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Abstract. This paper examines the radiation characteristics
of a contact emitter conceived for application in hyperther-
mia and microwave reflex therapy. It is important to analyse
the distribution of power density in the near field area, as the
radiator’s therapeutic sphere of activity is localized here. The
contact emitter is a coaxial radiator with an eccentric course
of the inner conductor. According to Huygens principle, a
theoretical view of the near field radiation characteristics is
made by determining the equivalent current densities in the
emitter aperture. It is shown that by an eccentric shift of the
inner conductor, an almost isotropic near field radiation pat-
tern and power density can be achieved. For this, the electro-
magnetic field in the emitter aperture is determined by using
a Bipolar coordinate system. This calculation considers only
the fundamental TEM mode of the contact emitter. Besides
the theoretical results near and far fields are simulated using
the programme system Ansoft HFSS.

1 Introduction

Hyperthermia is a technique used in the medical treatments
of cancer and other medical therapy. Tumors are heated to
therapeutic temperatures (invasiveT >42.5◦C, non invasive
T =40◦C−42◦C without overheating the surrounding normal
tissue. Non invasive hyperthermia is used often in combi-
nation with chemotherapy and radiation therapy for higher
complete response compared to conventional therapies alone.
Microwave reflex therapy is a relatively new working method
in medicine. High frequency, electromagnetic energy is con-
centrated on a closely restricted, biological active point by
use of a contact emitter. The emitter is put directly on the
skin. It provides a type of non invasive acupuncture. The
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contact emitter introduced in this paper was developed for
use at the skin surface area.

For application within the medical area the emitter aper-
ture must be as small as possible in order to ensure a defined
irradiation of the cancerous tissue or biological active point.
Furthermore, the electromagnetic field must be isotropic in
direct proximity to the effect. A broad emitter bandwidth is
necessary in order to adapt the frequency of radiotherapy in-
dividually in the examined range fromf = (8−20) GHz. The
emitter must rest upon the skin well and the impedance of the
contact emitter has to be adapted to the human tissue over a
broad frequency range. The described requirement profile is
fulfilled, to a large extent, by a coaxial radiator. These ra-
diators have long found various applications within the area
of non destructive material testing (see Mosig et al., 1981;
Bakhtiari et al., 1994), as well as the determination of the di-
electric properties of biological substances (see Stuchly and
Stuchly, 1980; Stuchly et al., 1982). However, the directional
characteristic of a coaxial emitter has a dip in axial direc-
tion. Therefore, the desired concentration of radiation inten-
sity cannot be achieved in the near field. A simple possibility
for a remedy offers an eccentric shift of the inner conductor
in the emitter aperture. The influence of the inner conduc-
tor’s eccentricity on the radiation pattern can be illustrated
with the following thought experiment. One can understand
the inner conductor as a dipole from which a radiation dip in
axial direction follows. The consequence of an eccentric shift
of the inner conductor is a misalignment of the radiation min-
imum from the symmetry axis, whereby the radiation pattern
of the complete arrangement is influenced.

In this publication, the theory for analysing the near field
of the radiator described above is based upon the determi-
nation of equivalent current densities in the emitter aperture,
according to Huygen’s principle. The theoretical investiga-
tions serve two purposes: to acknowledge the thought exper-
iment; and to support the later presented results simulated
by the programme system Ansoft HFSS within the near field
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Fig. 1. Interrelation between the geometry of the Bipolar coordinate
system(a) and the geometry of the contact emitter(b).

area. To determinate the equivalent sources only the fun-
damental TEM mode is considered for propagation inside
the line. In the mathematical analysis, higher order modes
are not considered. Besides the radiator (i.e. geometrical di-
mensions, dielectric characteristics), the mathematical model
describing the radiation behaviour contains the infinitely ex-
panded, semi-infinite space in front of the aperture filled with
an isotropic homogenous material. Additionally, the far field
radiation characteristics are represented as a result of the an-
alytical approach and simulation.

