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Abstract. Numerical modeling of problems including com-
posite metallic/dielectric objects with arbitrary shapes and
electrically large conducting objects within a common en-
vironment is performed in an optimum way with the recently
developed powerful hybrid numerical method, which com-
bines the Finite Element Boundary Integral (FEBI) method
and the Multilevel Fast Multipole Method (MLFMM) with
the Uniform Geometrical Theory of Diffraction (UTD), giv-
ing full electromagnetic coupling between all involved ob-
jects. In this contribution, the hybrid FEBI-MLFMM-UTD
method is extended to double diffracted fields on pairs
of straight metallic edges, formulated with the hard and
soft scalar diffraction coefficients of UTD. The diffraction
points on each pair of edges are determined by an itera-
tive three-dimensional parametric realization of the general-
ized Fermat’s principle. The divergence factor of the dou-
ble diffracted field is computed by multiplying the appro-
priate divergence factors of the single diffracted UTD fields
on each edge for the particular case. Thereby, the ray caus-
tic distance of the diffracted field at the second edge is de-
termined by linear interpolation between the radii of curva-
ture in the two principal planes of the incident astigmatic ray
tube. Further, fast near-field computation in the postprocess-
ing stage of the hybrid method is extended in each transla-
tion domain to ray optical contributions due to the presence
of electrically large objects, according to the hybridization
of MLFMM with UTD. Formulations and numerical results
will be presented.
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1 Introduction

Recently, a powerful hybrid numerical method was intro-
duced, which combines the Finite Element Boundary Integral
(FEBI) method and the Multilevel Fast Multipole Method
(MLFMM) with the Uniform Geometrical Theory of Diffrac-
tion (UTD), giving full electromagnetic coupling between
composite metallic/dielectric objects with arbitrary shapes
and electrically large conducting objects within a common
environment (Tzoulis, Oct. 2005). In that work, single and
multiple reflections on flat metallic objects were considered,
whereas diffractions were taken into account only by single
mechanisms on straight metallic edges.

In this contribution, the hybrid FEBI-MLFMM-UTD
method is extended to double diffracted fields on pairs of
straight metallic edges, formulated with the scalar hard and
soft diffraction coefficients of UTD according to (Kouy-
oumjian, 1974). For configurations, in which the second
diffraction point is in the transition region of the first, the
scalar diffraction coefficients of UTD are not valid, because
the incident field on the second edge is not purely ray op-
tical, by means of rapid spatial variations due to the Fres-
nel transition functions in the diffraction coefficients of the
first edge. Double diffracted field formulations, which are
valid in transition regions of the first edge, have been de-
veloped in (Tiberio et al., 1989)–(Albani, 2005) using sev-
eral approaches, such as a spectral extension of the UTD or
spherical spectral synthesis.

In the present implementation of standard double
diffracted UTD fields, the diffraction points on the pair of
edges are determined by an iterative three-dimensional para-
metric realization of the generalized Fermat’s principle, al-
lowing treatment of non-coplanar and skewed edges. Ac-
cording to this, the position vectors of the diffraction points
are expressed in terms of two parameters defined on the
edges. On each edge, the diffraction point is computed in
closed form for a given set of source and observation point,
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Fig. 1. Hybrid FEBI-MLFMM-UTD configuration.

law of diffraction is satisfied on both edges with desired ac-
curacy (Ivrissimtzis, 1991).

The divergence factor of the double diffracted field is de-
termined by multiplying the appropriate divergence factors
of the single diffracted UTD fields on each edge for the par-
ticular case. Thereby, the ray caustic distance of each single
diffracted field is needed and for straight metallic edges it
is given by the radius of curvature of the incident wavefront
in the plane of incidence. For the diffracted field at the sec-
ond edge, the incident wave is an astigmatic ray tube and the
ray caustic distance is determined by linear interpolationbe-
tween the radii of curvature in the two principal planes of the
incident astigmatic ray tube.

Further, near-field computations in the postprocessing
stage of the hybrid method are accelerated by MLFMM us-
ing combined near-field and far-field translations according
to (Tzoulis, 2005), in which high-frequency contributions
due to the presence of electrically large objects are taken into
account within each translation domain according to the hy-
bridization of MLFMM with UTD introduced in (Tzoulis,
Oct. 2005). In the following, formulations will be given and
numerical results will be shown.

2 Formulation

The configuration for the hybrid FEBI-MLFMM-UTD con-
cept can be seen in Fig. 1. Composite metallic/dielectric
objects are treated with the FEBI technique, in which fast
integral equation solution is achieved by MLFMM. Electri-
cally large metallic objects, which are in the same environ-
ment, are treated with UTD and full coupling with the surface
currents of the Boundary Integral (BI) part is given accord-
ing to the hybridization introduced in (Tzoulis, Oct. 2005).
In that work, single and multiple reflections on flat metal-
lic objects were considered, whereas diffractions were taken
into account only by single mechanisms on straight metallic
edges.
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Fig. 2. Double diffraction edge configuration.

