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Abstract. Differential phases open a new parameter in po-
larimetric weather radar data analysis. In polarimetricS-
matrices measured at the linear polarisation bases (verti-
cal and horizontal) there exist basically three differential
phases namely the differential propagation phase and two
co-to-crosspolar phases. In this paper we shall investigate
the statistics of differential propagation phase and co-to-
crosspolar phases in weather radar data recorded with the C-
band weather radar of DLR, Wessling.

1 Introduction

1.1 PolarimetricS-matrix measurement

The POLDIRAD is DLR’s fully polarimetric Doppler
weather radar. It is able to measure the fully polarimetric
S-matrix at the linear polarisation bases horizontal and verti-
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whereEr
v/h are the backscattered andEt

v/h are the transmit-
ted electrical fields andT is the pulse repetition time.RN is
the range between the radar and the near edge of the radar
pulse volume andk is the wave number.

As could be seen, the two columns of the polarimetric
S-matrix are determined by two consecutive measurements.
The POLDIRAD transmits alternately vertical and horizontal
polarised pulses and receives the backscattered echoes simul-
taneously in these two orthogonal polarised channels. See
Schroth et al. (1988) for a further discussion of the measure-
ment scheme of the POLDIRAD.
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Figure 1 shows the radar geometry. For each radar pulse
volume there is a measurement ofM polarimetricS-matrices
whereM is the sample size.

It is possible to define several differential phases within the
measuredS-matrices. The first is the differential propagation
phase9dp which is the phase difference between the two
copolarS-matrix elementsShh andSvv. The co-to-crosspolar
phases9cr,h and9cr,v are the phase differences between a
copolar and a crosspolarS-matrix element.

1.2 Example weather radar dataset

Figure 2 shows an example of weather radar data used within
this paper. To obtain these so called RHI (range height indi-
cator) scans the measurement was done while moving the
radar antenna only along the elevation.

Figure 2a shows the reflectivityZhh:

Zhh = 10log10

(
CR2

NPhh

)
(dBZ) (2)

whereC is the radar constant andPhh is the power of the
horizontal polarised channel.

Another very common polarimetric weather radar mea-
surement quantity is the differential reflectivityZdr in
Fig. 2b:

Zdr = 10log10
Phh

Pvv

(dB). (3)

2 The differential propagation phase

2.1 Physical background of the differential propagation
phase

The differential propagation phase8dp is the two way phase
difference between the vertical and horizontal polarised
pulse. It is the only measurement quantity in radar meteorol-
ogy that contains information about the forward scattering of
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Table 1. Standard Deviation of9dp,2 for M=32, 64 and 128 in dependence of|ρhv |.

1.0 ≥ |ρhv | > 0.95 0.95 ≥ |ρhv | > 0.9 0.9 ≥ |ρhv | > 0.85 0.85 ≥ |ρhv | > 0.8

SD(9dp,2) for M = 32 2.75◦ 6.33◦ 7.54◦ 9.76◦

SD(9dp,2) for M = 64 2.12◦ 4.67◦ 5.53◦ 7.05◦

SD(9dp,2) for M = 128 1.63◦ 3.42◦ 4.03◦ 5.11◦

T. Otto and M. Chandra: On the statistics of differential phases in C-band weather radar 3

Fig. 1. Radar geometry.

co-to-crosspolar correlation coefficient|ρcr,h|:

|ρcr,h| = | 〈SvhS∗hh〉 |√
〈|Svh|2〉 〈|Shh|2〉

. (10)

It is seen that low|ρcr,h| values results in large deviations of
the co-to-crosspolar phase, i.e. starting at bin 13, which is
the region of the melting layer.

The problem with co-to-crosspolar phases is the low cor-
relation between the copolar and the crosspolar S-matrix el-
ement at the linear polarisation bases horizontal and vertical,
Fig. 2 (d). This leads especially in the melting layer to very
noisy estimates of the co-to-crosspolar phases.

4 Conclusions

The differential propagation phase could be determined up to
an accuracy of 1-2 degrees by DLR’s POLDIRAD for the lin-
ear polarisation bases horizontal and vertical. Not solved yet
is the problem of the discrimination of the range dependent
differential propagation phase and the bin specific phases, i.e.
mainly the differential backscatter phase.

Due to the bad correlation of copolar to crosspolar returns
for the linear polarisation bases (horizontal and vertical) the
quality of estimation of co-to-crosspolar phase is very noisy.
For that reason it is difficult to find useful applications for
the co-to-crosspolar phases. Nevertheless, the behaviour of
co-to-crosspolar phases at the linear polarisation bases hori-
zontal and vertical needs more attention in research.

