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Abstract. The transient simulation of electro-quasistatic energy densitywe and wn, respectively. If the electric en-
fields requires a formulation that takes both dielectric effectsergy densitywe exceeds the magnetic energy, for a given

as well as nonlinear conductive effects into account. Theproblem, the electro-quasistatic assumption is applicable,
successive solution of large linear systems of equations witlwhereas the magneto-quasistatic assumption is applicable for
similar or even identical system matrices has to be performedvy, > we. The EQS assumption is expressed in Maxwell’s
repeatedly if this formulation is discretized by the Finite- equations by discarding the induction voltage in Faraday’s
Element method and an Implicit-Runge-Kutta method, re-law, 3tB 0. Typically, high electric energy densities and
spectively. The solution processes can be accelerated blpw magnetic energy densities occur if the dielectric relax-
using subspace recycling techniques and subspace projeetion timerelax= ¢/« is much greater and the magnetic dif-
tion extrapolation techniques. Numerical results for three-fusion time yjs = ukd? is much smaller than the device’s
dimensional high-voltage applications are presented and theharacteristic time. Here, the permeability the permittiv-
efficiency of these techniques is shown. ity ¢, the conductivitye and the characteristic spatial dimen-
siond are used.

1 Introduction 2 Transient electro-quasistatic fields

For the analysis of technical devices operated by using-araday’s law under the EQS assumption yields

slowly varying electromagnetic fields, electromagnetic wave

propagation can be neglected if the characteristic dimensioﬁOtE =0.

Of the deVice Under COI’lSideratiOI’l iS mUCh Smallel’ than thq-lence, a description Of e|ectro_quasistatic f|e|ds is
distance an electromagnetic wave covers during the charmpossiple by a scalar potential functio (r) with
acteristic time of the device. The characteristic time is g () = — grady (r). Looking at Ampere’s law,

the reciprocal of the highest frequency at which the de-

vice is operated Qirks, 1996. This leads to the well- oty — j + ED’

known quasistationary approximation to Maxwell's equa-

tions where changes in the current or charge distribution havéogether with the material constitutive laws,

effect instantly in space. This can be enforced in Maxwell's

equations by discarding the solenoidal part of the displace? (. 7) = ¢E (r. 1),

ment current in Ampere’s law while keeping its irrotational J (r,t) =« (E (r,t)) E (r, 1),

part. Whereas in the static case, i.e. all time derivatives di | for th | nder th
occuring in Maxwell’'s equations vanlsl'h—t(D_ a;B 0), a conditional equation for the scalar potengalnder the
the quasistationary approximation can further be cla55|fieoEQS assumption follows,

in electro-quasistatic fields (EQS) and magneto-quasistatic

fields (MQS) considering the governing electric or magneucd'V (« (p) grade) + div (e grad go (t)) =0.

Correspondence tol. Steinmetz This equation is geometrically discretized using the Finite-
(thorsten.steinmetz@hsu-hh.de) Element method, which results in a nonlinear system of stiff
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ordinary differential equations in the time domain, which can

be represented by the matrix equation ° Aclcepte(li Stepls ° R?JeCtedl Steps
d 400
Ke (@) ® +B;—® =0, 1)
dr
, . , P 200
where the matricel§ andB are finite-element stiffness matri- -
ces of the electrical conductivity and the electric permittivity, 0
respectively. Moreoverp denotes the vector of the discrete %o
scalar potential and (zp) = P its initial value at timer. 2 00
2 -
>
3 Adaptive time integration -400
3.1 Runge-Kutta methods 0 10 20 . 30 40 50 60
Time / ms

In order to solve the resulting initial boundary value prob-

lem, time discretization based on Singly-Diagonal-Implicit-

Runge-Kutta Methods (SDIRK) is performe€lémens et Fig. 1._Transi<_ent adaptive EQS simulation, displayed are accepted
al., 2004a Lang 2001). SDIRK methods are stiffly-accurate 2nd rejected time steps.

