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Abstract. By the rising complexity and miniaturisation of
the device’s dimensions, the density of the conductors in-
creases considerably. Referring to this, locally transient in-
teractions between single physical values become apparent.
Therefore, for the investigation and optimisation of inte-
grated circuits it is essential to develop suitable models and
simulation surroundings which allow for memory and time-
efficient calculation of the behaviour. By means of the dy-
namic reconstruction theory and the radial basis functions
nets the so-called black box models are provided. The de-
scription of black box models is derived from the input and
output behaviour or so-called time series of a dynamic sys-
tem. Concerning the time series, the black box model adapts
its parameters via the extended Kalman filter. This paper
provides a modelling approach that enables fast and efficient
simulations.

1 Introduction

The increasing simulation time is a big limiting factor dur-
ing the design and the development of HDI/HDP systems.
Hence, it is more and more crucial to provide models which
allow for quick and accurate simulations (Wiegand et al.,
2007b,a; Stievano, 2002). The classical modelling approach,
based on the transistor level circuits and the symbolic anal-
ysis, requires unreasonably long computation times. The
black box modelling (BBM) via radial basis functions (RBF)
nets for integrated circuits is an adequate solution that pro-
vides robust and fast simulations. In the following, a method
is presented for developing mathematical models to reduce
the very growing simulation times for transient analysis. This
modelling approach is based on the dynamic reconstruction
of dynamic systems. That is, a mathematical formulation
needs to be found, that describes the dynamics of the system
to be examined as accurately as possible without necessarily
considering the physical characteristics of the circuit.
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In Sect.2 the modelling flow for developing black box mod-
els is discussed, although the radial basis functions nets are
the main focus of all considerations. Section3 describes the
architecture of the RBF nets. The parameter adaptation, i.e.
the extended Kalman filter, is explained in Sect.4. In Sect.5
a NOR element with two inputs and three outputs is exam-
ined. Then, an example of a diode is considered and the RBF
model is parameterised in such a way so as to allow for the
temperature to be regarded as a further input.

2 Modelling flow

It is necessary for the developing of black box models by
means of radial basis functions nets to choose a suitable time
series (measurements or simulations), so that the model is as
close to the original system as possible. Thus, the training
set must comprise a high information content with which a
reliable model can be provided. The next step in the mod-
elling chain (see Fig.1) is the embedding (Sauer et al., 1991)
of this time series in the RBF net, i.e. the choosing of centres.
This can be done with the help of the so-called locally reg-
ularised orthogonal least square (Chen et al., 1996,?; Chena
et al., 1990a) or the K-Means-Cluster-Algorithm (Sing et al.,
2003). Within this work the centres are determined by the
clustering procedure, because the initialisation of the remain-
ing parameters of the net can be determined via least square
methods. Afterwards the parameter adaptation (parameter
estimation) is achieved by means of the extended Kalman
filter (EKF) (Haykin, 2001; Ahmida and Charef, 2002). The
final step is the Validation, i.e., assuming that the error be-
tween the model and the system is in the expected order of
magnitude, a robust simulation model is provided. If this
case does not occur, it has to be assessed, whether the train-
ing signal was chosen appropriately since the centres were
possibly not picked wisely, or the parameter adaptation di-
verged or remained in a local minimum.
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Fig. 1. Modelling flow.

3 Radial basis functions nets

With using RBF networks, it is possible to represent any
continuous nonlinear function. Because of this important
feature, they are utilised to model nonlinear dynamic
systems and integrated circuits. Radial basis functions nets
are special feedforward neural networks consisting of three
layers with a hidden layer.

Input layer: definition of the number of inputs, i.e.
within the regressor vector the number of inputs is fixed.

Hidden layer: signal processing viap radial basis functions
(Gaussian) or so-called neurons. Furthermore the embedding
of the data occurs just in the hidden layer.

Output layer: definition of the number of outputs. Regarding
weighted transitions the neurons outgoing signals are added
up within every output.