In the hybrid method, double diffracted UTD field contri-
butions on pairs of edges are taken into account according to
the configuration shown in Fig. 2. The edges of the pair can
be in general non-coplanar and skewed by an angle�. The
diffraction pointsD1 on edge 1 andD2 on edge 2 are numer-
ically determined by an iterative three-dimensional paramet-
ric realization of the generalized Fermat’s principle. Accord-
ing to this, the position vectors of the diffraction points are
expressed in terms of two parameters defined on the edges asrDj = rvj;1 + pjlj êj ; j = 1; 2 (1)

wherervj;1 andlj are the position vector of the first vertex
and the length of edgej, respectively. The parameterpj is
defined on edgej and takes values between[0; 1℄. Also, êj is
the unit vector along edgej defined from the first to the sec-
ond vertex of the edge. On each edgej, the diffraction pointrDj is computed in closed form for a given set of source and
observation point, by a three-dimensional realization of the
generalized Fermat’s principle, as shown in Fig. 3. Accord-
ing to this, the parameterpj is given bypj = xd + x1lj ; (2)

withxd = h1h1 + h2 (x2 � x1): (3)h1 andh2 are the distances of the source and observation
point from the edge, respectively. Also,x1 andx2 are the dis-
tances of the projection of the source and observation point
from the first vertex of the edge, respectively. For double
diffraction, the above procedure is repeated iteratively for
each edge, using each time a point on the other edge as source
or observation point, respectively, until the law of diffraction
is satisfied on both edges with desired accuracy (Ivrissimtzis,
1991). This is typically achieved after only few iterations.

The double diffracted field at the observation pointP has
the formEdd(P ) = �D2 � �D1 �Ei(D1)A1A2e�jk(s2+s3); (4)
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law of diffraction is satisfied on both edges with desired ac-
curacy (Ivrissimtzis, 1991).

The divergence factor of the double diffracted field is de-
termined by multiplying the appropriate divergence factors
of the single diffracted UTD fields on each edge for the par-
ticular case. Thereby, the ray caustic distance of each single
diffracted field is needed and for straight metallic edges it
is given by the radius of curvature of the incident wavefront
in the plane of incidence. For the diffracted field at the sec-
ond edge, the incident wave is an astigmatic ray tube and the
ray caustic distance is determined by linear interpolationbe-
tween the radii of curvature in the two principal planes of the
incident astigmatic ray tube.

Further, near-field computations in the postprocessing
stage of the hybrid method are accelerated by MLFMM us-
ing combined near-field and far-field translations according
to (Tzoulis, 2005), in which high-frequency contributions
due to the presence of electrically large objects are taken into
account within each translation domain according to the hy-
bridization of MLFMM with UTD introduced in (Tzoulis,
Oct. 2005). In the following, formulations will be given and
numerical results will be shown.

2 Formulation

The configuration for the hybrid FEBI-MLFMM-UTD con-
cept can be seen in Fig. 1. Composite metallic/dielectric
objects are treated with the FEBI technique, in which fast
integral equation solution is achieved by MLFMM. Electri-
cally large metallic objects, which are in the same environ-
ment, are treated with UTD and full coupling with the surface
currents of the Boundary Integral (BI) part is given accord-
ing to the hybridization introduced in (Tzoulis, Oct. 2005).
In that work, single and multiple reflections on flat metal-
lic objects were considered, whereas diffractions were taken
into account only by single mechanisms on straight metallic
edges.
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diffraction, the above procedure is repeated iteratively for
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is satisfied on both edges with desired accuracy (Ivrissimtzis,
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where the corresponding parameter is determined by a three-
dimensional realization of the generalized Fermat’s princi-
ple. For double diffraction, the above procedure is repeated
iteratively for each edge, using each time a point on the other
edge as source or observation point, respectively, until the
law of diffraction is satisfied on both edges with desired ac-
curacy (Ivrissimtzis, 1991).

The divergence factor of the double diffracted field is de-
termined by multiplying the appropriate divergence factors
of the single diffracted UTD fields on each edge for the par-
ticular case. Thereby, the ray caustic distance of each single
diffracted field is needed and for straight metallic edges it
is given by the radius of curvature of the incident wavefront
in the plane of incidence. For the diffracted field at the sec-
ond edge, the incident wave is an astigmatic ray tube and the
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tween the radii of curvature in the two principal planes of the
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butions due to the presence of electrically large objects are
taken into account within each translation domain accord-
ing to the hybridization of MLFMM with UTD introduced in
(Tzoulis, Oct. 2005). In the following, formulations will be
given and numerical results will be shown.