one-step methods with internal stages which discretize

equation {) to systems of equations of the type rejected, i.e. a new time step is performed starting again from

1 the previous time,. In both cases, the error estimate can be
<KK <q)§n)) + Bg) cblgn) p n
ajj Alp

used to predict the next time step length

1 i—1 1
- () 'MW rtol r
= aiiA[n Bg <d> + Zaz]q) j ) 5 Atn-i—l ) (—) Atn,

=1

1S [
with stage derivative values using a closed loop model of an I-controller scheme
™ i1 - (Gustafsson1994 Clemens et a] 2002 with rrol as the re-
(‘D- — W — 3 4 @] ) uired relative tolerance. Fig. 1 shows a transient simulation
(D/(n) _ i Jj= j q . FIg.
i ai; with adaptive choice of the times step length for a ramped

sinusoidal excitation signal.
and @ = ®"+D . The time step length is denoted By

while g;; denotes coefficients of the specific SDIRK method. 3.3  Solution of the algebraic systems of equations

In addition to the solution vectob”*D at the time instant o . _
ta+1, embedded SDIRK methods provide a second solutionn each. stage of the tlmg integration scheme a (non)linear
vectord D Both solution vectors differ since they belong algebraic system of equations of the form

to different orders of convergenge for ®*+1 and j for 1

_ 1 ) . . () () (n)

o +D  respectively. Here, an SDIRK method with four in- | K (43,- ) t o B, =f (CD , )

ternal stages and the orders of convergemee3 andp =2 "

is used. has to be solved. After a linearization by a Newton-Raphson
method, the solution of a sequence of linear algebraic sys-
3.2 Adaptive time step selection tems of equations/x! =b’ with A’ =A (x'~1),1=1,2, ...,

and a start vectoxg is performed. In the following, the su-
The local truncation error of a time step can be estimated byperscript is omitted. As the system matricés are symmet-
> ric, positive definite and sparse, a preconditioned conjugate-
|| @ +D — BotD || gradient method (PCG) is a suitable iterative solver for this
err Hq)(nﬂ) | |§O P ’ type. Thereby, the PCG method generates iteration vectors

‘ ‘¢<n+1)

. “1p -l
with § as an absolute error tolerance computed byXi GXO"‘Ki{'VI A.M rO}-

—9. 2 3 102 ; )
8=6 IT%O@U) “0")’ 6. [107,107°]. This error es with K; {M~*A,M~ro} denoting thei-th Krylov space

timate can be used twice: First, one can decide whether thevhich is constructed iteratively within the PCG method. The
time step leads to an acceptable local truncation error. Thepreconditioning operator is denoted M which is a spec-
the computed time step solution is accepted. If the local truntral approximation of the system matrix. Here an alge-
cation error is greater than a given tolerance, the time step ifraic multigrid method (AMG) is used as preconditioner.
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The speed of convergence of the PCG method depends owill therefore converge with the effective condition num-
the condition numbes (A) of the system matriXA at the  beroes instead of the condition number(A) of the system
one hand and on the choice of the start vegtoat the other  matrix A,

hand, A A
Jo—1Y° O’eﬂ(A)ZZE<O‘(A)1=A—1,
X =Xilla < 21X —Xollp (—) ; o .
Jo+1 what can be understood as an implicit deflation of the PCG
method.

with [wllp = ~wTAw ando (A) as the ratio of the highest
and the lowest eigenvalue of the matAx o (A) = A, /A1 4.2  Augmented PCG method
(Golub and van Loarn996.
The solution processes can be accelerated additionally by not

L . only generating a start vector reusing subspace information,
4 Subspace projection techniques but furthermore by modifying the PCG algorithm itseffds-
selet and Rey2002 Saad et aJ.2000 in order to obtain
residual vectors; which are orthogonal to the Krylov space

As shown above, a sequence of linear systems of equationg®@nned by the column vectors@f

has to be solved during a simulation. The generic way to dog7y, — g, @)
this is to treat these linear systems without any correlation.