Figure 2 shows a schematic representation of a typical
RBF network with multiple inputs and multiple outputs
(MIMO). The response of a MIMO radial basis functions net

Fig. 2. Schematic representation of a multiple input and multiple
output radial basis functions net.

can be formulated as follows:
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whereφi(ζi) denotes theith gaussian activation function in
the hidden layer and can be written as

φi(ζi) = e−ζi mit ζ = (x − ci)
T 6−1

i (x − ci) (2)
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Within the regressor vector then inputs are de-
fined; m and n describe the number of outputs and
the number of basis functions;ci is the ith centre and
6i = diag(σ i) = diag
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In a standard design, the RBF net provides a static input and
output behaviour. For temporal processing, time delays have
to be introduced to convert the static RBF network into a
dynamic network. There are only very few possibilities to
include memory into the architecture. For example discrete
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time FIR1/IIR-Filters2 can be used instead of the weights
or global feedback paths (Howlett, 2001a,b) could be intro-
duced. A simple method to create dynamics can be expressed
by:

xi(t) = [ui(t − 1), · · · , ui(t − d1),

yi(t − 1), · · · , yi(t − d2)]T ,
(5)

whered1 andd2 denote the input embedding dimension and
the output embedding dimension. By making such changes,
a state space model can be described (Wiegand et al., 2007a).
The first order derivation can be employed to transform the
discrete time representation into a continuous state space
model.

4 Parameter estimation

Generally, the parameters of a RBF net can be determined
by a huge number by algorithms, for example, by the lo-
cally regularised least square algorithm with centre selection
(Chena et al., 1990a; Chen et al., 1990b, 1996). Nevertheless,
non-linear optimisation methods must then be employed to
adapt the shapes6i of the basis functions. Within this work,
the extended Kalman filter (EKF) is used for parameter iden-
tification of non-linear systems. In accordance to this, all
parameters are determined iteratively by the EKF, including
those which are in the argument of the gaussian function. For
the initialisation and the improvement of the convergence,
the K-Means cluster algorithms is used to determine the cen-
tres. In addition, this cluster algorithm delivers an facile pos-
sibility for the calculation of the shapes (widths) of the basis
functions, to be able to determine the weights by means of
least square methods.

4.1 K-Means cluster algorithm

The algorithm is an iterative procedure to divide a set of
training data into groups (cluster). The only available in-
formation is the training data and the number of the clus-
ters. This is also known as unsupervised learning. A random
choice of the cluster centresc(0) within the training setT
serves as the starting point. Next, in every iteration stepk,
every set of trainig data is allocated to the nearest situated
cluster centre and thus the subsetsMi are obtained. The
identification of the new centres

ci(k + 1) =
1

Ni

∑
x∈Mi

x (6)

is accomplished by means of average determination via the
sets

Mi = {x ∈ T : ci(k) = argmin
c(k)

‖x − c(k)‖2
}, (7)

1FIR: Finite Impulse Response
2IIR: Infinite Impulse Response

Fig. 3. NOR-Circuit with two inputs (VA und VB ) and three out-
puts (Vout1, Vout2 undVout3). The buffers of the respective outputs
are four cascaded inverters. Also, the outputs are concluded with
different complex impedances (Zi , wherei∈[1, 2, 3]).

whereasNi denotes the number of elements which are in the
setMi . An initialisation of the matrices6 can take place af-
ter the determination of the centres, i.e. after the last iteration
step:

σi,j =

√√√√ 1

Ni

∑
x∈Mi

(xj − ci,j (K))2 (8)

σ i = [σi,1, · · · , σi,r ]
T (9)

6i = (diag(σ i))
2 (10)

With the calculated initial centres and the widths of the ba-
sis functions, it is possible to determine the weights, i.e., by
utilising the least square methods.

4.2 Extended Kalman Filter

Iteratively, the EKF estimates the parameter vector

wk =

[
θT

1 , · · · , θT
p , σ T

1 , · · · , σ T
p , cT

1 , · · · , cT
p

]T

. (11)

using
wk = wk−1 + Kke (12)

whereKk is the Kalman gain.

Kk = P k−1H k

[
Rk + H T

k P k−1H k

]−1
(13)

e=y−ŷ is the error between the observed outputsy (target
vector) and the estimated outputsŷ of the RBF network;
H k = ∇wf (x, w) is the matrix of the partial derivative of
f (x, w). For this reason, when considering thej th output,
the derivations offj (x, w) are related respectively to the pa-
rametersci , θji and6i :
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Fig. 4. Input and output signals of the simulated system and model.
The output voltages marked with a hat denote the outputs of the
RBF model.

