-
Element method, which results in a nonlinear system of stiff
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ordinary differential equations in the time domain, which can
be represented by the matrix equation

Kκ (8)8 + Bε

d

dt
8 = 0, (1)

where the matricesK andB are finite-element stiffness matri-
ces of the electrical conductivity and the electric permittivity,
respectively. Moreover,8 denotes the vector of the discrete
scalar potential and8 (t0) = 80 its initial value at timet0.

3 Adaptive time integration

3.1 Runge-Kutta methods

In order to solve the resulting initial boundary value prob-
lem, time discretization based on Singly-Diagonal-Implicit-
Runge-Kutta Methods (SDIRK) is performed (Clemens et
al., 2004a; Lang, 2001). SDIRK methods are stiffly-accurate
one-step methods withs internal stages which discretize
equation (1) to systems of equations of the type(

Kκ

(
8

(n)
i

)
+

1

aii1tn
Bε

)
8

(n)
i

=
1

aii1tn
Bε

(
8(n)

+

i−1∑
j=1

aij8
′(n)
j

)
,

with stage derivative values

8′(n)
i =

(
8

(n)
i − 8(n)

−
∑i−1

j=1 aij8
′(n)
j

)
aii

and8
(n)
s = 8(n+1). The time step length is denoted by1t

while aij denotes coefficients of the specific SDIRK method.
In addition to the solution vector8(n+1) at the time instant
tn+1, embedded SDIRK methods provide a second solution
vector8̄(n+1). Both solution vectors differ since they belong
to different orders of convergencep for 8(n+1) and p̄ for
8̄(n+1), respectively. Here, an SDIRK method with four in-
ternal stages and the orders of convergencep = 3 andp̄ = 2
is used.

3.2 Adaptive time step selection

The local truncation error of a time step can be estimated by

∣∣∣∣∣∣8(n+1)
∣∣∣∣∣∣

err
=

√√√√∣∣∣∣8(n+1) − N8(n+1)
∣∣∣∣2

∞∣∣∣∣8(n+1)
∣∣∣∣2

∞
+ δ

,

with δ as an absolute error tolerance computed by

δ = θ · max
t≤t (n)

(
||8 (t) ||

2
∞

)
, θ ∈

[
10−3, 10−2

]
. This error es-

timate can be used twice: First, one can decide whether the
time step leads to an acceptable local truncation error. Then
the computed time step solution is accepted. If the local trun-
cation error is greater than a given tolerance, the time step is
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Figure 1: Transient adaptive EQS simulation,
displayed are accepted and rejected
time steps

the form(
K
(
Φ(n)

i

)
+

1
aiiΔt(n)

B
)

Φ(n)
i = f

(
Φ(n), ...

)

has to be solved. After a linearization by a
Newton-Raphson method, the solution of a se-
quence of linear algebraic systems of equations
Alxl = bl with Al = A

(
xl−1

)
, l = 1, 2, ..., and

a start vector x0 is performed. In the follow-
ing, the superscript l is omitted. As the sys-
tem matrices Al are symmetric, positive def-
inite and sparse, a preconditioned conjugate-
gradient method (PCG) is a suitable iterative
solver for this type. Thereby, the PCG method
generates iteration vectors

xi ∈ x0 + Ki

{
M−1A,M−1r0

}
.

with Ki

{
M−1A,M−1r0

}
denoting the i-th

Krylov space which is constructed iteratively
within the PCG method. The preconditioning
operator is denoted by M which is a spectral
approximation of the system matrix A. Here
an algebraic multigrid method (AMG) is used
as preconditioner. The speed of convergence
of the PCG method depends on the condition
number σ (A) of the system matrix A at the
one hand and on the choice of the start vector

x0 at the other hand,

‖x− xi‖A ≤ 2 ‖x− x0‖A
(√

σ − 1√
σ + 1

)
,

with ‖w‖A =
√

wTAw and σ (A) as the ratio
of the highest and the lowest eigenvalue of the
matrix A, σ (A) := λn/λ1 [5].

4 Subspace Projection Tech-
niques

4.1 Subspace Projection Extrapola-
tion

As shown above, a sequence of linear systems of
equations has to be solved during a simulation.
The generic way to do this is to treat these
linear systems without any correlation. How-
ever, especially in the case of linear material
behavior, the systems are very well correlated.
Hence, the information gained in the solution
process of one linear system can be reused in
the following solution processes. In order to re-
cycle this information, the proposed subspace
projection extrapolation (SPE) approach in [2]
is to calculate the optimal linear combination
of former solution vectors which is used to gen-
erate a start vector for the current solution pro-
cess.

In this paper we recycle the information
of the Krylov space which is spanned by the
preconditioned residual vectors z1, ..., zm con-
structed by the PCG method while solving the
first linear system of equations during a tran-
sient simulation. This Krylov space contains
approximations of eigenvectors of the matrix
A associated with the smallest eigenvalues of
A. The corresponding matrix operator Q is
built by arranging the Krylov basis vectors as
columns vectors of Q,

Q = {z1|...|zm} ∈ R
n×m.