However, especially in the case of linear material behavior,This can be achieved by augmenting theh Krylov space
the systems are very well correlated. Hence, the informaby the range of resulting in iteration vectors

tion gained in the solution process of one linear system can

, . -1 -1
be reused in the following solution processes. In order to*i € X0+ Ki {M A.M rO] @® Rang€gQ} .

recycle th!s information, the proposed subspace p_rojectionrhus, using the augmented PCG method,
extrapolation (SPE) approach@emens et al(2004} is to
calculate the optimal linear combination of former solution r, | k; [M‘lA, M‘lro} ® RanggQ)
vectors which is used to generate a start vector for the cur-
rent solution process. is valid. Defining the projector

In this paper we recycle the information of the Krylov T _AAT
space which is spanned by the preconditioned residual vecI?Q =1-QQAQ QA
torsz, ..., z, constructed by the PCG method while solving which projects vectors onto the A-orthogonal complement
the first linear system of equations during a transient simu-of the space spanned by the column vector®pQ’r; =0
lation. This Krylov space contains approximations of eigen-is enforced ifP, is applied to the preconditioned residual
vectors of the matriXA associated with the smallest eigen- vectors in the Augmented PCG (AugPCG) iteration.
values ofA. The corresponding matrix opera@ris built by
arranging the Krylov basis vectors as columns vecto®,0f 4.3 Combined algorithm

4.1 Subspace projection extrapolation

Q = {z1]...|zn} € R™™. In Algorithm 1, the subspace projection extrapolation
Here, the application of a good preconditioner is crucial, > well as the augmented PCG method are combined
- PP good p 'with atolns= max;_1.__;_1||b/|| as the maximum absolute

geg?;tz?(; :2 ;g?l\r/y ér:;]%?\r/\t%net f(ﬂ?rt]t?ni'rin:;?i'g;sogtfhti;n%ﬂxvalue of the right-hand side vectors for all previous systems
P : with © € [10-3, 102] and an arbitrary start vectapg.

lowing projection techniques may outweigh their profits. The
matrix Q can then be used to solve the Galerkin-projected

linear system 5 Numerical results

Q"AQz=Q'b The first technical example shown in Fig. 2 is a high-voltage
bushing which mainly consists of metal, ceramic insulators
and insulation oil with a nonlinear electrical conducitvity
. characertistioc (E). The simulation with solely linear ma-
xSPE:= Qz = Q (QTAQ) Q’b terial behavior yields the result that the SPE-PCG with 13
column vectors in the matriQ) is more effective than the
for the respective PCG iteration. Through this proceeding, AugPCG method. This is due to the fact that the system ma-
the start vectoxngaIready contains information associated trices in the stages of the time integrator are nearly invariant.
with eigenvectors corresponding with thesmallest eigen- As can be seen in Fig. 2, the plot of the scalar potential of
valuesiy, ..., Ax of the system matriA. The PCG method the model with solely linear material behavior differs clearly

instead of the originally systerix =b in order to compute
a start vector
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Fig. 3. HV surge arrester: Geometry, mesh and plot of the scalar

Fig. 2. HV Bushing: Geometry, plot of the scalar potential with potential (from left).

linear and nonlinear electric conductivity (from left).

Algorithm 1 Combined Algorithm using subspace Table 1. Number of iterations and computation time for the