2 Formulation

The configuration for the hybrid FEBI-MLFMM-UTD con-
cept can be seen in Fig.1. Composite metallic/dielectric
objects are treated with the FEBI technique, in which fast
integral equation solution is achieved by MLFMM. Electri-
cally large metallic objects, which are in the same environ-
ment, are treated with UTD and full coupling with the surface
currents of the Boundary Integral (BI) part is given accord-
ing to the hybridization introduced in (Tzoulis, Oct. 2005).
In that work, single and multiple reflections on flat metal-
lic objects were considered, whereas diffractions were taken
into account only by single mechanisms on straight metallic
edges.

In the hybrid method, double diffracted UTD field contri-
butions on pairs of edges are taken into account according to
the configuration shown in Fig.2. The edges of the pair can
be in general non-coplanar and skewed by an angleα. The
diffraction pointsD1 on edge 1 andD2 on edge 2 are numer-
ically determined by an iterative three-dimensional paramet-
ric realization of the generalized Fermat’s principle. Accord-
ing to this, the position vectors of the diffraction points are
expressed in terms of two parameters defined on the edges as

rDj
= rvj,1 + pj lj êj , j = 1, 2 (1)

wherervj,1 and lj are the position vector of the first vertex
and the length of edgej , respectively. The parameterpj is
defined on edgej and takes values between[0, 1]. Also, êj is
the unit vector along edgej defined from the first to the sec-
ond vertex of the edge. On each edgej , the diffraction point
rDj

is computed in closed form for a given set of source and
observation point, by a three-dimensional realization of the
generalized Fermat’s principle, as shown in Fig.3. Accord-
ing to this, the parameterpj is given by

pj =
xd + x1

lj
, (2)

with

xd =
h1

h1 + h2
(x2 − x1). (3)

h1 and h2 are the distances of the source and observation
point from the edge, respectively. Also,x1 andx2 are the dis-
tances of the projection of the source and observation point
from the first vertex of the edge, respectively. For double
diffraction, the above procedure is repeated iteratively for
each edge, using each time a point on the other edge as source
or observation point, respectively, until the law of diffraction
is satisfied on both edges with desired accuracy (Ivrissimtzis,
1991). This is typically achieved after only few iterations.

The double diffracted field at the observation pointP has
the form

Edd(P ) =
−

D2 ·
−

D1 · Ei(D1)A1A2e−jk(s2+s3), (4)
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whereEi(D1) is the incident field atD1 and�Dj = �Dkj ê�0j ê�00j �D?j ê'j ê'0j ; j = 1; 2 (5)

are the diffraction tensors, in whicĥe�001;2 ,ê'01;2 andê�01;2 ,ê'1;2 are the transversal components in the edge-fixed
coordinate system of incidence and diffraction on edge 1
or edge 2, respectively, as shown in Fig. 2. The double
diffracted field is formulated with the scalar diffraction co-
efficientsDk,D? of UTD (Kouyoumjian, 1974). In addition,A1 =r s1s2(s2 + s1) (6)

is the divergence factor of the diffracted field at edge 1. In
that, the ray caustic distance�e1 is assumed to be equal tos1,
which stands for the case of incident spherical wavefront on
a straight edge. Further,A2 =r �e2s3(s3 + �e2) (7)

is the divergence factor of the diffracted field at edge 2. The
incident field on edge 2 is the diffracted field at edge 1, which
is an astigmatic ray field, as shown in Fig. 4.

The ray caustic distance�e2 of the diffracted field at edge
2 is determined from the radius of curvature of the incident
field in the plane of incidence, defined byês02 andê2. In case
of non-coplanar and skewed edges, the plane of incidence at
edge 2 is in general somewhere in between the two princi-
pal planes of the incident astigmatic ray tube. Consequently,
the ray caustic distance�e2 depends on the radii of curvature�ie21 , �ie22 of the incident wavefront in both principal planes,
which correspond to the first and second caustic of the inci-
dent ray field at edge 2, respectively. It is obvious, that for
coplanar edges (� = 0), the plane of incidence at edge 2 co-
incides with the principal plane corresponding to the second
caustic of the incident ray tube and for perpendicular edges
(� = �2 ), the plane of incidence at edge 2 coincides with the
principal plane corresponding to the first caustic of the inci-
dent ray tube, which lies on edge 1. The ray caustic distance�e2 for values of� between0 and �2 is determined by lin-
ear interpolation between these two principal values of�e2 ,
resulting into�e2 = s1 + s2 � 2�� s1; (8)

•O

•
P

s
1

s
2

21 2

i

e
sρ =

1 1e
sρ =

D
1

D
2

s
3

22 1 2

i

e
s sρ = +

αααα

2

ˆ
s
e ′

1̂
e

2
ê
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where� is given in radians. Consequently, the divergence
factor of the diffracted field at edge 2 is given byA2 =s s1 + s2 � 2�� s1s3(s3 + s1 + s2 � 2�� s1) : (9)