2 Theory

With the analysis of conventional antennas, one is usually
interested in the far field characteristics. However, the thera-
peutic sphere of activity of the contact emitter for medical
applications is situated in the near field area. The thera-
peutic area for local hyperthermia and the biological active
points stimulated by microwave reflex therapy are located at

the skin surface, which can be 2−12 mm thick (see Kalan-
taewskaja, 1972). Therefore, an analysis of near field char-
acteristics is necessary.

The human body consists of a layered tissue with different
electrical characteristics. During the irradiation of electro-
magnetic energy, reflections occur at the transitions between
the individual layers. In the following, the layering of tissue
is neglected and a homogenous skin tissue with an infinite
expansion in the illuminated semi-infinite space is assumed.

In order to predict the radiation behaviour of the radiator
exactly, the field equations of the sub ranges feeder, transition
zone and infinite space have to be solved by using bound-
ary conditions. In some publications, approaches and meth-
ods for the solution of similar problems were already repre-
sented. Sumbar et al. presented solutions for field equations
relying on the finite element method (see Sumbar, 1991).
However, due to the approximated boundary conditions at the
sub zone transitions, the solution can only be approximated.
In Mosig et al. (1981) and Nevels and Wheeler (1989), the
field equations for special coaxial radiators were solved by
applying the method of moments. In Maloney et al. (1990),
the FD-TD method (finite-difference time-domain method)
was used as a numerical solution for radiation problems in
the time domain. The procedures mentioned were used ex-
clusively for far field calculation and contain a multitude of
neglects. In the theoretical part of this work, the radiation
behaviour is determined with the help of the equivalent cur-
rent densities in the emitter aperture, according to Huygen’s
principle. The calculation is executed under the following
prerequisites:

1. Inside the line, the TEM fundamental mode propagates.

2. The analysis does not consider higher order modes stim-
ulated in the emitter aperture.

3. Energy is radiated only into the semi-infinite space in
front of the aperture.

4. The radiator is lossless.

A Bipolar coordinate system is used in order to determine
the field distribution in the aperture of the radiator. In this
coordinate system, the conductor surface coincides with a
coordinate surface in each case.

In Fig. 1, the Bipolar coordinate system (u, v, z) is com-
pared to the geometry of the emitter aperture to explain the
interrelations. For a better orientation, the Cartesian coordi-
nate system is projected onto the Bipolar coordinate system
in Fig. 1. The geometry of the emitter aperture is charac-
terised by the inside diameterD of the outer conductor, the
outside diameterd of the inner conductor and by the eccen-
tricity E=e·D

/
2 of the inner conductor in the emitter aper-

ture. For instance, if the eccentricity factore=0.5 the centre
of the inner conductor is positioned between the centre and
the outside margin of the outer conductor.
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2.1 Calculation of the field distribution in the emitter aper-
ture

Because of the assumptions given above, only transversal
field components exist in the emitter aperture. These com-
ponents can be written in Bipolar coordinates as follows:

E = Ev = ev (u, v) · e
−γ

z
·z

H = H u = hu (u, v) · e
−γ

z
·z (1)

If this approach is inserted in Maxwell’s second equation,
rotE=−µ∂H

/
∂t , then the following conditions result on

the assumption of a time harmonic dependence:

rottev (u, v) =0 andγ
z
· uz × ev (u, v) =jωµ · hu (u, v) (2)

The nonvortical electric field can be expressed as the gradient
of a scalar potential:

ev (u, v) = −∇8 (v) (3)

The equipotential lines in the emitter aperture are identical to
the parameter lines for constantv as shown in Fig. 1. On the
assumption of a charge-free dielectric inside the radiator, as
well as a constant permittivityεr , we find Laplace’s equation
in Bipolar coordinates (see Murray, 1979) as follows:

∇
28 (v) =

(cosh(v) − cos(u))2

a2
·
∂28 (v)

∂v2
= 0 (4)

The variablea characterises the pole position of the coordi-
nate system (see Fig. 1a). If Eq. (4) is integrated twice, one
gets the scalar potential, which with the boundary conditions
8 (v=v1) =0 and8 (v=v2) =U0 can be expressed as:

8 (v) =
U0

v2 − v1
· (v − v1) (5)

Substituting Eqs. (5) into (3), the electric field in the emitter
aperture can be given by:

E = A ·
1

a
· (cosh(v) − cos(u)) · e−j ·k·z

· uv (6)

From this the magnetic field can be calculated with applica-
tion of Maxwell’s second equation as follows:

H =A ·
1

a
−

·

√
εemitter

/
µemitter · (cosh(v) − cos(u)) · e−j ·k·z

· uu (7)

In Eqs. (6) and (7), A represents an amplitude factor. In ad-
dition the propagation constantγ

z
was replaced by:

γ
z

= j · k = j · ω ·
√

µemitter · εemitter (8)

In order to calculate the near field characteristics, the field
distribution of the emitter aperture is used to obtain the

Fig. 2. Emitter arrangement in Cartesian coordinates.

equivalent electric and magnetic current densities, according
to Huygen’s principle:

J
äq

= uz × H t

J
mäq

= −uz × Et

(9)

The transversal field strength results from the interference of
an incident and reflected wave component. The reflection
factor at the transition “radiator↔ homogenous tissue” is
defined as0. Now the transversal electromagnetic field com-
ponents in the aperture of the contact emitter can be written
as:

Et = Ev(u, v) · (1 + 0) · uv

H t = H u(u, v) · (1 − 0) · uu
(10)

Considering Eqs. (6) and (7), the equivalent current densities
can be determined from the following equations:

J
äq

= −
A·(1−0)

a·

√
µStrahler /εStrahler

· (cosh(v) − cos(u)) · uv

J
mäq

=
A·(1+0)

a
· (cosh(v) − cos(u)) · uu

(11)

2.2 Calculation of the radiation fields of the contact emitter

The magnetic vector potential

A(r) =
1

4 · π
·

∫∫
As

J
äq

(rs)

|r − rs |
· e−j ·k·|r−rs | · dAs (12)

and the electric vector potential

F (r) =
1

4 · π
·

∫∫
As

J
mäq

(rs)

|r − rs |
· e−j ·k·|r−rs | · dAs (13)
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Fig. 3. Distribution of the real part of Poynting’s vector in the near
field as a function of the inner conductor’s eccentricity factore (the-
ory).

can be evaluated by integration over the emitter cross section
AS . The radiation field follows from:

E = −rotF +
1

j · ω · εGewebe

· rot rotA (14)

H = rotA +
1

j · ω · µGewebe

· rot rotF (15)

It is not appropriate to put the origin of the coordinate sys-
tem into the emitter centre for a simple organization of the
integrals (see Fig. 2). The components of the vector poten-
tials are represented in Cartesian coordinates. This facilitates
the curl formation regarding the field calculation which is
executed later and serves a clear near field representation.
The transformation of the Bipolar unit vectors into Carte-
sian unit vectors gives the magnetic vector potential and the
electric potential in Eqs. (16) and (17) using the substitutions
S(v, u)=

sinh(v)·sin(u)

(cosh(v)−cos(u))2 andC(v, u)=
cosh(v)·cos(u)−1
(cosh(v)−cos(u))2 .

A =

−
A·a·(1−0)

4·π ·

√
µStrahler /εStrahler

·

2·π∫
0

v2∫
v1

{
C(v, u) ·

e−j ·k·|r−rs |

|r−rs |
·ux +. . .

S(v, u) ·
e−j ·k·|r−rs |

|r−rs |
· uy

}
· dv · du

(16)

F =
A·a·(1+0)

4·π
·

2·π∫
0

v2∫
v1

{
S(v, u) ·

e−j ·k·|r−rs |

|r−rs |
· ux − . . .

