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Abstract. Microwave techniques for the measurement of the
permittivity of soils including the water content of soils and
other materials, especially TDR (time domain reflectometry),
have become accepted as routine measurement techniques.
This summary deals with an advanced use of the TDR prin-
ciple for the determination of the water content of soil along a
probe. The basis of the advanced TDR technique is a waveg-
uide, which is inserted into the soil for obtaining measure-
ments of the effective soil permittivity, from which the water
content is estimated, and an obstacle, which can mechani-
cally be moved along the probe and which acts as a refer-
ence reflection for the TDR system with an exactly known
position. Based on the known mechanical position of the
reference reflection, the measured electrical position can be
used as a measure for the effective dielectric constant of the
environment. Thus, it is possible to determine the effective
dielectric constant with a spatial resolution given by the step
size of the obstacle displacement.

A conventional industrial TDR-system, operating in the
baseband, is used for the signal generation and for the evalu-
ation of the pulse delay time of the obstacle reflection. Thus,
a cost effective method for the acquisition of the dielectric
measurement data is available.

1 Introduction

The aim of this investigation is to obtain representative pro-
file measurement results from a material under test. Time do-
main reflectometry (TDR) is known as a method to obtain a
reliable estimation of the soil water content from a measure-
ment of the real partε′ as well as the imaginary partε′′ of
the relative permittivityεr (Kupfer, 2005; Hoekstra, 1975).
In many cases TDR is used in order to get just one integral
value for the relative permittivity of the material (Robinson,
2000). In this case the reflection from the end of the probe is
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Fig. 1. Functional principle

The measured pulse delay time is proportional to the relative
effective permittivity εeff of the penetrated medium around
the analyzed probe length lmech:

∆tmeas =
2lmech

c0

√
εeff . (2)

By comparison with the theoretical pulse delay time ∆tref :

∆tref =
2lmech

c0
(3)

the effective permittivity along the analyzed probe length
lmech can be determined:

εeff =
(

∆tmeas

∆tref

)2

. (4)

Obviously the spatial resolution of the system directly de-
pends on the length interval lmech and on the pulse delay
time ∆tref corresponding to the obstacle displacement, re-
spectively. The higher the spatial resolution the shorter the
pulse delay time. If the pulse delay time is in the order of the
inherent time jitter ∆tjitter of the TDR system, the upper
resolution limit is reached and can be determined by:

∆lmin =
1
2
c0∆tjitter . (5)

The minimum resolution length is a multiple of ∆lmin for
accurate measurement results. To keep the estimated error
below 1%, the practical minimum resolution length will be
approximately 100∆lmin. In relation to this, the effective
time jitter of±500 fs without an averaging of the TDR proto-
type system data would lead to a minimum resolution length
of 30mm.

The basic functional principle of the measuring system is
illustrated in Fig. 1.

In this case the movable obstacle is realized as a movable
short circuit. This short is moved stepwise by lmech and in
each position the pulse delay time is measured. With this
pulse delay time and the pulse delay time measured without
a dielectric surrounding one gets the effective dielectric con-
stant for each step. Thus, one can perform a measurement
for the characterization of dielectric profiles with a spatial
resolution given by the step size with which the obstacle is
moved.

movable
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Fig. 2. Probe design and field distribution

3 Probe Design

In order to obtain good measurement results it is very im-
portant to design a probe, which allows measurements in an
environment with high permittivity values on the one hand
and high resolution measurements on the other hand (Knight,
1992; Zegelin, 1989). Thus it is necessary to have a good
interaction between the electromagnetic field and the envi-
ronment. On the other hand it is necessary to have a certain
gap between the conductors and the environment, otherwise
high dielectric constants in the environment would cause a
strong reflection. Due to these requirements the probe shown
in Fig. 2 was designed.

This two-wire probe with a short as a movable obstacle
is a good compromise between maximum interaction of the
electromagnetic field and the environment on the one hand
and the detection of high permittivities on the other hand.

4 Measurement Results

For first measurements the obstacle was placed consecutively
in two positions as shown in Fig. 3. In a first step the delay
time in position 1 was measured as a reference. Then the ob-
stacle was moved into the second position and the delay time
with air as environment was measured. Then the cavity be-
tween position 1 and position 2 was consecutively filled with
different materials. The delay time was measured for each
material and compared with the delay time without filling.
For these measurements the obstacle was fixed in position
2. Thus measurement errors caused by a displacement of the
obstacle could not occur.

Fig. 4 shows the measurement results for a fixed obstacle
position. The cavity between position 1 and position 2 was
filled with five different materials. For each material the de-

Fig. 1. Functional principle.

measured and converted into a value for the relative permit-
tivity. This summary deals with a method that uses different
reflections. Thus, it is possible to measure a dielectric pro-
file along the probe. The different reflections are caused by
an obstacle which is moved mechanically along the probe.
The step size of the motion of this obstacle is one important
parameter for the possible spatial resolution of the system.