Here, the application of a good precondi-
tioner is crucial, because it is very important

3

Fig. 1. Transient adaptive EQS simulation, displayed are accepted
and rejected time steps.

rejected, i.e. a new time step is performed starting again from
the previous timetn. In both cases, the error estimate can be
used to predict the next time step length

1tn+1 = ν

(
rtol∣∣∣∣8(n+1)

∣∣∣∣
err

) 1
p

1tn,

using a closed loop model of an I-controller scheme
(Gustafsson, 1994; Clemens et al., 2002) with rtol as the re-
quired relative tolerance. Fig. 1 shows a transient simulation
with adaptive choice of the times step length for a ramped
sinusoidal excitation signal.

3.3 Solution of the algebraic systems of equations

In each stage of the time integration scheme a (non)linear
algebraic system of equations of the form(

K
(
8

(n)
i

)
+

1

aii1t (n)
B
)

8
(n)
i = f

(
8(n), ...

)
has to be solved. After a linearization by a Newton-Raphson
method, the solution of a sequence of linear algebraic sys-
tems of equationsAlxl

= bl with Al
= A

(
xl−1

)
, l = 1, 2, ...,

and a start vectorx0 is performed. In the following, the su-
perscriptl is omitted. As the system matricesAl are symmet-
ric, positive definite and sparse, a preconditioned conjugate-
gradient method (PCG) is a suitable iterative solver for this
type. Thereby, the PCG method generates iteration vectors

xi ∈ x0 + Ki

{
M−1A, M−1r0

}
.

with Ki

{
M−1A, M−1r0

}
denoting thei-th Krylov space

which is constructed iteratively within the PCG method. The
preconditioning operator is denoted byM which is a spec-
tral approximation of the system matrixA. Here an alge-
braic multigrid method (AMG) is used as preconditioner.
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The speed of convergence of the PCG method depends on
the condition numberσ (A) of the system matrixA at the
one hand and on the choice of the start vectorx0 at the other
hand,

‖x − xi‖A ≤ 2‖x − x0‖A

(√
σ − 1

√
σ + 1

)σ

,

with ‖w‖A =
√

wTAw andσ (A) as the ratio of the highest
and the lowest eigenvalue of the matrixA, σ (A) := λn/λ1
(Golub and van Loan, 1996).

4 Subspace projection techniques

4.1 Subspace projection extrapolation

As shown above, a sequence of linear systems of equations
has to be solved during a simulation. The generic way to do
this is to treat these linear systems without any correlation.
However, especially in the case of linear material behavior,
the systems are very well correlated. Hence, the informa-
tion gained in the solution process of one linear system can
be reused in the following solution processes. In order to
recycle this information, the proposed subspace projection
extrapolation (SPE) approach inClemens et al.(2004b) is to
calculate the optimal linear combination of former solution
vectors which is used to generate a start vector for the cur-
rent solution process.

In this paper we recycle the information of the Krylov
space which is spanned by the preconditioned residual vec-
torsz1, ..., zm constructed by the PCG method while solving
the first linear system of equations during a transient simu-
lation. This Krylov space contains approximations of eigen-
vectors of the matrixA associated with the smallest eigen-
values ofA. The corresponding matrix operatorQ is built by
arranging the Krylov basis vectors as columns vectors ofQ,

Q = {z1|...|zm} ∈ Rn×m.

Here, the application of a good preconditioner is crucial,
because it is very important that the dimension of the matrix
operatorQ is low, otherwise the numerical costs of the fol-
lowing projection techniques may outweigh their profits. The
matrix Q can then be used to solve the Galerkin-projected
linear system

QT AQz = QT b

instead of the originally systemAx = b in order to compute
a start vector

xSPE
0 := Qz = Q

(
QT AQ

)−1
QT b

for the respective PCG iteration. Through this proceeding,
the start vectorxSPE

0 already contains information associated
with eigenvectors corresponding with thek smallest eigen-
valuesλ1, ..., λk of the system matrixA. The PCG method

will therefore converge with the effective condition num-
berσeff instead of the condition numberσ (A) of the system
matrix A,

σeff (A) :=
λn

λk

< σ (A) :=
λn

λ1
,

what can be understood as an implicit deflation of the PCG
method.

4.2 Augmented PCG method

The solution processes can be accelerated additionally by not
only generating a start vector reusing subspace information,
but furthermore by modifying the PCG algorithm itself (Gos-
selet and Rey, 2002; Saad et al., 2000) in order to obtain
residual vectorsr i which are orthogonal to the Krylov space
spanned by the column vectors ofQ,

QT r i = 0. (2)

This can be achieved by augmenting thei-th Krylov space
by the range ofQ resulting in iteration vectors

xi ∈ x0 + Ki

{
M−1A, M−1r0

}
⊕ Range{Q} .