C(v, u) ·
e−j ·k·|r−rs |

|r−rs |
· uy

}
· dv · du

(17)

The integral Eqs. (16) and (17) are not analytically solvable.
Therefore the curl of the integrals is determined beforehand.
Afterwards, a pure numeric calculation of the electric and
magnetic fields is executed. For calculating the curl of a
vector, it is necessary to determine the partial derivatives.
Analysing the electric and magnetic vector potential, these
partial derivatives are limited to the following expression:

P(x, y, z) =
e−j ·k·|r−rs |

|r−rs |
= . . .

e
−j ·k·

√(
x−

a·sinh(v)
cosh(v)−cos(u)

)2
+

(
y−

a·sin(u)
cosh(v)−cos(u)

)2
+z2√(

x−
a·sinh(v)

cosh(v)−cos(u)

)2
+

(
y−

a·sin(u)
cosh(v)−cos(u)

)2
+z2

(18)

According to Eq. (9), the vector of source pointrs is repre-
sented in Bipolar coordinates. The partial derivatives can be
abbreviated by

P η =
∂P (x, y, z)

∂η
, P η,τ =

∂P (x, y, z)

∂η ∂τ

whereη, τ ∈ {x, y, z}.
Using the mentioned expressions, the following terms re-

sult from simple and double curl formation:

rotA = −
A·a·(1−0)

4·π ·

√
µStrahler /εStrahler

· . . .

2·π∫
0

v2∫
v1

{[
−S(v, u) · P z

]
· ux +

[
C(v, u) · P z

]
· uy + . . .[

S(v, u) · P x − C(v, u) · P y

]
· uz

}
· dv · du

(19)

rot F =
A·a·(1+0)

4·π
· . . .

2·π∫
0

v2∫
v1

{[
C(v, u) · P z

]
· ux+

[
S(v, u) · P z

]
· uy − . . .[

C(v, u) · P x + S(v, u) · P y

]
· uz

}
· dv · du

(20)

rot rotA =

−
A·a·(1−0)

4·π ·

√
µStrahler /εStrahler

· . . .

2·π∫
0

v2∫
v1

{[
S(v, u) · P xy − C(v, u) · P yy −C(v, u) · P zz

]
·ux+ . . .

[
−S(v, u) · P zz −S(v, u)·P xx+C(v, u) · P yx

]
·uy

(21)

rot rotF =
A · a · (1 + 0)

4 · π
· . . .

2·π∫
0

v2∫
v1

{[
−C(v, u)·P xy−S(v, u)·P yy −S(v, u)·P zz

]
·ux+. . .[

−C(v, u)·P zz +C(v, u)·P xx+S(v, u)·P yx

]
·uy+ . . .[

S(v, u)·P zx −C(v, u)·P zy

]
·uz

}
·dv·du

(22)

Substituting Eqs. (20) and (21) into Eq. (14), and Eqs. (19)
and (22) into Eq. (15) respectively, a pure numeric field cal-
culation of the electric and magnetic field for defined space
points (x, y, z) is possible. As the solution is based on the
use of the Bipolar coordinate system, the shift of the radia-
tor’s aperture from the origin has to be considered prior to
selection of the xcoordinate.
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Fig. 4. Ansoft HFSS simulation model of the contact emitter.

2.3 Graphical representation of the near field

The programme system MATLAB is applied for a mathemat-
ical evaluation of the formalism presented above. The nu-
merical results constitute the basis for a graphical near field
representation of the radiator as a function of the eccentric-
ity factor e of the inner conductor. In Fig. 3, the real part of
the complex Poynting vector is presented for defined space
points in a plane parallel to the emitter aperture at a frequency
of f =10 GHz. This time-independent quantity ensures a di-
rect comparison with the simulation results. The calculated
field strength values are normalized to the maximum value
of the field strength at each examined eccentricity factore.
The amplitudes are subdivided linearly in colour tones with
increasing power density from blue to red. The square plane
has an edge length ofl=16 mm and is placed1z=5 mm in
front of the emitter aperture. The inner diameter of the outer
conductor and the outer diameter of the inner conductor are
set toD=10 mm andd=1 mm. The relative dielectric con-
stant inside the radiator is selected toεr,waveguide=1. The
relative dielectric constant of the homogenous tissue in front
of the emitter aperture is assigned a value ofεr,tissue=50.
This is a typical value found in literature as a crude approxi-
mation for muscle tissue (see Stauffer, et al., 1998; Rossetto,
et al., 2000). It can be seen clearly by Fig. 3, that the abso-
lute maximum of the power density shifts as a function of the
eccentricity factore of the inner conductor. With increasing
misalignment of the inner conductor to the left-hand side of
the emitter centre, the maximum moves towards the centre of
the emitter aperture, which is marked by a white circle in the
graphical representations.

