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Abstract. Increasing resolution is an attractive goal for all
types of radar sensor applications. Obtaining high radar res-
olution is strongly related to the signal bandwidth which can
be used. The currently available frequency bands however,
restrict the available bandwidth and consequently the achiev-
able range resolution. As nowadays more sensors become
available e.g. on automotive platforms, methods of combin-
ing sensor information stemming from sensors operating in
different and not necessarily overlapping frequency bands
are of concern. It will be shown that it is possible to derive
benefit from perceiving the same radar scenery with two or
more sensors in distinct frequency bands. Beyond ordinary
sensor fusion methods, radar information can be combined
more effectively if one compensates for the lack of mutual
coherence, thus taking advantage of phase information.

At high frequencies, complex scatterers can be approxi-
mately modeled as a group of single scattering centers with
constant delay and slowly varying amplitude, i.e. a set of
complex exponentials buried in noise. The eigenanalysis al-
gorithms are well known for their capability to better resolve
complex exponentials as compared to the classical spectral
analysis methods. These methods exploit the statistical prop-
erties of those signals to estimate their frequencies. Here,
two main approaches to extend the statistical analysis for
the case of data collected at two different subbands are pre-
sented. One method relies on the use of the band gap in-
formation (and therefore, coherent data collection is needed)
and achieves an increased resolution capability compared
with the single-band case. On the other hand, the second ap-
proach does not use the band gap information and represents
a robust way to process radar data collected with incoherent
sensors. Combining the information obtained with these two
approaches a robust estimator of the target locations with in-
creased resolution can be built.
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1 Introduction

Increasing resolution is an attractive goal for all types of
radar sensor applications. Obtaining high radar resolution is
strongly related to the signal bandwidth which can be used.
The currently available frequency bands however, restrict the
available bandwidth and consequently the achievable range
resolution. As nowadays more sensors become available e.g.
on automotive platforms, methods of combining sensor in-
formation stemming from sensors operating in different and
not necessarily overlapping frequency bands are of concern.
Beyond ordinary sensor fusion methods, radar information
can be combined more effectively if one compensates for the
lack of mutual coherence, thus taking advantage of phase in-
formation.

In this article, the possibility to obtain a benefit in the radar
performance by exploiting the availability of sensors operat-
ing at different frequency bands will be analyzed. We will
concentrate on the dualband case, i.e. two sensors which ob-
serve the same radar scenario from the same aspect angle.

2 Radar signal model

In the common frequency bands for radar systems the tar-
gets can be considered to be in the high frequency range,
as they usually are greater than a wavelength. Some very
popular high frequency approximations for solving scattering
problems are the Geometrical Optics (GO) theory and one of
its extensions, the Geometrical Theory of Diffraction (GTD)
(Hansen, 1981; James, 1986; McNamara et al., 1990). Both
approximations are based in the decomposition of a scatterer
in a set of individual scattering centers with a specific fre-
quency dependence. These scattering centers corresponds to
specular reflections, diffraction at wedges or tips or creeping
wave terms. Assuming that the high frequency approxima-
tion is valid, the radar response of a target or a group of them
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can be represented as a sum of individual scattering centers
with constant delay:

X(t) =

P∑
p=1

Apδ(t − τp) (1)

where each Dirac’s delta represents a scattering center at dis-
tancec0τi/2 with amplitudeαi . In the high-frequency range
this model is valid for a wide frequency band, so that the
expression for the frequency domain results in

x(f ) =

P∑
p=1

Apej2πf τp . (2)

This radar response is sampled by a system working at a fre-
quency bandBl and can be expressed as:

xl[n] =

P∑
p=1

Apzk0l+n
p =

P∑
p=1

aplz
n
p (3)

where

zp = ej�p

�p = 1ωτp

apl = Apejω0lτp

andτp is the round trip time,1ω the angular frequency in-
crement andω0l is the angular start frequency for bandBl .

3 Radar signal processing

Analyzing Eqs. (2) and (3) it can be noted that the radar prob-
lem of finding the position of the scattering centers in the
frequency radar response is equivalent to the estimation of
the frequencies of complex exponentials in a time domain
signal or the angles of the poleszp. Therefore, spectral or
frequency estimation algorithms can be applied. In this pa-
per, the dualband analysis is based on the Multiple Signal
Classification (MUSIC) algorithm, but the results can be ex-
tended to other parametrized spectral estimation techniques,
like Autoregressive (AR) algorithms, as well.

