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Abstract. Human locomotion consists of a complex move-
ment of various parts of the body. The reflections generated
by body parts with different relative velocities result in dif-
ferent Doppler shifts which can be detected as a superposi-
tion with a Continuous-Wave (CW) Radar. A time-frequency
transform like the short-time Fourier transform (STFT) of the
radar signal allows a representation of the signal in both time-
and frequency domain (spectrogram). It can be shown that
even during one gait cycle the velocity of the torso, which
constitutes the major part of the reflection, is not constant.
Further a smaller portion of the signal is reflected from the
legs. The velocity of the legs varies in a wide range from
zero (foot is on the ground) to a velocity which is higher
than that of the torso. The two dominant parameters which
characterise the human gait are the step rate and the mean
velocity. Both parameters can be deduced from suitable por-
tions of the spectrogram. The statistical evaluation of the
two parameters has the potential to be included for discrimi-
nation purposes either between different persons or between
humans and other moving objects.

1 Human gait analysis

The human gait was investigated for a long time beginning in
the nineteenths century under scientific considerations. With
the upcoming improvements in photography it was possible
to analyse the movement of different body parts with a se-
ries of pictures. In our days the photo camera was replaced
by a CCD camera and with several viewpoints from differ-
ent angles it is possible to extract 3-dimensional data of the
scene. A model which used such a motion capture system
has been developed byZonghua and Troje(2004). To get pe-
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1 Human Gait Analysis

The human gait was investigated for a long time beginning in
the nineteenths century under scientific considerations. With
the upcoming improvements in photography it was possible
to analyse the movement of different body parts with a series
of pictures. In our days the photo camera was replaced by a
CCD camera and with several viewpoints from different an-
gles it is possible to extract 3-dimensional data of the scene.
A model which used such a motion capture system has been
developed by Zonghua and Troje (2004). To get periodic data
the test persons were placed on a treadmill. For identification

Correspondence to: C. Hornsteiner
(christoph.hornsteiner@tum.de)

of different body parts for the later processing each persons
wore 15 reflective markers (s. Figure 1). The 3-dimensional
position was then expressed in a Fourier series

p(t) = p0 + p1 sin(ωt) + q1 cos(ωt)+

+ p2 sin(2ωt) + q2 cos(2ωt)
(1)

for each coordinate axisx, y andz.With this representation it
is easily possible to look at the process from every viewpoint.
To get a velocity representation of the movement equation
(1) has to be derived. This can be done either analytically
by taking the derivative from each summand or numerically
by taking the derivative of the discretised time data ofp(t).
The largest velocity components arise in the direction of lo-
comotion. Therefore, this direction is of main interest for
the measurement with a radar sensor. The obtained velocity
over time for all 15 marker points is displayed in Figure 2.
Although the treadmill is running with constant velocity, the
velocity of the torso is not constant. It is changing nearly si-
nusoidal with the step frequency. The highest velocities are

Fig. 1. Gait model of Zonghua and Troje (2004) with 15 pointsFig. 1. Gait model ofZonghua and Troje(2004) with 15 points.

riodic data the test persons were placed on a treadmill. For
identification of different body parts for the later processing
each persons wore 15 reflective markers (s. Fig.1). The 3-
dimensional position was then expressed in a Fourier series

p(t) = p0 + p1 sin(ωt) + q1 cos(ωt)+

+ p2 sin(2ωt) + q2 cos(2ωt)
(1)

for each coordinate axisx, y and z. With this representa-
tion it is easily possible to look at the process from every
viewpoint. To get a velocity representation of the movement
Eq. (1) has to be derived. This can be done either analytically
by taking the derivative from each summand or numerically
by taking the derivative of the discretised time data ofp(t).
The largest velocity components arise in the direction of lo-
comotion. Therefore, this direction is of main interest for
the measurement with a radar sensor. The obtained veloc-
ity over time for all 15 marker points is displayed in Fig.2.
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expectedly observed from the legs. While one leg attains its
maximum velocity the other is in its minimum. The velocity
contribution of the knees and arms lies in between torso and
legs.

2 Doppler Radar

For the measurements a CW-Radar at a carrier frequency of
24 GHz was used. With the Doppler formula

fD = 2fc

v

c
(2)

it can be seen that velocityv is proportional to the measured
frequencyfD. Because of increasing Doppler frequencies
fD with increasing carrier frequencyfc at constant velocity,
the choice of a high carrier frequency leads to a better veloc-
ity resolution for a constant time interval. The basic block
diagram of the radar sensor can be seen in Figure 3. With
the use of a I/Q-demodulation it is possible to discriminate
between positive and negative frequencies and therefore be-
tween approach and receding motion. A spectral transform
is used to derive the frequency and so the velocity. By doing
this with the complete time signal the best frequency resolu-
tion is obtained giving no time resolution. In the short-time
Fourier transform (STFT) only parts of the signal are trans-
formed to frequency domain subsequently applying a win-
dowing functionw(t) which is moved over the time signal
x(t).