∂fj (x, w)

∂ci

= 2θji6
−1
i (x − ci) e−ζ (14)

∂fj (x, w)

∂θji

= e−ζ (15)

∂fj (x, w)

∂σ i

= 2θji6̃
−1
i sq(x − ci)e

−ζ (16)

where6̃i is defined as

6̃i = diag(σ̃ i) = diag
(
[σ 3

1i, · · · , σ 3
ri]

)
(17)

with

sq(x − ci) = [(x1 − c1i)
2, · · · , (xr − cri)

2
]
T . (18)

Rk and P k denote the variance of the measurement noise
and the error covariance matrix. The error covariance matrix
is a positive definite symmetricν×ν matrix, whereν is the
number of parameters being updated and can be determined
by:

P k =

[
I − KkH

T
k

]
P k−1 + q0I . (19)

Fig. 5. Identity lines of the diode and the model for different tem-
peratures.

According toAhmida and Charef(2002), q0 regulates the
allowed random step towards the gradient. For fast parameter
estimation, the training data is subdivided into smaller sets.
These sets are used to adjust the parameters of the RBF net.
Afterwards, a test is performed as well as an update of the
regressor vector.

5 Simulations

In the following section, two different nonlinear systems are
considered.
The first example corresponds to a two input and three output
NOR-Circuit (see Fig.3). In the second example a diode
is envisaged, in which the ability of parameterisation of the
RBF nets is illustrated.

5.1 Example 1: NOR Circuit

At first a NOR circuit is considered, which was built-up
and simulated by using the Agilent Advanced Design Sys-
tem (ADS) environment. This circuit was implemented with
two inputs and three outputs with different complex loads,
from which a MIMO system arises. The circuit is imple-
mented within 130 nm technology derived from an ADS-
implemented Philips library. The radial basis functions net
has been trained using a set of 1000 data samples of the trape-
zoidal input signals and the corresponding output signals.
The RBF net is developed with 15 centres (selected via the
presented cluster algorithm) and the regressor vector is de-
fined as follows:
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x(k) =

[
uT (k), uT (k − 1), yT (k − 1)

]T

(20)

u(k) = [u1(k), u2(k)]T (21)

y(k) = [y1(k), y2(k), y3(k)]T (22)

In Fig. 4 the input signals (VA undVB ) as well as the re-
sponse of the ADS-system (Vout1, Vout2 und Vout3) and the
RBF model (̂Vout1, V̂out2 undV̂out3) are shown. The model is
able to represent the dynamic as well as the logical behaviour
of the system. The mean square error (MSE) is about 4·10−5.

5.2 Example 2: diode

The system under consideration is a diode (SISO), but the
RBF net was implemented with a second input. This second
input is virtual and corresponds to the parameterisation of the
model taking the temperature drift into account. This means
that the temperature is considered at the modelling level as
if it were an other input. This is therefore a simple example
that shows the ability to parameterise the RBF nets. The most
simple identity equation is

y(k) = Is

(
e

qUin
kT − 1

)
, (23)

whereUin denotes the input voltage,k andqstand for the
Boltzmann constant and the elementary charge.Is is the
saturation current and for simulation purposesIs was fixed
to 5·10−3 A. During the training, the temperature was var-
ied between 18◦C to 33◦C. The training signal, consisting of
1000 values, had a sine-shaped course and formed, in combi-
nation with the temperature, the two-dimensional regressor.
For conclusive testing, four characteristic curves were sim-
ulated for 21◦C, 24◦C, 27◦C und 30◦C (Fig. 5). The mean
square error is in the order of magnitude 10−6.

6 Conclusions

In this paper it was explained how a MIMO RBF net can be
generated by means of the K-Means cluster algorithm and
the extended Kalman filter. It became apparent that it is pos-
sible to model physical parameters in the same fashion. To
achieve a noticeable gain in speed, the systems to be mod-
elled must be substantially more complex. Nevertheless, it
was shown that the RBF nets are able to carry out precise and
fast system-level simulations. The future efforts will concen-
trate on the application of the findings in a industrial envi-
ronment.
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