3.1 Single-band MUSIC

A short review of the MUSIC algorithm for a single-band
dataset is given here, further information can be found in
the literature (Marple, 1987; Schmidt, 1986). Assume the
radar frequency response of Eq. (3) is received in the pres-
ence of complex white Gaussian Noise (CWGN)w[n] in the
frequency bandB

y[n] =

P∑
p=1

apzn
p + w[n], n = 0, . . . , N − 1

y[n] = x[n] + w[n]. (4)

With the samples of the data sequencex[n], the so called
data matrixX of orderL –equal to the data matrix in the AR
covariance method– can be built and decomposed into the
matricesB andC:

X =


x[L − 1] x[L − 2] · · · x[0]

x[L] x[L − 1] · · · x[1]

...
...

. . .
...

x[N − 1] x[N − 2] · · · x[N − L]

 = B · C (5)

B =


a1z

L−1
1 a2z

L−1
2 · · · aP zL−1

P

a1z
L
1 a2z

L
2 · · · aP zL

P
...

...
. . .

...

a1z
N−1
1 a2z

N−1
2 · · · aP zN−1

P

 (6)

C =


1 z−1

1 · · · z−L+1
1

1 z−1
2 · · · z−L+1

2
...

...
. . .

...

1 z−1
P · · · z−L+1

P

 (7)

An eigenvalue decomposition is applied to the autocorre-
lation-like matrixXH X, so that

XH X = V3VH with (8)

V =


v1[1] v2[1] · · · vL[1]

v1[2] v2[2] · · · vL[2]

...
...

. . .
...

v1[L] v2[L] · · · vL[L]

 (9)

3 =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λL

 (10)

and λk = 0 for k = P + 1, . . . , L as the matrixXH X is of
rank P . It can be shown, that any principal eigenvectorvk

(k = 1, . . . , P ) of the matrixXH X is a linear combination of
the columns ofCH (e.g. Marple, 1987), composed by the
signal poles:

CH
=


1 1 · · · 1

(z∗

1)
−1 (z∗

2)
−1

· · · (z∗

P )−1

...
...

. . .
...

(z∗

1)
−L+1 (z∗

2)
−L+1

· · · (z∗

P )−L+1


Therefore, the columns ofCH are orthogonal to the non-
principal eigenvectorsvk (k = P + 1, . . . , L).

In the presence of noise, the autocorrelation-like matrix of
the signal plus noise can be approximated by

YH Y ≈ XH X + σ 2I = XH X +

L∑
k=1

σ 2vkvH
k

=

P∑
k=1

(λk + σ 2)vkvH
k +

L∑
k=P+1

σ 2vkvH
k . (11)
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with σ 2 the noise variance. The principal eigenvectorsvk

(k = 1, . . . , P ) expand the signal plus noise subspace and the
eigenvectorsvk (k = P + 1, . . . , L) the noise subspace.

The MUSIC algorithm exploits the orthogonality between
the noise subspace eigenvectorsvk and the columns ofCH ,
the signal vectors

s(zp) =

[
1 (z∗

p)−1
· · · (z∗

p)−L+1
]T

(12)

in different ways. The Spectral MUSIC looks for the peaks
in the pseudospectrumX(ejω)

X(ejω) =
1

D(ejω)

=
1

sH (ejω)
(∑L

k=P+1 vkvH
k

)
s(ejω)

(13)

which are at the signal frequencies and the Root-MUSIC al-
gorithm obtains directly the roots of the null spectra polyno-
mial D(z):

D(z) =

L∑
k=P+1

Vk(z)V
∗

k (1/z∗) with (14)

Vk(z) = vk[1] + vk[2]z−1
+ · · · + vk[L]z−(L−1) (15)

Next, two possible extensions of this algorithm to the dual-
band case are presented.

3.2 Multiband radar signal processing

The radar response is sampled at two different subbandsB1
andB2:

y[n] =

P∑
p=1

apzn
p + w[n] with (16)

n =

{
N10, . . . , N10 + N1 − 1 forB1

N20, . . . , N20 + N2 − 1 forB2

Two main approaches to treat the dualband case can be iden-
tified, the non-coherent approach, where no information on
the band gap between the subbands is used and the coherent
approach, where the information about the band gap is used
in the algorithm.

3.2.1 Non-coherent multiband MUSIC

Using the data of the two subbands, a new data matrix is built
by the superposition of the two subband matrices:

Xnc =

[
X1
X2

]
where (17)

X1 =

x[N10 − L1 + 1] · · · X[N10]
...

