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Abstract. The claim for multistandard operating handsets
of small physical size as well as the ever increasing demand
for higher data rates require new broadband operating an-
tennas. Because of the widespread use of especially planar
broadband antennas a lot of factors influencing the character-
istic antenna parameters have to be regarded. Furthermore,
aspects regarding the electromagnetic compatibility inside
the handheld as well as the protection of biological systems,
e.g. the user of a mobilephone, have to be payed attention
to. An electromagnetic structure which allows for protection
by means of shielding as well as enhances the antennas ef-
ficiency by providing unique electromagnetic properties are
the so called Sievenpiper High Impedance Surfaces (HIS) in-
vented bySievenpiper(1999). This paper will present the
theory and the well known design equations for those struc-
tures. An investigation by means of simulation tools and
measurement setups will be done to approve the accuracy
of the theoretical results. Here measurement results of the
impedance and radiation properties of a planar log.-per. four-
arm antenna equiped in conjunction with a fabricated proto-
type Sievenpiper HIS will be presented.

1 Introduction

The trend of digital convergence with its multiradio appli-
cations keeps on raising the bar for research and application
engineers. On the one hand more spectral effiency and in-
teroperability is demanded by the customers by simultane-
ously needs for increasing battery life and decreasing phys-
ical size of the handheld. On the other hand the complexity
of the transceiver circuitry and with it the production costs
raise due to operating in different communication standards
with multiple antennas. Therefor it is necessary to use broad-
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band antennas with an easy impedance matching network
and constant antenna parameters regarding frequency, e.g.
input impedance or radiation pattern, to keep circuitry com-
plexity down. An antenna which provides such properties
is for example the so called planar log.-per. trapezoidal an-
tenna (TA) as proposed inKlemp et al.(2005) which is a
representative for the group of frequency independent anten-
nas. These planar broadband antennas exhibit a bidirectional
radiation characteristic which can cause perturbation due to
parasitic effects such as surface wave propagation or electro-
magnetic wave interaction with different sections of a hand-
set. Because of that volumetric effects there is a need for so
called spatial filters to ease the perturbation occuring in the
communication terminal while conserving the radiation effi-
ciency of the antenna as well as shielding the environment
against unwanted radiation.

The Sievenpiper HIS offers attractive boundary conditions
to overcome the mentioned obligations. This type of spa-
tial filter is a metallo-dielectric material with 2D periodicity
where all physical sizes of a so called unit cell must be much
smaller than the corresponding wavelength in the operational
bandwidth. In general the structure consists of periodic cylin-
drical vias placed in a grounded dielectric slab with a metal
frequency selective surface layer (FSS) on top.

Because of combining the reflection properties of artifi-
cial magnetic conductors (AMC) and the ability of suppress-
ing surface wave propagation like electromagnetic band-gap
structures (EBG) (see Sievenpiper, 2003) this structures seem
to be adequate for use in mobile communication handhelds.
The resulting reflection phase ofφ0=0° with an absolute re-
flection coeficient of|0| =1 at the surface allows using the
HIS as near field reflector while incident and reflected wave
will not cancel out each other. Due to the in-phase image
current the close proximity of the Sievenpiper HIS reflector
to radiating elements results in low profile antennas with an
enhanced efficiency compared to fully metallic reflectors or
absorber materials. Furthermore, the suppression of surface
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sitic radition from finite groundplane edges.
The organization of the paper is as follows. In section 2 the
underlying theory of the Sievenpiper HIS and the equations
for designing the geometry parameters of the structure for a
given frequency of operation are presented. Section 3 deals
with simulation models and simulation results for verifying
the derived equations. Here the simulated reflection phase
properties for orthogonal incidence and the influence of the
HIS on matching and radiation properties of a reference di-
pole are presented. In the last section measurement results of
a planar broadband log.-per. four arm trapezoidal antenna in
conjunction with a fabricated prototype Sievenpiper HIS are
highlighted. The properties under consideration are the input
impedance as well as the radiation pattern.

2 Theoretical Description of Reflection Properties

The underlying theory of Sievenpiper HIS is in general based
on the effective medium theory (see Merill (1999)) and more-
over on the transmission line theory. These theories can
be used when describing the (homogenized) electromagnetic
behaviour of small inclusions in a host material or the quasi-
static properties of devices much smaller than the wavelength
respectively. On the one hand the structures can be seen
as composite materials consisting of a periodic FSS on a
conductor backed substrate, acting as a boundary with such
a high surface impedance, leading to a vanishing magnetic
field in theory, therefore called artifificial magnetic conduc-
tor (AMC).
On the other hand the cylindrical vias embedded periodicly
in the substrate build the so called Brown’s rodded medium
or the ”Fakir’s bed of Nails” which solution can be found
in Rotman (1962) and Kin. They are acting like a plasma
below its plasma frequency, suppressing the propagation of
surface waves comparable to the double negative materials
(DNG) or metamaterials (MM), first mentioned by Veselago
(1968). Because of exhibiting frequencies where no wave
propagation is possible a so called band-gap occurs. Due to
that textures which offer this kind of filter mechanism they
are called electromagnetic band-gap structures (EBG).
Due to the very complex mechanisms yielding to the sur-
face wave suppression and the complications in finding ade-
quate equations describing the interaction of electromagnetic
waves and the periodic structure, here only the reflection
properties are highlighted. Furthermore, the propagation of
surface waves in single antenna stand-alone applications is
less critical than in antenna array arrangements and will be
neglegted in a first approximation. Further information about
and insight into the surface wave properties of these struc-
tures can be found in Clavijo (2003) and Sievenpiper (1999).
For determining the reflection properties of the exemplary

structure in Fig. 1 the transmissionline theory can be used,
no matter what kind of patch geometry will be offered by
the FSS (triangle, square, hexagon,...). The only restriction
is the physical size of the geometry with regard to the cor-
responding wavelength at the operational frequencies. All

Fig. 1. Sievenpiper HIS placed in thexy-plane displayed in top-
and side-view

describing parameters of a so called unit cell shown in Fig. 2
as substrate-heigtht2, via-radiusr, periodicity D or gap-
width g have to be much smaller than the wavelentgh, i.e.
t2, r,D, g << λ.