Finally, near-field computations in the postprocessing
stage of the hybrid method are accelerated by MLFMM using
combined near-field and far-field translations according to
(Tzoulis, 2005). Thereby, ray optical contributions due tothe
presence of electrically large objects are taking into account
in both translation domains according to the hybridization
of MLFMM with UTD introduced in (Tzoulis, Oct. 2005).
The total electric field at an observation pointr in the near-
field region of a perfectly conducting arbitrarily shaped ob-
ject, which is in the same environment with electrically large
objects, is computed in the postprocessing stage byEtot(r) = E(r) +EUTD(r); (10)

whereE(r) is the direct field contribution given in (Tzoulis,
2005) andEUTD(r) are the ray optical field contributions
received at the observation point due to the presence of the
electrically large objects. For field points treated with near-
field MLFMM translations, the received ray optical contribu-

Fig. 3. Computation of diffraction point on each edge.
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êϕ′

j
, j = 1, 2 (5)

are the diffraction tensors, in whicĥeβ ′
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√
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(6)

is the divergence factor of the diffracted field at edge 1. In
that, the ray caustic distanceρe1 is assumed to be equal tos1,
which stands for the case of incident spherical wavefront on
a straight edge. Further,
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(7)

is the divergence factor of the diffracted field at edge 2. The
incident field on edge 2 is the diffracted field at edge 1, which
is an astigmatic ray field, as shown in Fig.4.

The ray caustic distanceρe2 of the diffracted field at edge
2 is determined from the radius of curvature of the incident
field in the plane of incidence, defined byês′

2
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of non-coplanar and skewed edges, the plane of incidence at
edge 2 is in general somewhere in between the two princi-
pal planes of the incident astigmatic ray tube. Consequently,
the ray caustic distanceρe2 depends on the radii of curvature
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incides with the principal plane corresponding to the second
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2 ), the plane of incidence at edge 2 coincides with the
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whereEi(D1) is the incident field atD1 and�Dj = �Dkj ê�0j ê�00j �D?j ê'j ê'0j ; j = 1; 2 (5)

are the diffraction tensors, in whicĥe�001;2 ,ê'01;2 andê�01;2 ,ê'1;2 are the transversal components in the edge-fixed
coordinate system of incidence and diffraction on edge 1
or edge 2, respectively, as shown in Fig. 2. The double
diffracted field is formulated with the scalar diffraction co-
efficientsDk,D? of UTD (Kouyoumjian, 1974). In addition,A1 =r s1s2(s2 + s1) (6)

is the divergence factor of the diffracted field at edge 1. In
that, the ray caustic distance�e1 is assumed to be equal tos1,
which stands for the case of incident spherical wavefront on
a straight edge. Further,A2 =r �e2s3(s3 + �e2) (7)

is the divergence factor of the diffracted field at edge 2. The
incident field on edge 2 is the diffracted field at edge 1, which
is an astigmatic ray field, as shown in Fig. 4.

The ray caustic distance�e2 of the diffracted field at edge
2 is determined from the radius of curvature of the incident
field in the plane of incidence, defined byês02 andê2. In case
of non-coplanar and skewed edges, the plane of incidence at
edge 2 is in general somewhere in between the two princi-
pal planes of the incident astigmatic ray tube. Consequently,
the ray caustic distance�e2 depends on the radii of curvature�ie21 , �ie22 of the incident wavefront in both principal planes,
which correspond to the first and second caustic of the inci-
dent ray field at edge 2, respectively. It is obvious, that for
coplanar edges (� = 0), the plane of incidence at edge 2 co-
incides with the principal plane corresponding to the second
caustic of the incident ray tube and for perpendicular edges
(� = �2 ), the plane of incidence at edge 2 coincides with the
principal plane corresponding to the first caustic of the inci-
dent ray tube, which lies on edge 1. The ray caustic distance�e2 for values of� between0 and �2 is determined by lin-
ear interpolation between these two principal values of�e2 ,
resulting into�e2 = s1 + s2 � 2�� s1; (8)
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where� is given in radians. Consequently, the divergence
factor of the diffracted field at edge 2 is given byA2 =s s1 + s2 � 2�� s1s3(s3 + s1 + s2 � 2�� s1) : (9)

Finally, near-field computations in the postprocessing
stage of the hybrid method are accelerated by MLFMM using
combined near-field and far-field translations according to
(Tzoulis, 2005). Thereby, ray optical contributions due tothe
presence of electrically large objects are taking into account
in both translation domains according to the hybridization
of MLFMM with UTD introduced in (Tzoulis, Oct. 2005).
The total electric field at an observation pointr in the near-
field region of a perfectly conducting arbitrarily shaped ob-
ject, which is in the same environment with electrically large
objects, is computed in the postprocessing stage byEtot(r) = E(r) +EUTD(r); (10)

whereE(r) is the direct field contribution given in (Tzoulis,
2005) andEUTD(r) are the ray optical field contributions
received at the observation point due to the presence of the
electrically large objects. For field points treated with near-
field MLFMM translations, the received ray optical contribu-