. . .
...

x[N10 + N1 − 1] · · · x[N10 + N1 − L1]

 (18)

X2 =

x[N20 − L2 + 1] · · · X[N20]
...

. . .
...

x[N20 + N2 − 1] · · · x[N20 + N2 − L2]

 (19)

and L1 = L2 = L. As in the single-band case, the matrix
Xtextnc can be decomposed into the product of the matrices
Btextnc andC, with

Btextnc =

[
B1
B2

]
(20)

and C defined as in Eq. (7). As the matrixC has the
same structure as in the single-band case, the same proce-
dure can be applied directly. No information of the band gap
N20− N10 is used, therefore, no coherence between the two
subbands is required.

3.2.2 Coherent multiband MUSIC

To exploit the relative position between the two subbands, a
data matrix is built including the band-gap information in its
structure.

Xtextc =
[
X2 X1

]
(21)

where X1 and X2 are defined as in Eqs. (18) and (19),
L1 + L2 = L andN2 − N1 = L2 − L1. The new data matrix
Xtextc is decomposed as the product of the matricesB and
Ctextc, with B defined as in Eq. (6) and

Ctextc =

1 · · · z
−L2+1
1 z−1N

1 · · · z
−1N−L1+1
1

...
. . .

...
...

. . .
...

1 · · · z
−L2+1
P z−1N

P · · · z
−1N−L1+1
P

 (22)

with 1N = N20− N10+ N2 − N1.
Comparing the structure of the data matrices for the single-

band-X, for the non-coherent dualband-Xtextnc and for the
coherent dualband-algorithmXtextc, can be observed the dif-
ference of the approaches for analyzing the data. In the first
two approaches, a window of lengthL is moved through the
data set to characterize the relation between neighbor data
samples with a maximum distanceL between them. In the
third approach, to build the data matrixXtextc the observation
window is split into two sub-windows of lengthL1 andL2,
each of them containing data from a different subband. This
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Fig. 1: Maximum resolvable angle distance using the non-
coherent and coherent pole combination. Rayleigh angle dis-
tance is defined as 2π

N1+N2

with the polynomialVk(z) evaluated at the two subbands:

Vk(z) = vk[1] + · · ·+ vk[L2]z
−L2+1+

+ vk[L2 + 1]z−∆N + · · ·+ vk[L]z−∆N−L1+1

(24)
It is clear from the structure of the signal vectorss(zp) or

the noise polynomialsVk(z), that the information of the band
gap is used and therefore, coherence is required. As the gap
information∆N is included directly in the null-spectra poly-
nomial, the number of zeros of polynomial, i. e. the number
of signal poles orthogonal to the noise subspace vectors, in-
creases linearly with the band gap. This makes the distinction
of the real signal poles from the spurious polynomial zeros
difficult.

To overcome this problem, the information of the non-
coherent and coherent algorithms is combined. Only the ze-
ros of the coherent polynomial surrounding the zeros of the
incoherent polynomial are analyzed. It is assumed, that the
detection of a group of scatterers is achieved with the non-
coherent approach, while with the coherent approach only
an increase of resolution is expected. It may occur that two
signal poles are present where the non-coherent approach de-
tects only one. Assuming that the coherent polynomial zeros
are approximately distributed uniformly along the unit circle,
the maximum search distance to avoid spurious zeros is fixed
by the total number of zeros, which is approximately equal
to ∆N . This approach implies a limit in the maximum dis-
tance between two poles which can be still resolved with this
algorithm as can be seen in Fig. 1.

4 Simulations

The resolution capability of the dualband processing has
been assessed by means of simulations. Monte Carlo analy-
sis of theprobability of resolution, i. e. the frequency of ex-
periments for which two targets are resolved over the number
of experiments where two targets are present, have been car-
ried out. A signal composed by two poles on the unit-circle
with angular distance∆Ω between them and equal ampli-
tudeA buried in CWGN has been used as radar signal. The
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ẑ1

ẑ2
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Fig. 2: Illustration of the resolution criteria: two targets are
said to be resolved if the distances from the estimated poles
(ẑp) to the true ones (zp) is lower than the distance between
the true positions

signal is sampled at two subbands with equal number of sam-
plesN1 = N2 = 32 and with a variable band gap ofD sam-
ples between them. Both dualband root-MUSIC algorithms
with L = 8 andP = 2 have been applied. As the number
of expected targetsP is assumed to be known in advance for
the algorithm the number of detected targets can not be used
as resolution criterion. The definition of resolution proposed
here is illustrated in Fig 2, two targets are said to be resolved
if the distance between the estimated poles and the true ones
is smaller than the distance between the true positions.