2 Functional principle

The propagation speed of electromagnetic waves is directly
related to the effective permittivity of the penetrated medium.
In closed waveguide structures like in circular waveguides or
coaxial waveguides with a relative permittivityεr the propa-
gation velocity is given by:

c =
c0

√
εr

, (1)

while the propagation velocity along the probe of the test
setup shown in Fig.1 is determined by the effective permit-
tivity ε0 ·εeff. The effective permittivity describes the permit-
tivity of the dielectric mixture of the penetrated medium. The
volume of e.g. soil for which the estimation is valid, primar-
ily depends on the design of the probe (Heimovaara, 1993).
By moving a reflecting obstacle stepwise along the probe, a
permittivity profile can be determined by using the relation
between the free space pulse delay time1tref correspond-
ing to the mechanical lengthlmech of the obstacle displace-
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accurate measurement results. To keep the estimated error
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approximately 100∆lmin. In relation to this, the effective
time jitter of±500 fs without an averaging of the TDR proto-
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3 Probe Design

In order to obtain good measurement results it is very im-
portant to design a probe, which allows measurements in an
environment with high permittivity values on the one hand
and high resolution measurements on the other hand (Knight,
1992; Zegelin, 1989). Thus it is necessary to have a good
interaction between the electromagnetic field and the envi-
ronment. On the other hand it is necessary to have a certain
gap between the conductors and the environment, otherwise
high dielectric constants in the environment would cause a
strong reflection. Due to these requirements the probe shown
in Fig. 2 was designed.

This two-wire probe with a short as a movable obstacle
is a good compromise between maximum interaction of the
electromagnetic field and the environment on the one hand
and the detection of high permittivities on the other hand.

4 Measurement Results

For first measurements the obstacle was placed consecutively
in two positions as shown in Fig. 3. In a first step the delay
time in position 1 was measured as a reference. Then the ob-
stacle was moved into the second position and the delay time
with air as environment was measured. Then the cavity be-
tween position 1 and position 2 was consecutively filled with
different materials. The delay time was measured for each
material and compared with the delay time without filling.
For these measurements the obstacle was fixed in position
2. Thus measurement errors caused by a displacement of the
obstacle could not occur.

Fig. 4 shows the measurement results for a fixed obstacle
position. The cavity between position 1 and position 2 was
filled with five different materials. For each material the de-

Fig. 2. Probe design and field distribution.

ment and the measured delay time1tmeascorresponding to
the electrical length and the evaluation of the TDR signal.
The measured pulse delay time is proportional to the relative
effective permittivityεeff of the penetrated medium around
the analyzed probe lengthlmech:

1tmeas=
2lmech

c0

√
εeff . (2)

By comparison with the theoretical pulse delay time1tref:

1tref =
2lmech

c0
(3)

the effective permittivity along the analyzed probe length
lmechcan be determined:

εeff =

(
1tmeas

1tref

)2

. (4)

Obviously the spatial resolution of the system directly de-
pends on the length intervallmech and on the pulse delay
time 1tref corresponding to the obstacle displacement, re-
spectively. The higher the spatial resolution the shorter the
pulse delay time. If the pulse delay time is in the order of
the inherent time jitter1tjitter of the TDR system, the upper
resolution limit is reached and can be determined by:

1lmin =
1

2
c01tjitter . (5)

The minimum resolution length is a multiple of1lmin for ac-
curate measurement results. To keep the estimated error be-
low 1%, the practical minimum resolution length will be ap-
proximately 1001lmin. In relation to this, the effective time
jitter of ±500 fs without an averaging of the TDR prototype
system data would lead to a minimum resolution length of
30 mm.

The basic functional principle of the measuring system is
illustrated in Fig.1.
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Fig. 3. Measurement setup for a fixed obstacle position
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Fig. 4. Measurement results for a fixed obstacle position and
individual cavity fillings

lay time was measured five times. The effective permittivity
of each material was calculated by using equation 4.

Thus, these first measurement results show that the com-
parison of delay time intervalls is a very useful method for
the characterization of effective permittivities.
In a next step a measurement with a movable obstacle, in this
case a short, was performed. Fig. 5 a) shows the measure-
ment setup.

A tube with a diameter of 20 cm was divided into four
cavities, which are filled with different types of gravel and
sand. Fig. 5 b) shows the measurement results as a color bar.
The two-wire probe is located in the radial center of the tube.
The dielectric profile of the environment was measured with
a step size of 2.5 cm and the length of each cavity was 25 cm.
Fig. 6 shows the measurement results.