Fig. 5. Hybrid MLFMM-UTD configuration.

whereα is given in radians. Consequently, the divergence
factor of the diffracted field at edge 2 is given by

A2 =

√√√√ s1 + s2 −
2α
π

s1

s3(s3 + s1 + s2 −
2α
π

s1)
. (9)

Finally, near-field computations in the postprocessing
stage of the hybrid method are accelerated by the MLFMM
approach presented in (Tzoulis, 2005), where additional ray
optical contributions due to the presence of electrically large
objects are taken into account in both translation domains
according to the hybridization of MLFMM with UTD intro-
duced in (Tzoulis, Oct. 2005). The total electric field at an
observation pointr in the near-field region of a perfectly con-
ducting arbitrarily shaped object, which is in the same envi-
ronment with electrically large objects, is computed in the
postprocessing stage by

Etot (r) = E(r) + EUT D(r), (10)

whereE(r) is the direct field contribution given in (Tzoulis,
2005) andEUT D(r) are the ray optical field contributions re-
ceived at the observation point due to the presence of the
electrically large objects. For field points located inside the
domain covered by MLFMM groups, the received ray opti-
cal contributions due to the presence of the UTD objects are
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Table 1. Double diffraction points for edge configuration and
source/observation points shown in Fig. 6.rD1 (mm) rD2 (mm)r01, r1 165:0x̂ � 10ŷ + 0:0ẑ 135:7x̂ + 19:8ŷ + 138:8ẑr02, r2 279:8x̂ � 10ŷ + 0:0ẑ 195:6x̂ + 54:4ŷ + 113:7ẑr03, r3 241:1x̂ � 10ŷ + 0:0ẑ 318:2x̂ + 125:1ŷ + 62:1ẑr04, r4 167:2x̂ � 10ŷ + 0:0ẑ 223:3x̂+ 70:4ŷ + 10:2ẑ
tions due to the presence of the UTD objects are given byENFUTD(r) =� j !�4� Z
Z e�jkr�rmm0Xs ARs �REs TUTDL (krQn0 )� ��I� k̂rk̂i� �Xn Jn ��n(k̂i) dk̂2� j !�4� Z
Z e�jkd�rmm0Xv ADv �DEv TUTDL (krQn0 )� ��I� k̂dk̂i� �Xn Jn ��n(k̂i) dk̂2 � � � �+ Ein
UTD(r); (11)

where�Jn(k̂) = Jn ��n(k̂) = Jn ZZA �n(rn)ejk�rnn0da0 (12)

is the k̂-space representation of the electric current densi-
ties on the surface elements withk = kk̂. The distance
vectorsrnn0 andrmm0 , as well as the distancerQn0 can be
seen in Fig. 5.TUTDL (krQn0) is the far-field MLFMM trans-
lation operator used to translate outgoing ray optical fields
from source groups to incoming ray optical fields at receiv-
ing groups (Tzoulis, Oct. 2005).ARs andADv are the diver-
gence and phase factors for reflection and diffraction, respec-

tively, and
�REs and

�DEv the dyadic reflection and diffrac-
tion coefficients for electric field defined by basic GO and

Table 2. Angles of incidence and diffraction for configuration
shown in Fig. 6, using the computed diffraction points of Table1.�i01 (Æ) �d01 (Æ) �i02(Æ) �d02 (Æ)r01, r1 78.33 78.33 66.69 66.69r02, r2 57.20 57.20 60.24 60.24r03, r3 117.40 117.40 128.80 128.80r04, r4 113.35 113.35 110.04 110.04

UTD concepts (Kouyoumjian, 1974). For observation points
treated with far-field MLFMM translation, the ray optical
field contributions becomeEFFUTD(r) =� j !�4� Xs ARs �REs TUTDL (krQn0)� ��I� k̂rk̂i� �Xn Jn ��n(k̂i)� j !�4� Xv ADv �DEv TUTDL (krQn0 )� ��I� k̂dk̂i� �Xn Jn ��n(k̂i)� � � �+ Ein
UTD(r); (13)

whereEin
UTD(r) =Xs ARs �REs � Ein
(rRs)+Xv ADv �DEv � Ein
(rDv ) + � � � (14)

are the ray optical contributions of the incident electric field
received at the observation pointr. The field contributions
for magnetic currents, as well as the formulations for the
magnetic field in the postprocessing stage can be given in
the same way.

3 Numerical Examples

First, the computation of double diffraction points is tested
with the general skewed edge configuration shown in Fig. 6.
In the same figure, the Cartesian coordinates of the vertices
of the edges, as well as the sets of source and observation
points for the determination of the double diffraction points
can be seen. The computed diffraction points are shown in
Table 1 and the particular angles of incidence and diffraction
are shown in Table 2. It can be seen, that the double diffrac-
tion points are determined correctly, since in each case the
law of diffraction is satisfied.