For an orthogonal incident wave travelling in negativez-

Fig. 2. Side-view of a zoomed region of the Sievenpiper HIS from
Fig. 1 containing 2 unit cells with each a size ofD

direction adjacent edges of the FSS build a shunt capacitance.
The resulting admittance of two adjacent metal stripes seen
by the wave, can be obtained by means of calculus of varia-
tions and is well known in literature (see Marcuvitz (1986)).
Calculating the edge capacitance from this admittance leads
to
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for TE polarization (see Simovski (2005)). Hereεeff =√
(ε1 + ε2)/2 indicates the effective permittivity of the two

half spaces under consideration (z < 0, z > 0) andθi is the

Fig. 1. Sievenpiper HIS placed in thexy-plane displayed in top-
and side-view.

waves eliminates the transport of interfering power to cir-
cuitry elements in the transceiver which can cause malfunc-
tions. Moreover a smooth and uneffected radiation pattern
can be expected because of avoiding parasitic radition from
finite groundplane edges.

The organization of the paper is as follows. In Sect. 2
the underlying theory of the Sievenpiper HIS and the equa-
tions for designing the geometry parameters of the structure
for a given frequency of operation are presented. Section 3
deals with simulation models and simulation results for ver-
ifying the derived equations. Here the simulated reflection
phase properties for orthogonal incidence and the influence
of the HIS on matching and radiation properties of a refer-
ence dipole are presented. In the last section measurement
results of a planar broadband log.-per. four arm trapezoidal
antenna in conjunction with a fabricated prototype Sieven-
piper HIS are highlighted. The properties under considera-
tion are the input impedance as well as the radiation pattern.

2 Theoretical description of reflection properties

The underlying theory of Sievenpiper HIS is in general based
on the effective medium theory (see Merill, 1999) and more-
over on the transmission line theory. These theories can
be used when describing the (homogenized) electromagnetic
behaviour of small inclusions in a host material or the quasi-
static properties of devices much smaller than the wavelength
respectively. On the one hand the structures can be seen
as composite materials consisting of a periodic FSS on a
conductor backed substrate, acting as a boundary with such
a high surface impedance, leading to a vanishing magnetic
field in theory, therefore called artifificial magnetic conduc-
tor (AMC).
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Fig. 2. Side-view of a zoomed region of the Sievenpiper HIS from
Fig. 1 containing two unit cells with each a size ofD.

On the other hand the cylindrical vias embedded period-
ically in the substrate build the so called Brown’s rodded
medium or the “Fakir’s bed of Nails” which solution can be
found in Rotman(1962) and King et al. (1983). They are
acting like a plasma below its plasma frequency, suppress-
ing the propagation of surface waves comparable to the dou-
ble negative materials (DNG) or metamaterials (MM), first
mentioned byVeselago(1968). Because of exhibiting fre-
quencies where no wave propagation is possible a so called
band-gap occurs. Due to that textures which offer this kind
of filter mechanism they are called electromagnetic band-gap
structures (EBG).

Due to the very complex mechanisms yielding to the sur-
face wave suppression and the complications in finding ade-
quate equations describing the interaction of electromagnetic
waves and the periodic structure, here only the reflection
properties are highlighted. Furthermore, the propagation of
surface waves in single antenna stand-alone applications is
less critical than in antenna array arrangements and will be
neglegted in a first approximation. Further information about
and insight into the surface wave properties of these struc-
tures can be found inClavijo (2003) andSievenpiper(1999).

For determining the reflection properties of the exemplary
structure in Fig.1 the transmission line theory can be used,
no matter what kind of patch geometry will be offered by
the FSS (triangle, square, hexagon,...). The only restriction
is the physical size of the geometry with regard to the cor-
responding wavelength at the operational frequencies. All
describing parameters of a so called unit cell shown in Fig.2
as substrate-heigtht2, via-radiusr, periodicity D or gap-
width g have to be much smaller than the wavelentgh, i.e.
t2, r,D, g<<λ. For an orthogonal incident wave travelling
in negativez-direction adjacent edges of the FSS build a
shunt capacitance. The resulting admittance of two adjacent
metal stripes seen by the wave, can be obtained by means
of calculus of variations and is well known in literature (see
Marcuvitz, 1996). Calculating the edge capacitance from this
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angle of incidence.
The conductor backed hostmedium itself offers an inductive
surface impedance, which is typical for substrate layers as
can be found in Collin (1991) for example. The via array sta-
bilizes the surface impedance of the substrate by mimicing
a TEM waveguide for TM polarized waves. The expression
for the surface impedance for both TE and TM polarization
is therefore equal and as a first approximation independant of
the incidence angle (see Clavijo (2003)). It can be found in
standard literature and for this reason only the resulting ex-
pression for the impedance is given in Eq. 3 without further
calculation.

ZDT E
= ZDT M

= jωµ0t2 (3)

Both surface impedances are in parallel for an incident wave
and can be combined by means of the well known equation
for parallel resistors in lumped networks expressed in 4.

ZS(ω) =
ZG(ω)ZD(ω)

ZG(ω) + ZD(ω)
(4)

For orthogonal incidence as well as for small angles of inci-
dence the capacitive impedance for the FSS layer is given by
ZGT M

= ZGT E
= ZG = 1/jωCG. While neglecting losses

the two impedances build an ideal parallel resonant circuit
as shown in Fig. 3. At resonant frequency the denominator

Fig. 3. Equivalent LC circuit for a unitcell

vanishes and the impedance goes for infinity. The equation
for the reflection coefficient known from the transmissionline
theory (see Zinke and Brunswig (2000)) by use of the derived
expressions for the resulting surface impedance yields

r =
jωt2µrµ0 − Z0

(
1−

(
ω
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)2
)

jωt2µrµ0 + Z0

(
1−
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ω
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)2
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with ω0 = 1/
√

LC representingthe resonant frequency of
the circuit.
Due to the metallic surface of the structure the absolute value
of the reflection coeficient remains1, whereas the occur-
ing reflection phase decides on whether more constructive or
more destructive interference takes place. Because of the fre-
quency dependence of the reflection coefficient a operational
bandwidth can be given which is located in between the fre-
quencies where the reflection phaseφΓ equals±π/2 while
here more constructive than destructive interference occurs.
Under this constraints and with the definition of a relative
bandwidthBrel = fu/fl, the ratio of the upper frequency
(ΦΓ = −π/2) to the lower frequency (ΦΓ = +π/2) of the
operational bandwidth, Eq. 5 can be written as follows:

Brel − 1√
Brel

= 2πµr
t2

λres
. (6)

Hereλres is the wavelength at resonant frequency. As can be
seen, this transcendent expression and the bandwidth respec-
tively depend mainly on the substrate height.