We observe some deviations concerning the effective per-
mittivity, which can partially be explained by the manual
moving of the obstacle. Nevertheless the different materi-

Fig. 5. Measurement setup with a movable obstacle (a) and mea-
surement results as a color bar (b)
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Fig. 6. Measurement results with a movable obstacle

als are distinguishable from each other.
In order to reduce these uncertainties, the obstacle has to be
optimized. For certain measurement results it is very im-
portant to know the position of the obstacle exactly. If the
obstacle is realized as a short circuit, one should ensure, that
the obstacle does not tilt between the two transmission lines.
Thus, the obstacle which is moved should be very thin and
it should provide a good contact between the transmission
lines.
Furthermore the obstacle should be moved automatically to
reduce uncertainties during the positioning.

Fig. 7 shows first results for an automated measurement
with a proper short circuit. In this case every other cavity
was filled with dry sand. This figure shows that there are
only small uncertainties and the different cavities are well
defined. The transmission lines are fixed by three pairs of
teflon pads, which cause small deviations.
In a next step the separators between the different cavities
are removed. The entire tube was filled with dry sand and
in several positions water was locally added. Fig. 8 shows
the measurement results with one and with two moist areas.

Fig. 3. Measurement setup for a fixed obstacle position.

In this case the movable obstacle is realized as a movable
short circuit. This short is moved stepwise bylmech and in
each position the pulse delay time is measured. With this
pulse delay time and the pulse delay time measured without
a dielectric surrounding one gets the effective dielectric con-
stant for each step. Thus, one can perform a measurement
for the characterization of dielectric profiles with a spatial
resolution given by the step size with which the obstacle is
moved.

3 Probe Design

In order to obtain good measurement results it is very im-
portant to design a probe, which allows measurements in an
environment with high permittivity values on the one hand
and high resolution measurements on the other hand (Knight,
1992; Zegelin, 1989). Thus it is necessary to have a good
interaction between the electromagnetic field and the envi-
ronment. On the other hand it is necessary to have a certain
gap between the conductors and the environment, otherwise
high dielectric constants in the environment would cause a
strong reflection. Due to these requirements the probe shown
in Fig. 2 was designed.

This two-wire probe with a short as a movable obstacle
is a good compromise between maximum interaction of the
electromagnetic field and the environment on the one hand
and the detection of high permittivities on the other hand.

4 Measurement results

For first measurements the obstacle was placed consecutively
in two positions as shown in Fig.3. In a first step the delay
time in position 1 was measured as a reference. Then the ob-
stacle was moved into the second position and the delay time
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lay time was measured five times. The effective permittivity
of each material was calculated by using equation 4.
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the characterization of effective permittivities.
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case a short, was performed. Fig. 5 a) shows the measure-
ment setup.

A tube with a diameter of 20 cm was divided into four
cavities, which are filled with different types of gravel and
sand. Fig. 5 b) shows the measurement results as a color bar.
The two-wire probe is located in the radial center of the tube.
The dielectric profile of the environment was measured with
a step size of 2.5 cm and the length of each cavity was 25 cm.
Fig. 6 shows the measurement results.

We observe some deviations concerning the effective per-
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moving of the obstacle. Nevertheless the different materi-
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als are distinguishable from each other.
In order to reduce these uncertainties, the obstacle has to be
optimized. For certain measurement results it is very im-
portant to know the position of the obstacle exactly. If the
obstacle is realized as a short circuit, one should ensure, that
the obstacle does not tilt between the two transmission lines.
Thus, the obstacle which is moved should be very thin and
it should provide a good contact between the transmission
lines.
Furthermore the obstacle should be moved automatically to
reduce uncertainties during the positioning.

Fig. 7 shows first results for an automated measurement
with a proper short circuit. In this case every other cavity
was filled with dry sand. This figure shows that there are
only small uncertainties and the different cavities are well
defined. The transmission lines are fixed by three pairs of
teflon pads, which cause small deviations.
In a next step the separators between the different cavities
are removed. The entire tube was filled with dry sand and
in several positions water was locally added. Fig. 8 shows
the measurement results with one and with two moist areas.

Fig. 4. Measurement results for a fixed obstacle position and indi-
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portant to know the position of the obstacle exactly. If the
obstacle is realized as a short circuit, one should ensure, that
the obstacle does not tilt between the two transmission lines.
Thus, the obstacle which is moved should be very thin and
it should provide a good contact between the transmission
lines.
Furthermore the obstacle should be moved automatically to
reduce uncertainties during the positioning.

Fig. 7 shows first results for an automated measurement
with a proper short circuit. In this case every other cavity
was filled with dry sand. This figure shows that there are
only small uncertainties and the different cavities are well
defined. The transmission lines are fixed by three pairs of
teflon pads, which cause small deviations.
In a next step the separators between the different cavities
are removed. The entire tube was filled with dry sand and
in several positions water was locally added. Fig. 8 shows
the measurement results with one and with two moist areas.