Second example is the problem of the double diffraction of
a plane wave on a pair of skewed edges, formed by two plates

Fig. 6. General example of edges skewed in all directions.

Table 1. Double diffraction points for edge configuration and
source/observation points shown in Fig.6.

rD1 (mm) rD2 (mm)

r ′
1, r1 165.0x̂−10ŷ+0.0ẑ 135.7x̂+19.8ŷ+138.8ẑ

r ′
2, r2 279.8x̂−10ŷ+0.0ẑ 195.6x̂+54.4ŷ+113.7ẑ

r ′
3, r3 241.1x̂−10ŷ+0.0ẑ 318.2x̂+125.1ŷ+62.1ẑ

r ′
4, r4 167.2x̂−10ŷ+0.0ẑ 223.3x̂+70.4ŷ+10.2ẑ

given by

ENF
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4π
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+ Einc
UT D(r), (11)

where

∼

Jn(k̂) = Jn

∼

βn(k̂) = Jn

∫∫
A

βn(rn)e
jk·rnn′ da′ (12)

is thek̂-space representation of the electric current densities
on the surface elements withk=kk̂. The distance vectors
rnn′ and rmm′ , as well as the distancerQn′ can be seen in
Fig. 5. T UT D

L (krQn′) is the far-field MLFMM translation
operator used to translate outgoing ray optical fields from
source groups to incoming ray optical fields at receiving
groups (Tzoulis, Oct. 2005). ARs andADv are the divergence
and phase factors for reflection and diffraction, respectively,

and
−

RE
s and

−

DE
v the dyadic reflection and diffraction coeffi-

cients for electric field defined by basic GO and UTD con-
cepts (Kouyoumjian, 1974). For observation points outside

Table 2. Angles of incidence and diffraction for configuration
shown in Fig.6, using the computed diffraction points of Table1.

βi
01

(◦) βd
01

(◦) βi
02

(◦) βd
02

(◦)

r ′
1, r1 78.33 78.33 66.69 66.69

r ′
2, r2 57.20 57.20 60.24 60.24

r ′
3, r3 117.40 117.40 128.80 128.80

r ′
4, r4 113.35 113.35 110.04 110.04

the MLFMM grouping domain, the ray optical field contri-
butions become

EFF
UT D(r) =

− j
ωµ

4π

∑
s

ARs

−

RE
s T UT D

L (krQn′)

·

(
−

I − k̂r k̂i

)
·

∑
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∼
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·
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∑
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∼

βn(k̂i) − · · ·

+ Einc
UT D(r), (13)

where

Einc
UT D(r) =

∑
s

ARs

−

RE
s · Einc(rRs )

+

∑
v

ADv

−

DE
v · Einc(rDv ) + · · · (14)

are the ray optical contributions of the incident electric field
received at the observation pointr . The field contributions
for magnetic currents, as well as the formulations for the
magnetic field in the postprocessing stage can be given in
the same way.

3 Numerical examples

First, the computation of double diffraction points is tested
with the general skewed edge configuration shown in Fig.6.
In the same figure, the Cartesian coordinates of the vertices
of the edges, as well as the sets of source and observation
points for the determination of the double diffraction points
can be seen. The computed diffraction points are shown in
Table1 and the particular angles of incidence and diffraction
are shown in Table2. It can be seen, that the double diffrac-
tion points are determined correctly, since in each case the
law of diffraction is satisfied.

Second example is the problem of the double diffraction of
a plane wave on a pair of skewed edges, formed by two plates
placed with a relative angle of 5◦, as shown in Fig.7. As a
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placed with a relative angle of 5Æ, as shown in Fig. 7. As a
reference, the full BI solution is used and the ray optical solu-
tion was achieved with the hybrid method by activating only
the UTD part. In the same figure, the electric near-field dis-
tribution along they-axis and 5Æ of thez-axis is shown, for a
distance of 0.3 m from they-axis. This direction corresponds
to the Keller cone of the right edge. It can be seen, that con-
sidering double diffracted field contributions on the pair of
edges, the UTD result shows excellent agreement compared
to the reference solution.

Next example is shown in Fig. 8. It consists of a dielectric
cube placed over a pair of edges with relative angle of 15Æ.
The dielectric constant of the cube was"r = 2:5 � j0:01
and the frequencyf = 3 GHz. The problem was excited by
a�z-traveling plane wave. In this case, the electric field is
observed in a direction along they-axis and 15Æ of thez-axis
for a distance ofr =0.3 m. This direction corresponds to the
Keller cone of the right edge of the pair. That way, the field
first diffracted on the left edge and then on the right edge
of the pair is observed. In Fig. 9, the electric near-field dis-
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tribution along this direction can be seen. A significant im-
provement of the result in the case of considering the double
diffracted contribution, compared to the full FEBI reference
solution, can be observed.