3 Simulation Results

Fig. 4. HFSS simulation model for determining the reflection prop-
erties of a HIS: TEM waveguide with periodic boundary conditions

This section deals with simulation results for evaluating
the derived design equations by means of the simulation tool
HFSS of Ansoft Corporation. First of all the reflection
properties of a Sievenpiper HIS will be investigated. The
used simulation model is shown in Fig. 4 and consists
of an ideal TEM waveguide. This is realized by the use
of so called periodic boundary conditions where adjacent
walls offer perfect electric and perfect magnetic boundary
conditions alternating circular around the longitudinal axis.
The TEM wave is excited by a wave port traveling down the
longitudinal axis of the waveguide. At the end a unit cell of
the HIS under test is placed. The parameters of the designed
HIS are D = 8.5mm, g = 0.5mm, t2 = 3mm and
r = 1mm. The host substrate is a FR4 with a permitivity
of εr = 4.4 resulting in a theoretical resonant frequency
of fres = 4.65GHz with bandedges atfl = 4GHz
andfu = 5.2GHz. The reflection phase of this structure
can be easily calculated when using this simulation model
by deembeding of the reflection coefficient of the wave
port onto the surface of the HIS. The curves over frequency
derived by the simulation and the presented equations from
section 2 implemented in MATLAB are shon in Fig. 5.

A good agreement of the two curves can be observed.
Only the resonant frequency and the frequency where
ΦΓ = −π/2 reveal small differences of100MHz(2.2%)
and200MHz(3.9%) respectively. But under consideration
of the simplifications done by deriving the equations these
results can be seen as a proof for the accuracy of the design
formulas for determining the reflection properties of a
Sievenpiper HIS. The only drawback of this simulation
model is the invariable orthogonal incidence of the propa-
gating wave. Moreover due to the wide spectrum of different

Fig. 3. Equivalent LC circuit for a unitcell.
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Due to the metallic surface of the structure the absolute
value of the reflection coefficient remains 1, whereas the oc-
curing reflection phase decides on whether more construc-
tive or more destructive interference takes place. Because
of the frequency dependence of the reflection coefficient an
operational bandwidth can be given which is located in be-
tween the frequencies where the reflection phaseφ0 equals
±π/2. Under this constraints and with the definition of a rel-
ative bandwidthBrel=fu/fl , the ratio of the upper frequency
(80=−π/2) to the lower frequency (80=+π/2) of the op-
erational bandwidth, Eq. (5) can be written as follows:

Brel − 1
√

Brel

= 2πµr

t2

λres

. (6)

Hereλres stands for the wavelength at resonant frequency.
As can be seen, this transcendent expression and the band-
width respectively depend mainly on the substrate height.

3 Simulation results

This section deals with simulation results for evaluating the
derived design equations by means of the simulation tool
HFSS of Ansoft Corporation. First of all the reflection prop-
erties of a Sievenpiper HIS will be investigated. The used
simulation model is shown in Fig.4 and consists of an ideal
TEM waveguide. This is realized by the use of so called peri-
odic boundary conditions where adjacent walls offer perfect
electric and perfect magnetic boundary conditions alternat-
ing circular around the longitudinal axis. The TEM wave
is excited by a wave port traveling down the longitudinal
axis of the waveguide. At the end a unit cell of the HIS
under test is placed. The parameters of the designed HIS
areD=8.5 mm,g=0.5 mm,t2=3 mm andr=1 mm. The host
substrate is a FR4 with a relative permittivity ofεr=4.4 re-
sulting in a theoretical resonant frequency offres=4.65 GHz
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Fig. 5. Reflectionphase of the considered HIS over frequency

modes existing in the reactive near field of a radiating
antenna and their corresponding incidence angles, small
deviations from the desired functionality and operational
frequency must be taken into account.
The next step while analyzing the fuctionality of the this
geometry is placing an antenna above the structure and
investigating the influence of the HIS on its characteristic
properties and vice versa. For the purpose of being able to
evaluate the effect of the Sievenpiper HIS on the antenna
correctly it is important to use a simple and well known
antenna geometry. Therefore the use of a dipole as reference
antenna geometry is convenient and often used in literature
while evaluating miscellaneous applications. Fig. 6 shows
the configuration of the dipole in conjunction with the filter
structure.

Considered parameters for evaluating the effiency of this

Fig. 6. Flat dipole at FR4 substrate placed 1.5 mm above a Siven-
piper HIS

arrangement and especially the HIS are the return loss of the
antenna as well as its gain. The dipole length is designed for
resonating at3.5GHz and it is placed on a FR4 substrate
with a thickness of1.5mm(≈ λeff/30@3.5GHz).
Applying the same parameter values to the HIS structure
as in the case of investigating the reflection properties the
resonant frequency of the surface impedance is shifted down
to 3.65GHz based on the derived equations and3.55GHz
resulting from the simulation. This shift is founded by
placing the antenna substrate on top of the HIS which affects
the capacity due to replacing the effective medium consist-
ing of air and FR4 by a homogeneous medium consisting
exclusively of FR4. This increases the shunt capacitance of
adjacent edges and hence reduces the resonant frequency.

Fig. 7 displays the curves for the return loss. To be able
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to evaluate the composite structure of antenna and HIS the
curves for the dipole placed in freespace as well as for the
case of a conductor backed antenna substrate with1.5mm
thickness are also stated. While regarding the run of the
curve for the dipole in conjunction with the metallic ground-
plane it is obvious that this configuration does not accept
or radiate any power respectively. The dipole at freespace
reveals the expected characteristic with a minimum of
S11 = −18dB at3.5GHz, the designed resonant frequency.
The dipole placed above the Sievenpiper HIS offers almost
the same characteristic as the arrangement in freespace does.
The main difference is a shift of the whole curve up to higher
frequencies with a better return loss ofS11 = −21dB at
3.8GHz. The frequency shift can be explained as follows.
The dipole is excited by a so called lump port which mimics
an ideal source arranged between the two arms of the dipole.
The arms form a parasitic capacitance with the metallic
surface of the HIS which is in parallel to the antenna arms.
So the dipole seems to be electrically shorter and resonates
at a higher frequency. Investigations with two coaxial cables
as feeder for the dipole have shown the opposite effect of
building a series resonance, due to the fact that the outer
conductor was connected to the groundplane of the HIS.
Moreover a variation of the antenna substrat-height shows
a decreasing frequency of the point with minimal return
loss, while increasing the substrate thickness. This can be
regarded as reducing the parasitic parallel capacitiy which
is assumed to be proportional to the inverse of the substrate
height (comparable to a parallel-plate capacitor).
Furthermore the phase shift of a wave travelling through the