projection. HV bushing
1: if SPE-PCQhen
2. xo=00QTA0)1QTb Model Alg. Var.  PCG-lter.  Sol. time
3: else ifAugPCGthen :
Linear PCG 2725 380.9s
4. %0 =QQTAQ)™1Q"b + Pyxoo
5: end if 53502 DoF SPE-PCG 49 19.6s
6: ro=b— Axp .
Non-Linear PCG 2748 391.4s
7: rre1,0 = lIroll / (IIbl] + © atolihg)
8: while ry.¢; ; > tolpcs dO 53502 DoF  AugPCG 1199 336.5s
9: if SPE-PCQhen .
10: 7 =M _1” Non-Linear PCG 3344 1361.5s
11: else ifAugPCGthen 162113 DoF AugPCG 1531 1214.7 s
12: z=PoM~1r;
13: endif
145 if i = Othen Table 2. Number of iterations and computation time for the HV
15: Pi =2 surge arrester.
16: else
o fi=ria/ oz Model Alg. Var. PCG-lter. Sol. ti
18- b = fipi1 2, ode g. Var. -lter.  Sol. time
19:  endif ; , Non-Linear PCG 4372 345.6s
20: i =riZ/pi A 41100 DoF  AugPCG 1037 243.4
21: Xi4+1 = X; +o;P; 0 ug 4SS
220 rip1=Tr; —oAp; Non-Linear PCG 7590 1846.7 s
23 rreri+1 = lIri 11 /C1IbI| + © atolrhg)
24: i=i41 150590 DoF  AugPCG 227 7423’

25: end while

for the high-voltage bushing are shown in Table 1.
from the plot of the model with nonlinear electrical conduc- The second technical application is a high-voltage surge
tivity characteristic for the insulation oil. In that case, the arrester shown in Fig. 3, a structure mainly consisting of
AugPCG method, in which the projection matfy is up-  metal, ceramic insulators and varistor material with a non-
dated by the system matrix for each linear system, is more linear electrical conductivity characteristic.
effective, as the system matrices differ from each other due As in the first example, due to the nonlinearity the greatest
to the nonlinearity. The number of column vector€Jns 13 acceleration in terms of CPU time is achieved by the Aug-
in a model with 53502 DoF and 16 in a model with 162113 PCG method in which the projection matrix with 21 column
DoF. Unfortunately, although the number of PCG iterationsvectors for a model with 41100 DoF and 44 column vectors
is reduced obviously, the numerical costs of the projectionfor the model with 150590 DoF, respectively, is updated for
leads to smaller benefits in the computation time needed t@ach linear system. The number of the PCG iterations and the
solve all linear systems in a transient simulation. The num-related computation times for the high-voltage surge arrester
ber of the PCG iterations and the related computation timesre shown in Table 2.
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The presented simulations are carried out on an double tive Simulation Schemes, IEEE Trans. Magn., 240, 1294-1297,
processor Intel Xeon (2.8 GHz, 2 GB RAM) with a constant  2004a.

time step length to gain a better comparability of the results.Clemens, M., Wilke, M., Schuhmann, R., and Weiland, T.: Sub-
space Projection Extrapolation Scheme for Transient Field Sim-

ulations, IEEE Trans. Magn., 40, 934-937, 2004b.
6 Conclusion Dirks, K. H.: Quasi-Stationary Fields for Microelectronic Applica-
tions, Electrical Engineering, 79, 145-155, 1996.
A three-dimensional finite-element implementation based orGolub, G. and van Loan, C.: Matrix Computations, Johns Hopkins
a discrete formulation of electro-quasistatic fields was pre- University Press, London, 1996.
sented. Adaptive time integration based on an embedde&0sselet, P. and Rey, C.: On a Selective Reuse of Krylov Subspaces
Singly-Diagonal-Runge-Kutta method was performed. The in Newton-Krylov Approaches for N_onllnear Elast_lqty, in: Proc.
repeated solution processes of the linear systems within the °' (e 14th Intern. Conf. on Domain Decomposition Methods,

. . . . .. . edited by Herrera, ., Keyes, D. E., Widlund, O. B., and Yates, R.,
time integrator were accelerated using implicit and explicit 419-426. 2002

.SUbSpace ProJeCF'O” te_Chn'queS' Thelr efflcl:len.cy was Showra;ustafsson, K.: Control-Theoretic Techniques for Stepsize Selec-

in the transient simulation of technical applications. tion in Implicit Runge-Kutta Methods, ACM Trans. Math. Soft-
ware, 20, 496-517, 1994.
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