Last example is a dielectric rod antenna radiating in front
of two skewed flat plates, placed as shown in Fig. 10. The
operating frequency of the antenna was 10 GHz and a delta-
gap voltage source was used for excitation. The length of
the rod was 3�0 with "r = 2:5, where�0 is the free-space
wavelength, and a metallic mounting was used to hold the
rod. The small radius of the rod was 0.24�0 and the large ra-
dius at the connection point with the metallic mounting was
0.45�0. As a reference, the full FEBI solution is used and

Fig. 7. Double diffraction of plane wave on pair of skewed edges.
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placed with a relative angle of 5Æ, as shown in Fig. 7. As a
reference, the full BI solution is used and the ray optical solu-
tion was achieved with the hybrid method by activating only
the UTD part. In the same figure, the electric near-field dis-
tribution along they-axis and 5Æ of thez-axis is shown, for a
distance of 0.3 m from they-axis. This direction corresponds
to the Keller cone of the right edge. It can be seen, that con-
sidering double diffracted field contributions on the pair of
edges, the UTD result shows excellent agreement compared
to the reference solution.

Next example is shown in Fig. 8. It consists of a dielectric
cube placed over a pair of edges with relative angle of 15Æ.
The dielectric constant of the cube was"r = 2:5 � j0:01
and the frequencyf = 3 GHz. The problem was excited by
a�z-traveling plane wave. In this case, the electric field is
observed in a direction along they-axis and 15Æ of thez-axis
for a distance ofr =0.3 m. This direction corresponds to the
Keller cone of the right edge of the pair. That way, the field
first diffracted on the left edge and then on the right edge
of the pair is observed. In Fig. 9, the electric near-field dis-
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tribution along this direction can be seen. A significant im-
provement of the result in the case of considering the double
diffracted contribution, compared to the full FEBI reference
solution, can be observed.

Last example is a dielectric rod antenna radiating in front
of two skewed flat plates, placed as shown in Fig. 10. The
operating frequency of the antenna was 10 GHz and a delta-
gap voltage source was used for excitation. The length of
the rod was 3�0 with "r = 2:5, where�0 is the free-space
wavelength, and a metallic mounting was used to hold the
rod. The small radius of the rod was 0.24�0 and the large ra-
dius at the connection point with the metallic mounting was
0.45�0. As a reference, the full FEBI solution is used and
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reference, the full BI solution is used and the ray optical solu-
tion was achieved with the hybrid method by activating only
the UTD part. In the same figure, the electric near-field dis-
tribution along the y-axis and 5◦ of the z-axis is shown, for a
distance of 0.3 m from the y-axis. This direction corresponds
to the Keller cone of the right edge. It can be seen, that con-
sidering double diffracted field contributions on the pair of
edges, the UTD result shows excellent agreement compared
to the reference solution.

Next example is shown in Fig.8. It consists of a dielec-
tric cube placed over a pair of edges with relative angle of
15◦. The dielectric constant of the cube wasεr=2.5−j0.01
and the frequencyf =3 GHz. The problem was excited by
a -z-traveling plane wave. In this case, the electric field is
observed in a direction along the y-axis and 15◦ of the z-axis
for a distance ofr=0.3 m. This direction corresponds to the
Keller cone of the right edge of the pair. That way, the field
first diffracted on the left edge and then on the right edge
of the pair is observed. In Fig.9, the electric near-field dis-
tribution along this direction can be seen. A significant im-
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placed with a relative angle of 5Æ, as shown in Fig. 7. As a
reference, the full BI solution is used and the ray optical solu-
tion was achieved with the hybrid method by activating only
the UTD part. In the same figure, the electric near-field dis-
tribution along they-axis and 5Æ of thez-axis is shown, for a
distance of 0.3 m from they-axis. This direction corresponds
to the Keller cone of the right edge. It can be seen, that con-
sidering double diffracted field contributions on the pair of
edges, the UTD result shows excellent agreement compared
to the reference solution.

Next example is shown in Fig. 8. It consists of a dielectric
cube placed over a pair of edges with relative angle of 15Æ.
The dielectric constant of the cube was"r = 2:5 � j0:01
and the frequencyf = 3 GHz. The problem was excited by
a�z-traveling plane wave. In this case, the electric field is
observed in a direction along they-axis and 15Æ of thez-axis
for a distance ofr =0.3 m. This direction corresponds to the
Keller cone of the right edge of the pair. That way, the field
first diffracted on the left edge and then on the right edge
of the pair is observed. In Fig. 9, the electric near-field dis-
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tribution along this direction can be seen. A significant im-
provement of the result in the case of considering the double
diffracted contribution, compared to the full FEBI reference
solution, can be observed.