antenna substrate and back has to be regarded. So the opti-
mal constructive interference of the radiated and reflected
wave has to be expected for frequencies whereφΓ < 0,
which is above the resonance of the Sievenpiper HIS. The
discrepancies of the two curves above4.25GHz is related to
an occuring edge resonance of the HIS groundplane at about
4.65GHz. The corresponding characteristic of the absolut
gain in the main direction, i.e. inz-direction, is presented in
Fig. 8.
Due to the results for the return loss the curve of the dipole
placed1.5mm over a metal plate will not be analyzed here
because as mentioned before this arrangement does not

Fig. 5. Reflection phase of the considered HIS over frequency.
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modes existing in the reactive near field of a radiating
antenna and their corresponding incidence angles, small
deviations from the desired functionality and operational
frequency must be taken into account.
The next step while analyzing the fuctionality of the this
geometry is placing an antenna above the structure and
investigating the influence of the HIS on its characteristic
properties and vice versa. For the purpose of being able to
evaluate the effect of the Sievenpiper HIS on the antenna
correctly it is important to use a simple and well known
antenna geometry. Therefore the use of a dipole as reference
antenna geometry is convenient and often used in literature
while evaluating miscellaneous applications. Fig. 6 shows
the configuration of the dipole in conjunction with the filter
structure.

Considered parameters for evaluating the effiency of this
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arrangement and especially the HIS are the return loss of the
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with bandedges atfl=4 GHz andfu=5.2 GHz. The reflec-
tion phase of this structure can be easily calculated when
using this simulation model by deembeding of the reflec-
tion coefficient of the wave port onto the surface of the HIS.
The curves over frequency derived by the simulation and
the presented equations from Sect.2 implemented in MAT-
LAB are shown in Fig.5. A good agreement of the two
curves can be observed. Only the resonant frequency and
the frequency where80=−π/2 reveal small differences of
100 MHz (2.2%) and 200 MHz (3.9%) respectively. But un-
der consideration of the simplifications done by deriving the
equations these results can be seen as a proof for the accuracy
of the design formulas for determining the reflection proper-
ties of a Sievenpiper HIS. The only drawback of this sim-
ulation model is the invariable orthogonal incidence of the
propagating wave. Moreover due to the wide spectrum of
different modes existing in the reactive near field of a radiat-
ing antenna and their corresponding incidence angles, small
deviations from the desired functionality and operational fre-
quency must be taken into account.

The next step while analyzing the fuctionality of the this
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to 3.65GHz based on the derived equations and3.55GHz
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The dipole is excited by a so called lump port which mimics
an ideal source arranged between the two arms of the dipole.
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surface of the HIS which is in parallel to the antenna arms.
So the dipole seems to be electrically shorter and resonates
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as feeder for the dipole have shown the opposite effect of
building a series resonance, due to the fact that the outer
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is assumed to be proportional to the inverse of the substrate
height (comparable to a parallel-plate capacitor).
Furthermore the phase shift of a wave travelling through the

antenna substrate and back has to be regarded. So the opti-
mal constructive interference of the radiated and reflected
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geometry is placing an antenna above the structure and inves-
tigating the influence of the HIS on its characteristic proper-
ties and vice versa. For the purpose of being able to evaluate
the effect of the Sievenpiper HIS on the antenna correctly it is
important to use a simple and well known antenna geometry.
Therefore the use of a dipole as reference antenna geome-
try is convenient and often used in literature while evaluating
miscellaneous applications. Figure6 shows the configuration
of the dipole in conjunction with the filter structure.

Considered parameters for evaluating the efficiency of this
arrangement and especially the HIS are the return loss of the
antenna as well as its gain. The dipole length is designed
for resonating at 3.5 GHz and it is placed on a FR4 substrate
with a thickness of 1.5 mm(≈λeff /30@3.5 GHz).

Applying the same parameter values to the HIS structure
as in the case of investigating the reflection properties the
resonant frequency of the surface impedance is shifted down
to 3.65 GHz based on the derived equations and 3.55 GHz re-
sulting from the simulation. This shift is founded by placing
the antenna substrate on top of the HIS which affects the ca-
pacity due to replacing the effective medium consisting of air
and FR4 by a homogeneous medium consisting exclusively
of FR4. This increases the shunt capacitance of adjacent
edges and hence reduces the resonant frequency. Figure7
displays the curves for the return loss. To be able to evaluate
the composite structure of antenna and HIS the curves for the
dipole placed in freespace as well as for the case of a conduc-
tor backed antenna substrate with 1.5 mm thickness are also
stated. While regarding the run of the curve for the dipole
in conjunction with the metallic groundplane it is obvious
that this configuration does not accept or radiate any power
respectively. The dipole at freespace reveals the expected
characteristic with a minimum ofS11=−18 dB at 3.5 GHz,
the designed resonant frequency. The dipole placed above
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the Sievenpiper HIS offers almost the same characteristic as
the arrangement in freespace does. The main difference is
a shift of the whole curve up to higher frequencies with a
better return loss ofS11=−21 dB at 3.8 GHz. The frequency
shift can be explained as follows. The dipole is excited by a
so called lump port which mimics an ideal source arranged
between the two arms of the dipole. The arms form a para-
sitic capacitance with the metallic surface of the HIS which
is in parallel to the antenna arms. So the dipole seems to be
electrically shorter and resonates at a higher frequency. In-
vestigations with two coaxial cables as feeder for the dipole
have shown the opposite effect of building a series reso-
nance, due to the fact that the outer conductor was connected
to the groundplane of the HIS. Moreover a variation of the
antenna substrat-height shows a decreasing frequency of the
point with minimal return loss, while increasing the substrate
thickness. This can be regarded as reducing the parasitic par-
allel capacitance which is assumed to be proportional to the
inverse of the substrate height (comparable to a parallel-plate
capacitor).