Thus, using the augmented PCG method,

r i⊥Ki

{
M−1A, M−1r0

}
⊕ Range{Q}

is valid. Defining the projector

PQ = I − Q(QT AQ)−1QT A

which projects vectors onto the A-orthogonal complement
of the space spanned by the column vectors ofQ, QT r i = 0
is enforced ifPQ is applied to the preconditioned residual
vectors in the Augmented PCG (AugPCG) iteration.

4.3 Combined algorithm

In Algorithm 1, the subspace projection extrapolation
as well as the augmented PCG method are combined
with atolrhs= maxj=1,...,l−1 ||bj

|| as the maximum absolute
value of the right-hand side vectors for all previous systems
with 2 ∈ [10−3, 10−2

] and an arbitrary start vectorx00.

5 Numerical results

The first technical example shown in Fig. 2 is a high-voltage
bushing which mainly consists of metal, ceramic insulators
and insulation oil with a nonlinear electrical conducitvity
characertisticκ(E). The simulation with solely linear ma-
terial behavior yields the result that the SPE-PCG with 13
column vectors in the matrixQ is more effective than the
AugPCG method. This is due to the fact that the system ma-
trices in the stages of the time integrator are nearly invariant.

As can be seen in Fig. 2, the plot of the scalar potential of
the model with solely linear material behavior differs clearly
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Fig. 2. HV Bushing: Geometry, plot of the scalar potential with
linear and nonlinear electric conductivity (from left).

Algorithm 1 Combined Algorithm using subspace
projection.
1: if SPE-PCGthen
2: x0 = Q(QT AQ)−1QT b
3: else ifAugPCGthen
4: x0 = Q(QT AQ)−1QT b + PQx00
5: end if
6: r0 = b − Ax0
7: rrel,0 = ||r0|| / (||b|| + 2 atolrhs)

8: while rrel,i > tolPCG do
9: if SPE-PCGthen

10: zi = M−1r i

11: else ifAugPCGthen
12: zi = PQM−1r i

13: end if
14: if i = 0 then
15: pi = zi

16: else
17: βi = rT

i
zi / rT

i−1zi−1
18: pi = βipi−1 + zi

19: end if
20: αi = rT

i
zi / pT

i
Api

21: xi+1 = xi + αipi

22: r i+1 = r i − αiApi

23: rrel,i+1 = ||r i || /( ||b|| + 2 atolrhs)

24: i = i + 1
25: end while

from the plot of the model with nonlinear electrical conduc-
tivity characteristic for the insulation oil. In that case, the
AugPCG method, in which the projection matrixPQ is up-
dated by the system matrixA for each linear system, is more
effective, as the system matrices differ from each other due
to the nonlinearity. The number of column vectors inQ is 13
in a model with 53502 DoF and 16 in a model with 162113
DoF. Unfortunately, although the number of PCG iterations
is reduced obviously, the numerical costs of the projection
leads to smaller benefits in the computation time needed to
solve all linear systems in a transient simulation. The num-
ber of the PCG iterations and the related computation times

Fig. 3. HV surge arrester: Geometry, mesh and plot of the scalar
potential (from left).

Table 1. Number of iterations and computation time for the
HV bushing

Model Alg. Var. PCG-Iter. Sol. time

Linear PCG 2725 380.9 s

53502 DoF SPE-PCG 49 19.6 s

Non-Linear PCG 2748 391.4s

53502 DoF AugPCG 1199 336.5 s

Non-Linear PCG 3344 1361.5 s

162113 DoF AugPCG 1531 1214.7 s

Table 2. Number of iterations and computation time for the HV
surge arrester.

Model Alg. Var. PCG-Iter. Sol. time

Non-Linear PCG 4372 345.6 s

41100 DoF AugPCG 1037 243.4 s

Non-Linear PCG 7590 1846.7 s

150590 DoF AugPCG 227 742.3 s

for the high-voltage bushing are shown in Table 1.
The second technical application is a high-voltage surge

arrester shown in Fig. 3, a structure mainly consisting of
metal, ceramic insulators and varistor material with a non-
linear electrical conductivity characteristic.

As in the first example, due to the nonlinearity the greatest
acceleration in terms of CPU time is achieved by the Aug-
PCG method in which the projection matrix with 21 column
vectors for a model with 41100 DoF and 44 column vectors
for the model with 150590 DoF, respectively, is updated for
each linear system. The number of the PCG iterations and the
related computation times for the high-voltage surge arrester
are shown in Table 2.
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The presented simulations are carried out on an double
processor Intel Xeon (2.8 GHz, 2 GB RAM) with a constant
time step length to gain a better comparability of the results.

6 Conclusion

A three-dimensional finite-element implementation based on
a discrete formulation of electro-quasistatic fields was pre-
sented. Adaptive time integration based on an embedded
Singly-Diagonal-Runge-Kutta method was performed. The
repeated solution processes of the linear systems within the
time integrator were accelerated using implicit and explicit
subspace projection techniques. Their efficiency was shown
in the transient simulation of technical applications.
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