Last example is a dielectric rod antenna radiating in front
of two skewed flat plates, placed as shown in Fig. 10. The
operating frequency of the antenna was 10 GHz and a delta-
gap voltage source was used for excitation. The length of
the rod was 3�0 with "r = 2:5, where�0 is the free-space
wavelength, and a metallic mounting was used to hold the
rod. The small radius of the rod was 0.24�0 and the large ra-
dius at the connection point with the metallic mounting was
0.45�0. As a reference, the full FEBI solution is used and
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placed with a relative angle of 5Æ, as shown in Fig. 7. As a
reference, the full BI solution is used and the ray optical solu-
tion was achieved with the hybrid method by activating only
the UTD part. In the same figure, the electric near-field dis-
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to the Keller cone of the right edge. It can be seen, that con-
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edges, the UTD result shows excellent agreement compared
to the reference solution.
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The dielectric constant of the cube was"r = 2:5 � j0:01
and the frequencyf = 3 GHz. The problem was excited by
a�z-traveling plane wave. In this case, the electric field is
observed in a direction along they-axis and 15Æ of thez-axis
for a distance ofr =0.3 m. This direction corresponds to the
Keller cone of the right edge of the pair. That way, the field
first diffracted on the left edge and then on the right edge
of the pair is observed. In Fig. 9, the electric near-field dis-

y (m)

|Ε
to
t|
(V
/m
)

r = 0.3 m

0.6 0.8 1 1.2 1.4 1.6
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
FEBI-MLFMM

FEBI-MLFMM-UTD

single diffraction

FEBI-MLFMM-UTD

double diffraction

Fig. 9. Electric near-field distribution along direction of observation
for configuration shown in Fig. 8.

FEBI-MLFMM-UTD
13509 electric BI unknowns

10827 magnetic BI unknowns

118503 FE unknowns

f=10 GHz

x

y

z

ααααx=10°

ααααy=10°

ααααz=5°

13 λλλλ
26 λλλλ

26 λλλλ

13 λλλλ

Fig. 10. Dielectric rod antenna radiating in front of skewed flat
plates.

tribution along this direction can be seen. A significant im-
provement of the result in the case of considering the double
diffracted contribution, compared to the full FEBI reference
solution, can be observed.

Last example is a dielectric rod antenna radiating in front
of two skewed flat plates, placed as shown in Fig. 10. The
operating frequency of the antenna was 10 GHz and a delta-
gap voltage source was used for excitation. The length of
the rod was 3�0 with "r = 2:5, where�0 is the free-space
wavelength, and a metallic mounting was used to hold the
rod. The small radius of the rod was 0.24�0 and the large ra-
dius at the connection point with the metallic mounting was
0.45�0. As a reference, the full FEBI solution is used and

Fig. 10. Dielectric rod antenna radiating in front of skewed flat
plates.

provement of the result in the case of considering the double
diffracted contribution, compared to the full FEBI reference
solution, can be observed.
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of two skewed flat plates, placed as shown in Fig.10. The
operating frequency of the antenna was 10 GHz and a delta-
gap voltage source was used for excitation. The length of
the rod was 3λ0 with εr=2.5, whereλ0 is the free-space
wavelength, and a metallic mounting was used to hold the
rod. The small radius of the rod was 0.24λ0 and the large ra-
dius at the connection point with the metallic mounting was
0.45λ0. As a reference, the full FEBI solution is used and
with the hybrid approach two simulations where performed
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with the hybrid approach two simulations where performed
for both, with and without double diffracted contributionson
the nearby edges. In Fig. 11, the radiation pattern of the an-
tenna in thexy-plane, cutting through the antenna in the mid-
dle, is shown. It can be seen, that the hybrid result including
double diffraction shows excellent agreement with the ref-
erence solution. The simulations are also compared to the
radiation pattern of the antenna radiating in free space. The
influence of the edges on the radiation of the antenna is ob-
vious. Deformation of the main lobe can be seen, as well as
significant increase of the radiation in backward direction. A
disturbance of the symmetric radiation can also be observed.
The same result can be seen in Fig. 12, where the instanta-
neous electric field fort = 0 sec is shown in thexy-plane.
The influence of the edges in the near-field distribution can
be clearly seen.

4 Conclusions

In this contribution, advances in hybrid FEBI-MLFMM-
UTD method were presented. In particular, the hybrid tech-
nique was extended to double diffracted fields on pairs of
straight metallic edges, formulated with the hard and soft
scalar diffraction coefficients of UTD. The diffraction points
are determined by an iterative three-dimensional paramet-
ric realization of the generalized Fermat’s principle, allow-
ing treatment of non-coplanar and skewed edges. For the
computation of the double diffraction divergence factor, the
ray caustic distance of the diffracted field at the second edge
is determined by linear interpolation between the radii of
curvature in the two principal planes of the incident astig-
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matic ray tube. Acceleration of the near-field computations
in the postprocessing stage of the hybrid method is extended
in each translation domain to ray optical contributions due
to the presence of electrically large objects, according tothe
hybridization of MLFMM with UTD.
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