Furthermore the phase shift of a wave travelling through
the antenna substrate and back has to be regarded. So the op-
timal constructive interference of the radiated and reflected
wave has to be expected for frequencies whereφ0<0◦, which
is above the resonance of the Sievenpiper HIS. The discrep-
ancies of the two curves above 4.25 GHz is related to an
occuring edge resonance of the HIS groundplane at about
4.65 GHz. The corresponding characteristic of the absolut
gain in the main direction, i.e. inz-direction, is presented in
Fig. 8.

Due to the results for the return loss the curve of the dipole
placed 1.5 mm over a metal plate will not be analyzed here
because as mentioned before this arrangement does not ac-
cept any power and hence can not radiate effectively.

The dipole in freespace reveals an almost constant gain
over frequency. At the point of minimum return loss the ab-
solut gain isGi=2.5 dB which is in good agreement with the
theoretical result for an ideally thin wire dipole which offers
Gi=2.15 dB.

As can be seen in the frequency range of good matching,
i.e. S11<−10 dB, from 3.6 GHz to 4 GHz the absolute gain
of the dipole in conjunction with Sievenpiper HIS is much
higher than for the dipole in freespace. This observed effect
can be seen as a proof for the predicted reflection properties
of the HIS since the in-phase reflection of an incident wave
leads to constructive interference. This superimposition of a
directly radiated wave and the reflected wave ideally doubles
the electric field strength in the primary half space of radia-
tion and hence leads to an increase in absolute gain of 3 dB.
This effect can be observed in Fig.8 at the frequency point
with best matching at 3.8 GHz. Here the value for the abso-
lute gain isGi3.8 GHz=5.8 dB. The boost of the gain by a value
higher than 3 dB, exactly 3.3 dB, is founded in numerical un-
certainty.
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accept any power and hence can not radiate effectively.
The dipole in freespace reveals an almost constant gain over
frequency. At the point of minimum return loss the absolut
gain is theGi = 2.5dB which is in good agreement with the
theoretical result for an ideally thin wire dipole which offers
Gi = 2.15dB.
As can be seen in the frequency range of good matching,
i.e. S11 < −10dB, from 3.6GHz to 4GHz the absolut gain
of the dipole in conjunction with Sievenpiper HIS is much
higher than for the dipole in freespace. This observed effect
can be seen as a proof for the predicted reflection properties
of the HIS since the in-phase reflection of an incident wave
leads to constructive interference. This superimposition
of a direct radiated wave and the reflected wave ideally
doubles the electric field strength in the primary half space
of radition and hence leads to an increase in absolute gain of
3dB. This effect can be observed in Fig. 8 at the frequency
point with best matching at3.8GHz. Here the value for the
absolute gain isGi3.8GHz

= 5.8dB. The boost of the gain
by a value higher than3dB, exactly3.3dB, is founded in
numerical uncertainty.
Finally the radiation patterns of the two arrangements in
freespace and over the Sievenpiper HIS are evaluated. Fig. 9
shows both the horizontal and the vertical diagramm of the
dipole for the two dispositions. Here again the improvement
of the gain is obvious. Furthermore it can be seen that the
front to back ratio is increased due to the shielding effect
of the HIS structure with respect to the lower half space.
By the way the smooth pattern is an indication for no or
at least negligible parasitic radiation from HIS structure or
its groundplane which normally generates sidelobes in the
pattern.
After having highlighted the correct function of the HIS and
the accuracy of the design equations, now an evaluation by
means of measurement results will be done.

4 Measurement Results

The former section which dealed with simulation results re-
vealed the accuracy of the derived equations of section 2 for

Fig. 9. Horizontal and vertical dipole characteristic for arrangement
in freespace and in conjunction with HIS for cuts at a)φ = 0° and
b)φ = 90°

designing Sievenpiper HIS with respect to its reflection prop-
erties. The next step treated in this section is to fabricate a
prototype and measure its influence on important antenna pa-
rameters of a planar broadband antenna, while using the HIS
as near field reflector, as done before in the simulation.
The used braodband antenna is the so called planar log.-
per. four arm trapezoidal antenna (TA) more precisely the so
called standard trapezoidal antenna withŵ = 45 andM = 5
periods as presented in Klemp et al. (2005). This type of
antenna belongs to the widespread group of quasi-frequency
independent antennas. The functional principle and charac-
teristic parameters as well as possibilities for modification of
the geometrical shape are detailly explained in Klemp et al.
(2005). Here only a short description of the general proper-
ties will be given because of the need for knowing the ba-
sic undisturbed antenna characteristics while evaluating the
whole setup consisting of antenna and reflector.
The mentioned trapezoidal antenna is depicted in Fig. 10.
Due to its four arms this antenna geometry offers the possi-
bility of dual linear polarized or circular polarized radiation.
For dual linear polarization two opposite arms are excited
in antiphase. Hence differential excitation of adjacent arm
pairs with no phase difference between the upper and right
(or left) arm and the lower and left (or right) arm results in
a radiating configuration which is similar to a cross dipole.
Attention has to be paid to the fact that horizontal excitation
yields vertical polarized radiation and vice versa due to the
shape of the arms. If adjacent arms exhibit a phase shift of
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placed above a perfect conducting plate, a HIS and in freespace.

Finally the radiation patterns of the two arrangements in
freespace and over the Sievenpiper HIS are evaluated. Fig-
ure9 shows both the horizontal and the vertical diagramm of
the dipole for the two dispositions. Here again the improve-
ment of the gain is obvious. Furthermore it can be seen that
the front to back ratio is increased due to the shielding ef-
fect of the HIS structure with respect to the lower half space.
By the way the smooth pattern is an indication for no or at
least negligible parasitic radiation from the HIS structure or
its groundplane which normally generates sidelobes in the
pattern.

After having highlighted the correct function of the HIS
and the accuracy of the design equations, now an evaluation
by means of measurement results will be done.

4 Measurement results

The former section which dealed with simulation results re-
vealed the accuracy of the derived equations of Sect.2 for
designing Sievenpiper HIS with respect to its reflection prop-
erties. The next step treated in this section is to fabricate a
prototype and measure its influence on important antenna pa-
rameters of a planar broadband antenna, while using the HIS
as near field reflector, as done before in the simulation.

The used braodband antenna is the so called planar log.-
per. four-arm trapezoidal antenna (TA) witĥw=45° and
M=5 periods as presented inKlemp et al.(2005).