In Fig. 3 results of the Monte Carlo analysis for different
angular distances between the poles∆Ω and signal to noise
ratio, defined as SNR= A2/σ2, are shown. Also several
single-band simulations withN = N1 + N2 = 64 have been
carried out. The cases with a probability of resolution around
50% have been selected for demonstration.

It can be seen, e. g. Fig 3f or 3g, that the dualband non-
coherent approach has resolution performance similar to the
single-band case. The non-coherent approach is therefore a
robust way to exploit the whole bandwidth of a signal, also if
the signal information is split in different, non-adjacentand
mutually incoherent subbandsBeq =

∑

Bi.
The coherent approach achieves a higher probability of

resolution. For low angle distances,∆Ω < 0.5 2π
N1+N2

from
Fig 3a to 3d, the improvement in the dualband coherent al-
gorithm increases continuously with the band gap. Also an
increase is observed in the dualband non-coherent approach
(Fig 3a). For greater pole distances however, the probability
of resolution shows a periodic behavior with period≈ 2π

∆Ω .
This is again observed in both dualband approaches. The
origin of this periodicity effect will be subject of furtherin-
vestigations.

5 Summary and Outlook

A signal model for the multiband radar response based on
GO and GTD has been presented. Based on this model, it can
be seen that the range estimation using frequency-domain

Fig. 1. Maximum resolvable angle distance using the non-coherent
and coherent pole combination. Rayleigh angle distance is defined
as 2π

N1 + N2
.

window analyzes the relation between the neighbor samples
in the same subband and the samples of the other subband.

Now, the noise subspace eigenvectorsvk are orthogonal
to the columns ofCH

textc, which are composed by the signal
poles evaluated at the two subbands simultaneously

s(zp) =

[
1 · · · (z∗

p)−L2+1(z∗
p)−1N

· · · (z∗
p)−1N−L1+1

]T

(23)

The pole vectors which are orthogonal to the noise sub-
space, are identified again with two main procedures. The
spectral MUSIC algorithm looks for the peaks in the pseu-
dospectrumX(ejω)

X(ejω) =
1

D(ejω)
=

1

sH (ejω)
(∑L

k=P+1 vkvH
k

)
s(ejω)

and the root-MUSIC obtains the roots of the null spectra
polynomialD(z)

D(z) =

L∑
k=P+1

Vk(z)V
∗

k (1/z∗)

with the polynomialVk(z) evaluated at the two subbands:

Vk(z) = vk[1] + · · · + vk[L2]z
−L2+1

+ vk[L2 + 1]z−1N
+ · · · + vk[L]z−1N−L1+1 (24)

It is clear from the structure of the signal vectorss(zp) or
the noise polynomialsVk(z), that the information of the band
gap is used and therefore, coherence is required. As the gap
information1N is included directly in the null-spectra poly-
nomial, the number of zeros of polynomial, i.e. the number
of signal poles orthogonal to the noise subspace vectors, in-
creases linearly with the band gap. This makes the distinction
of the real signal poles from the spurious polynomial zeros
difficult.

To overcome this problem, the information of the non-
coherent and coherent algorithms is combined. Only the ze-
ros of the coherent polynomial surrounding the zeros of the
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by the total number of zeros, which is approximately equal
to ∆N . This approach implies a limit in the maximum dis-
tance between two poles which can be still resolved with this
algorithm as can be seen in Fig. 1.

4 Simulations

The resolution capability of the dualband processing has
been assessed by means of simulations. Monte Carlo analy-
sis of theprobability of resolution, i. e. the frequency of ex-
periments for which two targets are resolved over the number
of experiments where two targets are present, have been car-
ried out. A signal composed by two poles on the unit-circle
with angular distance∆Ω between them and equal ampli-
tudeA buried in CWGN has been used as radar signal. The

z1

z2

ẑ1
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signal is sampled at two subbands with equal number of sam-
plesN1 = N2 = 32 and with a variable band gap ofD sam-
ples between them. Both dualband root-MUSIC algorithms
with L = 8 andP = 2 have been applied. As the number
of expected targetsP is assumed to be known in advance for
the algorithm the number of detected targets can not be used
as resolution criterion. The definition of resolution proposed
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if the distance between the estimated poles and the true ones
is smaller than the distance between the true positions.
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incoherent polynomial are analyzed. It is assumed, that the
detection of a group of scatterers is achieved with the non-
coherent approach, while with the coherent approach only
an increase of resolution is expected. It may occur that two
signal poles are present where the non-coherent approach de-
tects only one. Assuming that the coherent polynomial zeros
are approximately distributed uniformly along the unit circle,
the maximum search distance to avoid spurious zeros is fixed
by the total number of zeros, which is approximately equal
to 1N . This approach implies a limit in the maximum dis-
tance between two poles which can be still resolved with this
algorithm as can be seen in Fig.1.