3 Comparison of analytical results and simulation data

To simulate the radiation fields of the contact emitter, the
commercially available simulation programme HFSS (High
Frequency Stucture Simulator) from Ansoft Inc. is used. An-
soft HFSS applies the finite element method (FEM) in order
to analyse the electromagnetic behaviour of complex three
dimensional model geometries. The implemented FEM al-
lows accounting for the influence of arbitrary material sur-
rounding the antenna aperture. The FEM directly calcu-
lates the field distribution inside a defined simulation volume
which is confined by a radiation boundary for calculating far
fields. The construction of the radiator’s simulation model
is summarised in Fig. 4. In contrast to the theoretical analy-
sis, the simulation with Ansoft HFSS considers higher order
modes inside the coaxial waveguide with an eccentric course
of the inner conductor and in the emitter aperture. The simu-
lation models used in the following are based on the geome-
try and material dates given under Sect. 2.

3.1 Distribution of power density in the near field area

The results of the near field simulation are shown in Fig. 5.
The real part of the complex Poynting vector is calculated
for defined space points of the above mentioned plane, as
a function of the eccentricity factore of the inner conduc-
tor. Comparing the graphical representation with those in
Fig. 3 it is obvious that the analytical and the simulation re-
sults correspond quite well. But the influence of the higher
order modes neglected in the analytic approach is also obvi-
ous. With increasing eccentricity factore a second maximum
appears. This area of high power density is located at the left
boundary of the outer conductor. So there is no relevance
for the medical application considered in this paper because
only very small superficial skin areas of cancerous tissue or
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Fig. 5. Simulated distribution of the real part of Poynting’s vector
in the near field as a function of the inner conductor’s eccentricity
factore.

biological active points interacting with the main maximum
are considered. In comparison with the analytic results the
deviating field distribution is due to the higher order modes.
But the overall effect of positioning the absolute maximum
of power density at the centre of the contact emitter by an ec-
centric shift of the inner conductor is confirmed by the simu-
lation results as well.

3.2 Far field characteristics

In this section the differences in far field characteristics
caused by ignoring the effects of higher order modes in the
analytical approach in comparison to the simulation are in-
vestigated. Therefore Fig. 6 contains the far field plots and
spherical far field cuts to clarify these differences. Analy-
sis and simulation are performed with an eccentricity factor
e=0.5 atf =10 GHz. In contrast to the analytical dates the
simulation results describe an antenna with a maximum at
8=0◦ and2=335◦. However the theoretical approach pre-
dicts a nearly constant power density surrounding a global
minimum in the direction of the contact emitter’s centre. The
theory based radiation pattern predict maxima at8=90◦,
2=30◦ and 8=90◦, 2=330◦, which are situated point-
symmetrically to the focal point of the respective directivity
pattern. The distinct minimum in front of the aperture, which
is typical for the rotationally symmetric radiation pattern of a
coaxial radiator (e=0), also appears in the simulation results
at the same position.

Fig. 6. Radiation patterns and directivity diagrams from analytical
computation(a) and simulation(b) based on an eccentricity factor
e=0.5.

4 Conclusions

The thought experiment for the eccentric shift of the inner
conductor is confirmed by the theoretical analysis, as well
as by the simulation results of Ansoft HFSS. Due to the ne-
glect of the higher order modes with the theoretical analysis,
the results differ slightly in the near field area. Neverthe-
less the simulation results of the near field are verified by
the theoretical analysis in spite of exclusive consideration of
the fundamental TEM mode. It could be shown unambigu-
ously that the position of the maximum temporal average of
Poynting’s vector, is a function of the inner conductor’s ec-
centricity factore in the emitter aperture. Depending on the
geometry and material dates, an eccentric position of the in-
ner conductor could be determined, so that the maximum of
the power density is localized directly above the emitter cen-
tre in the near field area. The simulated far field radiation
patterns differ from the analytically calculated results mainly
in the position of the maxima. A better agreement between
the simulation data and the analytical results can only be ob-
tained by an expansion of the proposed analytical solution to
consider for the higher order modes in the emitter aperture.
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