The mentioned trapezoidal antenna is depicted in Fig.10.
Due to its four arms this antenna geometry offers the pos-

sibility of dual linear or circular polarized radiation. For
dual linear polarization two opposite arms are excited in an-
tiphase. Hence differential excitation of adjacent arm pairs
with no phase difference between the upper and right (or left)
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accept any power and hence can not radiate effectively.
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prototype and measure its influence on important antenna pa-
rameters of a planar broadband antenna, while using the HIS
as near field reflector, as done before in the simulation.
The used braodband antenna is the so called planar log.-
per. four arm trapezoidal antenna (TA) more precisely the so
called standard trapezoidal antenna withŵ = 45 andM = 5
periods as presented in Klemp et al. (2005). This type of
antenna belongs to the widespread group of quasi-frequency
independent antennas. The functional principle and charac-
teristic parameters as well as possibilities for modification of
the geometrical shape are detailly explained in Klemp et al.
(2005). Here only a short description of the general proper-
ties will be given because of the need for knowing the ba-
sic undisturbed antenna characteristics while evaluating the
whole setup consisting of antenna and reflector.
The mentioned trapezoidal antenna is depicted in Fig. 10.
Due to its four arms this antenna geometry offers the possi-
bility of dual linear polarized or circular polarized radiation.
For dual linear polarization two opposite arms are excited
in antiphase. Hence differential excitation of adjacent arm
pairs with no phase difference between the upper and right
(or left) arm and the lower and left (or right) arm results in
a radiating configuration which is similar to a cross dipole.
Attention has to be paid to the fact that horizontal excitation
yields vertical polarized radiation and vice versa due to the
shape of the arms. If adjacent arms exhibit a phase shift of

Fig. 9. Horizontal and vertical dipole characteristic for arrangement
in freespace and in conjunction with HIS for cuts ata) φ=0◦ andb)
φ=90◦.

arm and the lower and left (or right) arm results in a radiat-
ing configuration which is similar to a cross dipole. Attention
has to be paid to the fact that horizontal excitation yields ver-
tical polarized radiation and vice versa due to the shape of
the arms.

Another main feature of this antenna is its quasi-frequency
independent input inpedance as well as the almost constant
radiation properties like gain and effective antenna area re-
spectively due to its selfcomplemetarity and selfsimilarity.
The theoretical values are known from literature and former
investigations and publications (see Klemp et al., 2005) and
must be constant over frequency in the range of approxi-
mately 2 GHz up to 6 GHz for the regarded standard TA.

The antenna was fabricated on 1.5 mm FR4 which re-
sults in an approximately purely real input impedance of
Re {Zin} =77� and a vanishing imaginary part.

The prototype of the Sievenpiper HIS used as near field re-
flector in conjunction with the introduced planar broadband
antenna offers the same parameters as stated in the simula-
tion model which yields a theoretical resonant frequency of
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Fig. 10. Standard planar broadband four arm log.-per. trapezoidal
antenna

90° increasing from0° at arm ”1” to270° to arm ”4” the ra-
diated field is circular polarized (left or right depending on
clockwise excitation or vice versa).
Another main feature of this antenna is its quasi-frequency
independant input inpedance as well as the almost constant
radiation properties like gain and effective antenna area re-
spectively due to its selfcomplemetarity and selfsimilarity.
Because of the four-terminal structure it is impossible to use
just the return loss of only one arm to get qualitatively good
results for eavaluating if the structure is operating as radi-
ating antenna with good matching or not. Therefore the re-
turn loss used for the evaluation of the dipole configuration
is replaced by the computed input impedance of two oppo-
site arms, a so called arm pair, split up into real and imagi-
nary part. The theoretical values are known from literature
and former investigations and publications (see Klemp et al.
(2005)) and must be constant over frequency in the range of
approximately2GHz up to6GHz for the regarded standard
TA.
The antenna was fabricated on1.5mm FR4 which results in
an approximately purely real input impedance of a differen-
tial excited arm pair ofRe {Zin} = 77Ω and a vanishing
imaginary part.
The prototype of the Sievenpiper HIS used as near field re-

flector in conjunction with the introduced planar broadband
antenna offers the same parameters as stated in the simula-
tion model which yields a theoretical resonant frequency of
fres = 3.65GHz in homogeneously FR4 substrate with an
permitivity of approximatelyεr = 4.4. A picture of the pro-
totype is shown in Fig. 11 with drill holes in the center for
the four semi ridgid feed lines of the antenna.
The characteristic of the real part as well as the imaginary
part of the input impedance of opposite arms excited in a dif-
ferential way is plotted in Fig. 12. As in the simulation of the
reference dipole, here the curves for the TA on a grounded
dielectric FR4 slab, on a microwave absorber as well as on
the fabricated HIS are shown over frequency.
The curve for the TA on the conductor backed substrate re-

veals strong resonance behaviour with no remarkable match-
ing point in both real and imaginary part. When considering

Fig. 11. Fabricated prototype of Sievenpiper HIS with theoreti-
cal resonance frequency atfres = 3.65GHz and a relative band-
width of Brel = 1.26GHz ranging fromfl = 3.25GHz to
fu = 4.1GHz

Fig. 12. Real and imaginary part of the input impedance over fre-
quency of one arm pair for the TA in conjunction with a metal plate,
a microwave absorber as well as the fabricated HIS

the characteristics of the impedance, while using the filter
structure, a strong effect of the HIS becomes obvious be-
tween3GHz and4GHz. This effect is expressed in vari-
ations from the resonant behaviour occuring outside this fre-
quency band. Further investigations between3.5GHz and
4GHz show similarities between the reference curve when
using a microwave absorber and the one with the near field