4 Simulations

The resolution capability of the dualband processing has
been assessed by means of simulations. Monte Carlo anal-
ysis of the probability of resolution, i.e. the frequency of ex-
periments for which two targets are resolved over the number
of experiments where two targets are present, have been car-
ried out. A signal composed by two poles on the unit-circle
with angular distance1� between them and equal ampli-
tudeA buried in CWGN has been used as radar signal. The
signal is sampled at two subbands with equal number of sam-
plesN1 = N2 = 32 and with a variable band gap ofD sam-
ples between them. Both dualband root-MUSIC algorithms
with L= 8 andP = 2 have been applied. As the number of
expected targetsP is assumed to be known in advance for
the algorithm the number of detected targets can not be used
as resolution criterion. The definition of resolution proposed
here is illustrated in Fig.2, two targets are said to be resolved
if the distance between the estimated poles and the true ones
is smaller than the distance between the true positions.

In Fig. 3 results of the Monte Carlo analysis for different
angular distances between the poles1� and signal to noise
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Fig. 3: Probability of resolution Monte Carlo analysis. Radar signal composed by two poles on the unit-circle with angular
distance between them of∆Ω, sampled at two subbands withN1 = N2 = 32 and with a band gap between them ofD
samples. Applied algorithms: Dualband root-MUSIC non-coherent (solid line), coherent (dashed line) withL = 8 andP = 2
and single-band (×) with N = N1 + N2 = 64. The resolution event is defined as in Fig 2

Fig. 3. Probability of resolution Monte Carlo analysis. Radar signal composed by two poles on the unit-circle with angular distance between
them of1�, sampled at two subbands withN1 =N2 = 32 and with a band gap between them ofD samples. Applied algorithms: Dualband
root-MUSIC non-coherent (solid line), coherent (dashed line) withL= 8 andP = 2 and single-band (×) with N =N1 +N2 = 64. The
resolution event is defined as in Fig.2.
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ratio, defined as SNR= A2/σ 2, are shown. Also several
single-band simulations withN = N1 + N2 = 64 have been
carried out. The cases with a probability of resolution around
50% have been selected for demonstration.

It can be seen, e.g. Figs. 3f or 3g, that the dualband non-
coherent approach has resolution performance similar to the
single-band case. The non-coherent approach is therefore a
robust way to exploit the whole bandwidth of a signal, also if
the signal information is split in different, non-adjacent and
mutually incoherent subbandsBeq=

∑
Bi .

The coherent approach achieves a higher probability of
resolution. For low angle distances,1� < 0.5 2π

N1 + N2
from

Figs. 3a to 3d, the improvement in the dualband coherent al-
gorithm increases continuously with the band gap. Also an
increase is observed in the dualband non-coherent approach
(Fig. 3a). For greater pole distances however, the probability
of resolution shows a periodic behavior with period≈

2π
1�

.
This is again observed in both dualband approaches. The
origin of this periodicity effect will be subject of further in-
vestigations.

5 Summary and outlook

A signal model for the multiband radar response based on
GO and GTD has been presented. Based on this model, it can
be seen that the range estimation using frequency-domain
radar information is analog to the spectral or frequency es-
timation techniques for time-domain signals. The MUSIC
algorithm for spectral estimation has been extended to ob-

tain two ways to process the multiband case: non-coherent
and coherent. The non-coherent algorithm does not require
coherency between the subbands. It does not use the band
gap information and the resolution performance is similar to
the single-band case using the sum of the bandwidths. It is
therefore a robust approach to exploit the total bandwidth of a
signal, also if the signal information is split in different, non-
adjacent and mutually incoherent subbands. The coherent
algorithm exploits the band gap information and therefore,
coherent data sets are required. An increase in the resolu-
tion performance compared to the non-coherent algorithm
is achieved. Also a periodic effect with period≈ 2π

1�
for

1� > 0.5 2π
N1+N2

has been observed, which will be subject
of further investigations.
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