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Abstract. An increasing number of modern applications and
services is based on the knowledge of the users actual posi-
tion. Depending on the application a rough position estimate
is sufficient, e. g. services in cellular networks that use the
information about the users actual cell. Other applications,
e. g. navigation systems use theGPS-System for accurate po-
sition finding. Beyond these outdoor applications a growing
number of indoor applications requires position information.
The previously mentioned methods for position finding (mo-
bile cell,GPS) are not usable for these indoor applications.

Within this paper we will present a system that relies on
the simultaneous measurement of doppler signals at four dif-
ferent positions to obtain position and velocity of an un-
known object. It is therefore suiteable for indoor usage, ex-
tendig already existing wireless infrastructure.

1 Introduction

Usually Doppler sensors can only provide relative distance
information and therefore normally are not used for position
finding purposes. The system presented here relies on the si-
multaneous Doppler measurement of four sensors at different
positions. The four Doppler signals are evaluated to obtain
position and velocity of a single moving target by iteratively
solving a nonlinear system of equations.

Solving the nonlinear system of equations may be done
in different ways. First simulation results concerning the re-
liability and accuracy of the procedure of position finding
using the well known Newtons Method as well as results ob-
tained by using three similar but enhanced algorithms will
be discussed. A simple demonstration system to verify the
simulation results will be presented.
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2 Basic principle

In the case of a single doppler sensor at a fixed position one
can only measure the velocity, i.e. the change in distance, of
an moving object relative to the fixed sensor. This relative
velocity is simply the projection of the velocity vector on
the directional vector from the sensor to the object. Even if
the objects position is known the velocity vector can not be
determined as an infinite number of velocity vectors has the
same projection (Fig. 1a shows two possibilities).

Adding a second doppler sensor at another fixed position
to this system it is possible to combine the two relative veloc-
ities and the knowledge of the two directional vectors to ob-
tain the correct velocity vector of the moving object (Fig. 1b).

If on the other hand the position of the object is unknown
but the velocity vector is known, any number of object posi-
tions result in the same measured relative velocity at a single
sensor. Adding again a second sensor now the unknown po-
sition can be found (see Fig. 2).

Combining the two preceeding examples one ends up with
the case where neither the objects position nor its velocity is
known. Both properties can be calculated from the relative
distance information acquired by four doppler sensors.

3 Solving the system of nonlinear equations

Each of the four sensors measures the change in distance
δd i,j from its locationxi

B with i = 1 . . . 4 to the objectxj

P.

δd i,j
=

∣∣∣xj

P(kT ) + v
j

P(kT ) − xi
B

∣∣∣ −

∣∣∣xj

P(kT ) − xi
B

∣∣∣ (1)

The measured values of all four sensors can be used to setup
a system of equations for the unknowns. This system is a
nonlinear system of equations.

A well known method for solving a system of nonlinear
equations is the so-called Newtons Method (Werner, 1992).
This method is based on the iterative solution of a linearized
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Fig. 1. Velocity measurement using one or two doppler sensors,
positionxP is known

2 Basic principle

In the case of a single doppler sensor at a fixed position one
can only measure the velocity, i. e. the change in distance,
of an moving object relative to the fixed sensor. This relative
velocity is simply the projection of the velocity vector on
the directional vector from the sensor to the object. Even if
the objects position is known the velocity vector can not be
determined as an infinite number of velocity vectors has the
same projection (figure 1(a) shows two possibilities).

Adding a second doppler sensor at another fixed position
to this system it is possible to combine the the two relative
velocities and the knowledge of the two directional vectorsto
obtain the correct velocity vector of the moving object (figure
1(b)).

If on the other hand the position of the object is unknown
but the velocity vector is known, any number of object posi-
tions result in the same measured relative velocity at a single
sensor. Adding again a second sensor now the unknown po-
sition can be found (see figure 2).

Fig. 1. Velocity measurement using one or two doppler sensors,
positionxP is known.

version of the system of equations. Linearization is done at
assumed valuesb`

0 for the unknowns. The linearized change
in distance can be written as follows
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Equation (3) can also be written in a short form.
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0 · δb`
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δb`
0 represents the deviation of the unknowns from the as-

sumed valuesb`
0. It is calculated by invertingS`
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For the next iterationb`
0 is improved byδb`

0.

b`+1
0 = b`

0 + δb`
0 (6)

This procedure is continued until convergence is reached.
When solving a system of nonlinear equations by using its

linear couterpart one has to choose an initial value for the
unkowns. If this guess lies close enough to the solution the
iterative solution process will converge to the correct values
(Hettwer and Benning, 2001). If the initial guess is an un-
suitable one the iterative solution may diverge or in the worst
case converge to a wrong value. In the case of divergence
one can simply choose a different set of initial values and try
again but in the case of convergence to a wrong result it is
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Fig. 2. Position finding using one or two doppler sensors, velocity
vP is known

Combining the two preceeding examples one ends up with
the case where neither the objects position nor its velocityis
known. Both properties can be calculated from the relative
distance information acquired by four doppler sensors.

3 Solving the system of nonlinear equations

Each of the four sensors measures the change in distance
δdi,j from its locationxi
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The measured values of all four sensors can be used to setup
a system of equations for the unknowns. This system is a
nonlinear system of equations.