Fig. 10. Standard planar broadband four arm log.-per. trapezoidal
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site arms, a so called arm pair, split up into real and imagi-
nary part. The theoretical values are known from literature
and former investigations and publications (see Klemp et al.
(2005)) and must be constant over frequency in the range of
approximately2GHz up to6GHz for the regarded standard
TA.
The antenna was fabricated on1.5mm FR4 which results in
an approximately purely real input impedance of a differen-
tial excited arm pair ofRe {Zin} = 77Ω and a vanishing
imaginary part.
The prototype of the Sievenpiper HIS used as near field re-

flector in conjunction with the introduced planar broadband
antenna offers the same parameters as stated in the simula-
tion model which yields a theoretical resonant frequency of
fres = 3.65GHz in homogeneously FR4 substrate with an
permitivity of approximatelyεr = 4.4. A picture of the pro-
totype is shown in Fig. 11 with drill holes in the center for
the four semi ridgid feed lines of the antenna.
The characteristic of the real part as well as the imaginary
part of the input impedance of opposite arms excited in a dif-
ferential way is plotted in Fig. 12. As in the simulation of the
reference dipole, here the curves for the TA on a grounded
dielectric FR4 slab, on a microwave absorber as well as on
the fabricated HIS are shown over frequency.
The curve for the TA on the conductor backed substrate re-

veals strong resonance behaviour with no remarkable match-
ing point in both real and imaginary part. When considering

Fig. 11. Fabricated prototype of Sievenpiper HIS with theoreti-
cal resonance frequency atfres = 3.65GHz and a relative band-
width of Brel = 1.26GHz ranging fromfl = 3.25GHz to
fu = 4.1GHz

Fig. 12. Real and imaginary part of the input impedance over fre-
quency of one arm pair for the TA in conjunction with a metal plate,
a microwave absorber as well as the fabricated HIS

the characteristics of the impedance, while using the filter
structure, a strong effect of the HIS becomes obvious be-
tween3GHz and4GHz. This effect is expressed in vari-
ations from the resonant behaviour occuring outside this fre-
quency band. Further investigations between3.5GHz and
4GHz show similarities between the reference curve when
using a microwave absorber and the one with the near field

Fig. 11. Fabricated prototype of Sievenpiper HIS with theoretical
resonance frequency atfres=3.65 GHz and a relative bandwidth of
Brel=1.26 ranging fromfl=3.25 GHz tofu=4.1 GHz.

fres=3.65 GHz in homogeneous FR4 substrate with an per-
mittivity of approximatelyεr=4.4. A picture of the proto-
type is shown in Fig.11 with drill holes in the center for the
four semi ridgid feed lines of the antenna.

The characteristic of the real part as well as the imaginary
part of the input impedance of opposite arms excited in a
differential way is plotted in Fig.12. As in the simulation of
the reference dipole, here the curves for the TA on a grounded
dielectric FR4 slab, on a microwave absorber as well as on
the fabricated HIS are shown over frequency.

Adv. Radio Sci., 5, 87–94, 2007 www.adv-radio-sci.net/5/87/2007/



S. K. Hampel et al.: Sievenpiper HIS for use in broadband antennas 93

6 Hampel et al.: Sievenpiper HIS for Use in Broadband Antennas

Fig. 10. Standard planar broadband four arm log.-per. trapezoidal
antenna

90° increasing from0° at arm ”1” to270° to arm ”4” the ra-
diated field is circular polarized (left or right depending on
clockwise excitation or vice versa).
Another main feature of this antenna is its quasi-frequency
independant input inpedance as well as the almost constant
radiation properties like gain and effective antenna area re-
spectively due to its selfcomplemetarity and selfsimilarity.
Because of the four-terminal structure it is impossible to use
just the return loss of only one arm to get qualitatively good
results for eavaluating if the structure is operating as radi-
ating antenna with good matching or not. Therefore the re-
turn loss used for the evaluation of the dipole configuration
is replaced by the computed input impedance of two oppo-
site arms, a so called arm pair, split up into real and imagi-
nary part. The theoretical values are known from literature
and former investigations and publications (see Klemp et al.
(2005)) and must be constant over frequency in the range of
approximately2GHz up to6GHz for the regarded standard
TA.
The antenna was fabricated on1.5mm FR4 which results in
an approximately purely real input impedance of a differen-
tial excited arm pair ofRe {Zin} = 77Ω and a vanishing
imaginary part.
The prototype of the Sievenpiper HIS used as near field re-

flector in conjunction with the introduced planar broadband
antenna offers the same parameters as stated in the simula-
tion model which yields a theoretical resonant frequency of
fres = 3.65GHz in homogeneously FR4 substrate with an
permitivity of approximatelyεr = 4.4. A picture of the pro-
totype is shown in Fig. 11 with drill holes in the center for
the four semi ridgid feed lines of the antenna.
The characteristic of the real part as well as the imaginary
part of the input impedance of opposite arms excited in a dif-
ferential way is plotted in Fig. 12. As in the simulation of the
reference dipole, here the curves for the TA on a grounded
dielectric FR4 slab, on a microwave absorber as well as on
the fabricated HIS are shown over frequency.
The curve for the TA on the conductor backed substrate re-

veals strong resonance behaviour with no remarkable match-
ing point in both real and imaginary part. When considering

Fig. 11. Fabricated prototype of Sievenpiper HIS with theoreti-
cal resonance frequency atfres = 3.65GHz and a relative band-
width of Brel = 1.26GHz ranging fromfl = 3.25GHz to
fu = 4.1GHz

Fig. 12. Real and imaginary part of the input impedance over fre-
quency of one arm pair for the TA in conjunction with a metal plate,
a microwave absorber as well as the fabricated HIS

the characteristics of the impedance, while using the filter
structure, a strong effect of the HIS becomes obvious be-
tween3GHz and4GHz. This effect is expressed in vari-
ations from the resonant behaviour occuring outside this fre-
quency band. Further investigations between3.5GHz and
4GHz show similarities between the reference curve when
using a microwave absorber and the one with the near field

Fig. 12. Real and imaginary part of the input impedance over fre-
quency of one arm pair for the TA in conjunction with a metal plate,
a microwave absorber as well as the fabricated HIS.

The curve for the TA on the conductor backed substrate re-
veals strong resonance behaviour with no remarkable match-
ing point in both real and imaginary part. When considering
the characteristics of the impedance, while using the filter
structure, a strong effect of the HIS becomes obvious be-
tween 3 GHz and 4 GHz. This effect is expressed in varia-
tions from the resonant behaviour occuring outside this fre-
quency band. Further investigations between 3.5 GHz and
4 GHz show similarities between the reference curve when
using a microwave absorber and the one with the near field
reflector. The imaginary part vanishes, whereas the real part
alternates with an amplitude of only 20� around a theoret-
ical (virtual) mean value of 77� offered by the curve while
using the microwave absorber. An optimal match is observed
at 3.6 GHz which coincides with the theoretical predicted be-
haviour of the HIS structure.