Fig. 5. Measurement setup with a movable obstacle(a) and mea-
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with air as environment was measured. Then the cavity be-
tween position 1 and position 2 was consecutively filled with
different materials. The delay time was measured for each
material and compared with the delay time without filling.
For these measurements the obstacle was fixed in position
2. Thus measurement errors caused by a displacement of the
obstacle could not occur.

Figure4 shows the measurement results for a fixed obsta-
cle position. The cavity between position 1 and position 2
was filled with five different materials. For each material the
delay time was measured five times. The effective permittiv-
ity of each material was calculated by using Eq.4.

Thus, these first measurement results show that the com-
parison of delay time intervalls is a very useful method for
the characterization of effective permittivities. In a next step
a measurement with a movable obstacle, in this case a short,
was performed. Figure5 a) shows the measurement setup.

A tube with a diameter of 20 cm was divided into four cav-
ities, which are filled with different types of gravel and sand.
Fig. 5 b) shows the measurement results as a color bar. The
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als are distinguishable from each other.
In order to reduce these uncertainties, the obstacle has to be
optimized. For certain measurement results it is very im-
portant to know the position of the obstacle exactly. If the
obstacle is realized as a short circuit, one should ensure, that
the obstacle does not tilt between the two transmission lines.
Thus, the obstacle which is moved should be very thin and
it should provide a good contact between the transmission
lines.
Furthermore the obstacle should be moved automatically to
reduce uncertainties during the positioning.

Fig. 7 shows first results for an automated measurement
with a proper short circuit. In this case every other cavity
was filled with dry sand. This figure shows that there are
only small uncertainties and the different cavities are well
defined. The transmission lines are fixed by three pairs of
teflon pads, which cause small deviations.
In a next step the separators between the different cavities
are removed. The entire tube was filled with dry sand and
in several positions water was locally added. Fig. 8 shows
the measurement results with one and with two moist areas.
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Thus, this measurement setup is a very proper method for the
measurement of dielectric profiles in the surrounding of the
probe.

5 Conclusions

The results in this summary allow an estimation of the capa-
bility of the presented measurement concept for the determi-
nation of dielectric profiles and profiles of the water content
of soils, respectively.
In addition to well known TDR moisture sensing systems,
which only determine the integral value of the moisture con-
tent along the sensor, the presented concept is capable of

measuring moisture profiles by use of a conventional in-
dustrial TDR-system or a vector network analyzer, respec-
tively, for the signal generation and the signal evaluation.
To achieve the additional information for reconstructing a
dielectric profile from the measured data, a special sensor
is necessary, which includes a movable reflecting target, a
so-called obstacle, which can manually or automatically be
moved along the probe, in order to act as a reference. In this
way a mapping of the effective permittivities is possible.
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dielectric profile of the environment was measured with a
step size of 2.5 cm and the length of each cavity was 25 cm.
Figure6 shows the measurement results.

We observe some deviations concerning the effective per-
mittivity, which can partially be explained by the manual
moving of the obstacle. Nevertheless the different materials
are distinguishable from each other. In order to reduce these
uncertainties, the obstacle has to be optimized. For certain
measurement results it is very important to know the position
of the obstacle exactly. If the obstacle is realized as a short
circuit, one should ensure, that the obstacle does not tilt be-
tween the two transmission lines. Thus, the obstacle which
is moved should be very thin and it should provide a good
contact between the transmission lines. Furthermore the ob-
stacle should be moved automatically to reduce uncertainties
during the positioning.

Figure7 shows first results for an automated measurement
with a proper short circuit. In this case every other cavity
was filled with dry sand. This figure shows that there are only
small uncertainties and the different cavities are well defined.
The transmission lines are fixed by three pairs of teflon pads,
which cause small deviations. In a next step the separators
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Fig. 8. Measurement results with different moist positions

Thus, this measurement setup is a very proper method for the
measurement of dielectric profiles in the surrounding of the
probe.

5 Conclusions

The results in this summary allow an estimation of the capa-
bility of the presented measurement concept for the determi-
nation of dielectric profiles and profiles of the water content
of soils, respectively.
In addition to well known TDR moisture sensing systems,
which only determine the integral value of the moisture con-
tent along the sensor, the presented concept is capable of

measuring moisture profiles by use of a conventional in-
dustrial TDR-system or a vector network analyzer, respec-
tively, for the signal generation and the signal evaluation.
To achieve the additional information for reconstructing a
dielectric profile from the measured data, a special sensor
is necessary, which includes a movable reflecting target, a
so-called obstacle, which can manually or automatically be
moved along the probe, in order to act as a reference. In this
way a mapping of the effective permittivities is possible.
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