A well known method for solving a system of nonlinear
equations is the so-called Newtons Method (Werner (1992)).
This method is based on the iterative solution of a linearized
version of the system of equations. Linearization is done at
assumed valuesbℓ

0 for the unknowns. The linearized change
in distance can be written as follows
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This procedure is continued until convergence is reached.
When solving a system of nonlinear equations by using its

linear couterpart one has to choose an initial value for the
unkowns. If this guess lies close enough to the solution the
iterative solution process will converge to the correct values
(Hettwer and Benning (2001)). If the initial guess is an un-
suitable one the iterative solution may diverge or in the worst
case converge to a wrong value. In the case of divergence
one can simply choose a different set of initial values and try
again but in the case of convergence to a wrong result it is
impossible to detect. So choosing the right initial value for
the linearization turns out to be the key issue in our problem.

In our case we have no information on the properties of
the unknown object, so choosing an appropriate initial value
for the linearization is difficult. Therefore it would be very
helpful if the number of possible initial values that achieve
convergence can be increased.

In the following four different methods for solving our sys-
tem of equations are to be compared. The first as well as the
simplest is the standard Newtons Method. The three addi-
tional methods are all based on it.

The second method is called Newton Method with addi-
tional attenuation (Hettwer and Benning (2001)). It differs
from the standard version only in the way how the improved
values are computed from the initial ones. Hereδbℓ

0 is mul-
tiplied by an attenuation factor before it is added tob

ℓ
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b
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The attenuation factorλℓ ≤ 1 is chosen individually for each
iteration. The selection is based on a residual that is a mea-
sure for the difference between the linearized and the nonlin-
ear system of equations.

Both methods mentioned so far utilize the measured
change in distance during one timestepT . To take advan-
tage of the measurement at two consecutive timesteps, a sec-
ond timestep can be incorporated in (3) as four additional
equations thus leading to an overdetermined system of equa-
tions. This extension can be done for both methods, the stan-
dard Newtons Method and the one with additional attenua-
tion (Schelkshorn (2006)).

To be able to compare the performance of the four men-
tioned methods a simulation was carried out where the ob-
ject was placed at several different positions and the initial
value for the unknowns used for the linearization was kept
constant. Figure 3 shows a comparison of the results as a
histogram. The four methods are designated as follows:

– Single step without attenuation (SSWO): standard New-
tons Method

Fig. 2. Position finding using one or two doppler sensors, velocity
vP is known.
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Fig. 3. Convergence rate and error with different algorithms

– Single step with attenuation (SSW): Newtons Method
with additional attenuation

– Two step without attenuation (TWSO): Newtons
Method without attenuation, combined for two
timesteps

– Two step with attenuation (TSW): Newtons Method
with attenuation, combined for two timesteps

As it is possible to detect whether the solution converges
or not, but wrong results can not be detected, one should use
the ratio of the number of correct results versus the number
of wrong results as a figure of merrit.

One can see that introducing the attenuation yields a
higher convergence rate but also a higher number of wrong
results. Adding the information from the second timestep
also increases the convergence rate compared to the standard
Newtons Method with a lower number of wrong results com-
pared to the attenuated version. Finally combining both, a
second timestep and the attenuation turns out to be the best
alternative, as there are almost no wrong results.

4 Multi target environments

Independent of the method of solving the resulting system
of equations the whole principle is based on doppler mea-
surement. This doppler measurement can easily be imple-
mented in existingRF-infrastructure. As the system of equa-
tions relys on the combination of four doppler sensors one
has to assure that each sensor only observes only one doppler
signal. That means in this simple setup only single target sce-
narios can be handled.

To deal with multi target scenarios it is necessary to sep-
arate the occuring doppler signals before further processing.
After separation the described system of equations can be
solved for each set of doppler signals.

5 Demonstration system

To verify the simulation results obtained so far, a demonstra-
tion system at 2.45 GHz is setup at the moment. This demon-
stration system consists of four identical channels with a cen-
tral control unit based on anFPGA-Evaluation board. Each

Parameter Value

Number of channels 4
Center frequency 2.45 GHz
Radar modes CW, FSK, SFCW
Max. bandwidth 600 MHz
Sweeptime (SFCW) 5 ms
Max. sampling frequency 25 kHz
Output power 15 dBm

Table 1. 4-Ch. Radar, System parameters

Fig. 4. 4-Ch. CW/FSK/SFCW-Radar @ 2.45 GHz

channel mainly consists of aPLL for signal generation and an
I/Q-mixer in the receiver section. The I/Q-channels then are
A/D-converted and the resulting data is transferred viaLAN
to a PC for processing. By continuously reprogramming the
four PLLs it is also possible to generate modulated signals.
So farFSK- andSFCW-modulation is considered additionally
to the simpleCW operation.

All relevant system parameters are summarized in table 1.
A photo of the actual design is shown in fig. 4.

6 Conclusions

The presented setup is an easy way of position finding es-
pecially for indoor applications where other methods (e. g.
GPS) won’t work. Due to the simple approach of doppler
measurement it can easily be implemented in already exist-
ing RF-infrastructure. In addition to the position information
of the unkown object also its velocity is obtained. A notably
advantage of this approach is that no active participation of
the unknown object is required.

As this approach relys on the measurement of doppler sig-
nals it is only applicable in enviroments with moving target.
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6 Conclusions

The presented setup is an easy way of position finding es-
pecially for indoor applications where other methods (e. g.
GPS) won’t work. Due to the simple approach of doppler
measurement it can easily be implemented in already exist-
ing RF-infrastructure. In addition to the position information
of the unkown object also its velocity is obtained. A notably
advantage of this approach is that no active participation of
the unknown object is required.

As this approach relys on the measurement of doppler sig-
nals it is only applicable in enviroments with moving targets.
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