This paper points out that contrary to common belief ob-
servable co-to-crosspolar phases do exist and exhibit a phys-
ical signature, even though they are noisy.
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Fig. 1. Radar geometry.

the electromagnetic waves and its relationship to the rain rate
is nearly linear at C-band, cf. Scarchilli et al. (1993).

8dp is defined by

8dp = arg
[
e−j (Khh−K∗

vv)RN

]
(4)

whereKhh andKvv are the effective external two-way com-
plex propagation constants for horizontal and vertical polari-
sation.

2.2 Calculation of the differential propagation phase

The termarg
〈
ShhS

∗
vv

〉
contains the differential propagation

phase8dp but also a Doppler phase shift because there is a
time delay of the pulse repetition timeT between the mea-
surements of the two columns of the polarimetricS-matrix.
This Doppler phase shift needs to be removed for a proper
estimation of differential propagation phase. To achieve that
there are the two following ways:
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where〈〉 denotes the average overM consecutive samples
obtained of each radar pulse volume and∗ means the com-
plex conjugate.

After removing the Doppler phase shift the resulting phase
still contains several bin specific phases namely the differen-
tial backscatter phase and the internal propagation phase shift

(Chandra, 1991). From now on9dp will be used as symbol
for the differential propagation phase because it is not pos-
sible to separate the bin specific phases from the real differ-
ential propagation phase8dp which is the range dependent
phase part. In most cases the bin specific phases are negligi-
ble and the calculated9dp is equal to8dp.

2.3 Statistics of the differential propagation phase

The standard deviation of the estimation of differential prop-
agation phase depends on the sample sizeM, the Doppler
spectrum width and the correlation between the two copolar
S-matrix elements (Sachidananda and Zrnic, 1986).

The correlation between the two copolarS-matrix ele-
ments is given by the magnitude of the copolar correlation
coefficient:
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|
〈
ShhS

∗
vv

〉
|√〈

|Shh|
2
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2
〉 . (7)

This correlation is very high for weather targets at the po-
larisation basis vertical and horizontal. This high correlation
between the two copolarS-matrix elements is necessary for a
good estimation of differential propagation phase. The lower
|ρhv| the higher is the standard deviation of the estimated
9dp. Figure 2c shows the RHI of|ρhv| with it’s very high
values except in the region of the melting layer at a height
of 2–3 km and in the upper right corner due to a very bad
signal-to-noise ratio (SNR) there.

The magnitude of the copolar correlation coefficient de-
pends on several microphysical properties of the hydrome-
teors within the radar pulse volume such as particle shape
variations or canting angle of the hydrometeors but it also de-
pends on the time delay between the measurement of the two
columns of theS-matrix (Chandra et al., 1992). If this time
difference is greater than the decorrelation time of hydrome-
teors then the correlation between the two copolarS-matrix
elements is very low.

Figure 3 shows the dependence of the standard deviation
of the differential propagation phase9dp,2 against the sam-
ple sizeM and the magnitude of the copolar correlation coef-
ficient. This plot is obtained using one of POLDIRADs time
series dataset from a stratiform storm. Table 1 contains some
values of the standard deviation of the differential propaga-
tion phase for sample sizes of 32, 64 and 128.

As predicted by the theory the standard deviation of the
differential propagation phase is lower the more samples are
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Fig. 2. (a) ReflectivityZhh(dBZ), (b) Differential ReflectivityZdr(dB), (c) Magnitude of the copolar copolar correlation coefficient|ρhv|,
(d) Magnitude of the co-to-crosspolar correlation coefficient|ρcr,h| of a weather radar dataset recorded with the POLDIRAD in autumn
1994.

Table 1. Standard Deviation ofΨdp,2 for M = 32, 64 and 128 in dependence of|ρhv|.

1.0 ≥ |ρhv| > 0.95 0.95 ≥ |ρhv| > 0.9 0.9 ≥ |ρhv| > 0.85 0.85 ≥ |ρhv| > 0.8

SD(Ψdp,2) for M = 32 2.75◦ 6.33◦ 7.54◦ 9.76◦

SD(Ψdp,2) for M = 64 2.12◦ 4.67◦ 5.53◦ 7.05◦

SD(Ψdp,2) for M = 128 1.63◦ 3.42◦ 4.03◦ 5.11◦

Fig. 3. Standard deviation of differential propagation phaseΨdp,2

in dependence of the sample sizeM and the magnitude of the copo-
lar correlation coefficient|ρhv|.

Fig. 4. Rayplot ofΨcr,h and|ρcr,h| for an elevation of 10.9◦.

Fig. 2. (a) Reflectivity Zhh(dBZ), (b) Differential ReflectivityZdr (dB), (c) Magnitude of the copolar correlation coefficient|ρhv |, (d)
Magnitude of the co-to-crosspolar correlation coefficient|ρcr,h| of a weather radar dataset recorded with the POLDIRAD in autumn 1994.