Now the influence of the reflector on the radiation charac-
teristic at a specific frequency point will be highlighted. As
mentioned before a quasi optimal match occurs at 3.6 GHz.
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reflector. The imaginary part is very small and nearly van-
ishes, whereas the real part alternates with an amplitude of
only 20Ω around a theoretical virtual mean value of77Ω of-
fered by the curve while using the microwave absorber. An
optimal match is observed at3.6GHz which coincides with
the theoretical predicted behaviour of the HIS structure.
Now the influence of the reflector on the radiation charac-
teristic at a specific frequency point will be highlighted. As
mentioned before a quasi optimal match occurs at3.6GHz.
Therefore it is straightforward to evaluate the radiation pat-
tern at this frequency. The reulting pattern for the TA po-
sitioned at an microwave absorber as well as over the HIS
prototype are presented in Fig. 13.

The measured characteristics reveal the benefit when us-

Fig. 13. Horizontal and vertical diagramm of the relative radiation
pattern for the TA in conjunction with a microwave absorber and a
Sievenpiper HIS at3.6GHz

ing the HIS structure. It is obvious that the Sievenpiper HIS
increases the front-to-back ratio because of the shielding ef-
fect, while simultaneously narrow the beamwidth due to the
constructive interference. Moreover the unwanted cross po-
larized component is kept very low as in the case when using
the microwave absorber. Only at wider angles a deviation
between the two curves with a5dB better performance for
the microwave absorber has to be mentioned concerning the
suppression of the cross polarized component. But due to
a cross polarization discrimination of better than20dB for
the combination of antenna and HIS in the whole primary
half space, this effect is of less importance. Furthermore,
the pattern measured with the absorber reveal ripple for the
cross polarized component in the upper horizontal diagramm

which is founded in induced currents radiating from the fi-
nite groundplane edges whereas the use of the HIS shows a
smooth shape due to suppressing this currents and surface
waves respectively. The only drawback of this results is the
fact of dealing with relative patterns with no possibility to
specify an absolute gain or a gain-boost for the setup with
HIS. But due to the excellent match of the real and imagi-
nary part of the input impedance of both configurations at the
chosen frequency and the qualitatively similarity of the radi-
ation pattern some assumptions can be made. The explained
properties of the HIS acting as near field reflector based on
in-phase reflection and the knowledge of the function princi-
ple of microwave absorbers based on dissipative interaction
of electromagnetic wave and absorber, lead to the following
conclusion. The radiated power in the lower half space has
been turned into thermal dissipation loss by the microwave
absorber. While using the HIS reflection takes place and the
reflected power will not vanish and as can be seen will not
radiate into backward direction. So the reflected wave has to
interfere with the direct radiated wave. Due to the impedance
values as well as the smooth radiation pattern more construc-
tive than destructive interference can be assumed. Consider-
ing moderate substrate losses an increase in the absolut gain
with a maximum increment of3dB can be expected.

5 Conclusions

In this paper we presented the theory for describing a new
kind of spatial filter known as Sievenpiper HIS. The unique
in-phase reflection characteristics offered by these composite
metallo-dielectric structures were explained and the well
known design formulas based on the transmissionline theory
were presented. The accuracy of the describing equations
as well as the predicted filter properties have been verified
by means of results derived by simulationmodels in the 3D
fullwave solverHFSS of Ansoft Corporation. Furthermore,
the influence of the introduced HIS in conjuction with a ref-
erence antenna has also been stated by use of the simulation
tool HFSS. Especially the input matching and the absolute
antenna gain has been evaluated. Here also some parasitic
effects occuring due to interaction in the reactive antenna
near filed have been explained. Finally a prototype HIS was
fabricated and measurements have been done where a planar
broadband log.-per. four arm trapezoidal antenna was placed
over the prototype. The derived results in terms of arm
input impedance over frequency as well as relative radiation
patterns at a specific frequency were stated and evaluated.
All the derived results showed the expected behaviour based
on the theoretical description of the HIS with only small
deviations.

Fig. 13. Horizontal and vertical diagramm of the relative radiation
pattern for the TA in conjunction with a microwave absorber and a
Sievenpiper HIS at 3.6 GHz.

Therefore it is straightforward to evaluate the radiation pat-
tern at this frequency. The resulting pattern for the TA posi-
tioned at a microwave absorber as well as over the HIS pro-
totype are presented in Fig.13.

The measured characteristics reveal the benefit when us-
ing the HIS structure. It is obvious that the Sievenpiper HIS
increases the front-to-back ratio because of the shielding ef-
fect, while simultaneously narrows the beamwidth due to the
constructive interference. Moreover the unwanted cross po-
larized component is kept very low as in the case when using
the microwave absorber. Only at wider angles a deviation
between the two curves with a 5 dB better performance for
the microwave absorber has to be mentioned concerning the
suppression of the cross polarized component. But due to
a cross polarization discrimination of better than 15 dB for
the combination of antenna and HIS in the whole primary
half space, this effect is of less importance. Furthermore,
the pattern measured with the absorber reveals ripple for the
cross polarized component in the upper horizontal diagramm
which is founded in induced currents radiating from the fi-
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nite groundplane edges whereas the use of the HIS shows a
smooth shape due to suppressing this currents and surface
waves, respectively.

5 Conclusions

In this paper we presented the theory for describing a new
kind of spatial filter known as Sievenpiper HIS. The unique
in-phase reflection characteristics offered by these compos-
ite metallo-dielectric structures were explained and the well
known design formulas based on the transmission-line theory
were presented. The accuracy of the describing equations as
well as the predicted filter properties have been verified by
means of results derived from simulation models in the 3D
fullwave solverHFSS of Ansoft Corporation. Furthermore,
the influence of the introduced HIS in conjuction with a ref-
erence antenna has also been stated by use of the simulation
tool HFSS. Especially the input matching and the absolute
antenna gain has been evaluated. Here also some parasitic
effects occuring due to interaction in the reactive antenna
near filed have been explained. Finally a prototype HIS was
fabricated and measurements have been done where a planar
broadband log.-per. four-arm trapezoidal antenna was placed
over the prototype. The derived results in terms of arm in-
put impedance over frequency as well as relative radiation
patterns at a specific frequency were stated and evaluated.
All the derived results showed good agreement with the ex-
pected behaviour based on the theoretical description of the
HIS with only small deviations.
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