4 T. Otto and M. Chandra: On the statistics of differential phases in C-band weather radar

Fig. 2. (a) ReflectivityZhh(dBZ), (b) Differential ReflectivityZdr(dB), (c) Magnitude of the copolar copolar correlation coefficient|ρhv|,
(d) Magnitude of the co-to-crosspolar correlation coefficient|ρcr,h| of a weather radar dataset recorded with the POLDIRAD in autumn
1994.

Table 1. Standard Deviation ofΨdp,2 for M = 32, 64 and 128 in dependence of|ρhv|.

1.0 ≥ |ρhv| > 0.95 0.95 ≥ |ρhv| > 0.9 0.9 ≥ |ρhv| > 0.85 0.85 ≥ |ρhv| > 0.8

SD(Ψdp,2) for M = 32 2.75◦ 6.33◦ 7.54◦ 9.76◦

SD(Ψdp,2) for M = 64 2.12◦ 4.67◦ 5.53◦ 7.05◦

SD(Ψdp,2) for M = 128 1.63◦ 3.42◦ 4.03◦ 5.11◦

Fig. 3. Standard deviation of differential propagation phaseΨdp,2

in dependence of the sample sizeM and the magnitude of the copo-
lar correlation coefficient|ρhv|.

Fig. 4. Rayplot ofΨcr,h and|ρcr,h| for an elevation of 10.9◦.
Fig. 3. Standard deviation of differential propagation phase9dp,2
in dependence of the sample sizeM and the magnitude of the copo-
lar correlation coefficient|ρhv |.

measured and the higher the magnitude of the copolar corre-
lation coefficient is. The differential propagation phase could
be determined with an accuracy of 1–2◦ for |ρhv| greater than
0.95 by DLR’s POLDIRAD. These values of the standard de-
viation of the differential propagation phase were also con-
firmed by other datasets of the POLDIRAD.

This result for the standard deviation of the differential
propagation phase obtained from data corresponds to val-
ues obtained by simulation for C-Band, e.g. Hubbert et
al. (1993).
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3 The co-to-crosspolar phases

3.1 Calculation of the co-to-crosspolar phases

The differential phases between a copolar and a crosspolar
S-matrix element are named the co-to-crosspolar phases:

9cr,h = arg
〈
SvhS

∗

hh

〉
, (8)

9cr,v = arg
〈
ShvS

∗
vv

〉
. (9)

The co-to-crosspolar phases do not contain a Doppler
phase shift because the copolar and the crosspolar re-

www.adv-radio-sci.net/5/447/2007/ Adv. Radio Sci., 5, 447–450, 2007



450 T. Otto and M. Chandra: Statistics of differential phases

turns are measured simultaneously by two receivers in the
POLDIRAD. They also consist of a range dependent phase
and a bin specific phase.

The co-to-crosspolar phases will only deliver some results
if a crosspolar signal is present and thus depolarisation must
have occurred, e.g. by the presence of canted hydrometeors.

3.2 Statistics of the co-to-crosspolar phases

The statistics of co-to-crosspolar phases will only be treated
qualitatively in this paper. Therefore, Fig. 4 shows a ray plot
of co-to-crosspolar phase9cr,h and of the magnitude of the
co-to-crosspolar correlation coefficient|ρcr,h|:

|ρcr,h| =
|
〈
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∗

hh

〉
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2
〉 〈

|Shh|
2
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It is seen that low|ρcr,h| values results in large deviations of
the co-to-crosspolar phase, i.e. starting at bin 13, which is the
region of the melting layer.

The problem with co-to-crosspolar phases is the low cor-
relation between the copolar and the crosspolarS-matrix el-
ement at the linear polarisation bases horizontal and vertical,
Fig. 2d. This leads especially in the melting layer to very
noisy estimates of the co-to-crosspolar phases.

4 Conclusions

The differential propagation phase could be determined up
to an accuracy of 1–2◦ by DLR’s POLDIRAD for the lin-
ear polarisation bases horizontal and vertical. Not solved yet
is the problem of the discrimination of the range dependent
differential propagation phase and the bin specific phases, i.e.
mainly the differential backscatter phase.

Due to the bad correlation of copolar to crosspolar returns
for the linear polarisation bases (horizontal and vertical) the
quality of estimation of co-to-crosspolar phase is very noisy.
For that reason it is difficult to find useful applications for
the co-to-crosspolar phases. Nevertheless, the behaviour of
co-to-crosspolar phases at the linear polarisation bases hori-
zontal and vertical needs more attention in research.

This paper points out that contrary to common belief ob-
servable co-to-crosspolar phases do exist and exhibit a phys-
ical signature, even though they are noisy.
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