STFT (τ, f) =

+∞∫

−∞

x(t) · w(t − τ) · exp(−j2πft)dt

The so called spectrogram are the absolute values of the
STFT displayed on a logarithmic scale.
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Fig. 2. Velocity in the direction of locomotion of all 15 markers
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Fig. 3. Block diagram of a CW-Radar with I/Q-Demodulation
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Fig. 4. Spectrogram of a walking person (window length 128 ms)

3 Feature Extraction

The spectrogram of a measured motion can be seen in Figure
4. The spectral amplitude corresponds to the radar cross sec-
tion of the moving parts. The main contribution (A) comes
from the torso, but since it is non-rigid there is no distinctline
but a spectral spread. The contribution of the legs (B) is much
smaller but it can be seen that it is still above noise level. The
visible velocity response of the legs is in accordance to the
model. Lower frequency components occur while one foot
is on the ground and the other reaches its maximum. The
velocity of the torso movement (A) may be detected by tak-
ing the frequency at which the maximum amplitude occurs.
Due to the spectral spread this curve will include errors if the
detected velocity is not identical to the mean velocity of the
torso. The spectral components of the moving legs (B) above
the torso are surrounded mostly by noise. Detection of signal
above noise level is the standard process in signal theory. The
resulting velocity patterns for torso and legs are displayed in
Figure 5. In both graphs the step frequency is visible. The

Fig. 2. Velocity in the direction of locomotion of all 15 markers
over time.
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Fig. 3. Block diagram of a CW-Radar with I/Q-Demodulation.

Although the treadmill is running with constant velocity, the
velocity of the torso is not constant. It is changing nearly si-
nusoidal with the step frequency. The highest velocities are
expectedly observed from the legs. While one leg attains its
maximum velocity the other is in its minimum. The velocity
contribution of the knees and arms lies in between torso and
legs.

2 Doppler radar

For the measurements a CW-Radar at a carrier frequency of
24 GHz was used. With the Doppler formula

fD = 2fc

v

c
(2)

it can be seen that velocityv is proportional to the measured
frequencyfD. Because of increasing Doppler frequencies
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fD with increasing carrier frequencyfc at constant velocity,
the choice of a high carrier frequency leads to a better veloc-
ity resolution for a constant time interval. The basic block di-
agram of the radar sensor can be seen in Fig.3. With the use
of a I/Q-demodulation it is possible to discriminate between
positive and negative frequencies and therefore between ap-
proach and receding motion. A spectral transform is used to
derive the frequency and so the velocity. By doing this with
the complete time signal the best frequency resolution is ob-
tained giving no time resolution. In the short-time Fourier
transform (STFT) only parts of the signal are transformed to
frequency domain subsequently applying a windowing func-
tion w(t) which is moved over the time signalx(t).

STFT(τ, f ) =

+∞∫
−∞

x(t) · w(t − τ) · exp(−j2πf t)dt

The so called spectrogram are the absolute values of the
STFT displayed on a logarithmic scale.

3 Feature extraction

The spectrogram of a measured motion can be seen in Fig.4.
The spectral amplitude corresponds to the radar cross section
of the moving parts. The main contribution (A) comes from
the torso, but since it is non-rigid there is no distinct line but
a spectral spread. The contribution of the legs (B) is much
smaller but it can be seen that it is still above noise level. The
visible velocity response of the legs is in accordance to the
model. Lower frequency components occur while one foot
is on the ground and the other reaches its maximum. The
velocity of the torso movement (A) may be detected by tak-
ing the frequency at which the maximum amplitude occurs.
Due to the spectral spread this curve will include errors if the
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legs with a high velocity deviation and the torso with lower
velocity deviation and also visible error. For the robust de-
tection of periodic oscillations it will be changed from time
domain to frequency domain. To avoid low frequency com-
ponents from acceleration process a high pass filter is applied
to the signal. The resulting spectrum is shown in Figure 6.
As expected the magnitude at the step frequency of 1.3 Hz is
for the legs more than 10 dB higher than those of the torso.
Consequently the leg movement will be used for further eval-
uation.

4 Statistical Evaluation

Due to the periodic nature the step frequency is a feature can-
didate for a statistical evaluation. Because of known depen-
dencies between step frequency and velocity for human gait,
it is expected to be useful to combine these both features.
Other objects which also produce a Doppler spectrum will
not show these dependencies and should not be localized in
the feature space. For discrimination two classes are created
with class one including all walking persons and class two in-
cluding all other objects. Class one consists of 74 data points
and class two of 108 data points. The scatter plot shows a
localisation of class one which makes it possible to separate
both classes. The easiest way to do this is to construct a
linear separation boundary using methods of linear discrim-
ination analysis. The scatterplot with the decision boundary
can be seen in Figure 7 and the resulting confusion matrix
in Table 1. The resubstitution misclassification rate with this
trained classifier is 16.5%. The linear classifier is not ableto
discriminate between points of class two lying below the lo-
calized class one. This can be improved by the construction
of a nonlinear classifier. A widely used method to do this is
the use of support vector machines (SVM). The nonlinearity
is obtained with the use of nonlinear kernel functions. The
kernel functions used here were radial basis functions. The
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I II
I 0.385 0.143
II 0.022 0.450

Table 1. Confusion matrix with actual classes (I: Person, II: Other
object) as columns and predicted classes as rows for linear discrim-
ination

resulting decision boundary with this classifier can be seenin
Figure 8 and in Table 2 the associated confusion matrix. With
this classifier the resubstitution misclassification rate sinks to
11%.

5 Summary

The movement of different body parts can be made visible
with a short-time Fourier transform of a CW radar signal.
From this display it is possible to extract different velocity
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detected velocity is not identical to the mean velocity of the
torso.

The spectral components of the moving legs (B) above the
torso are surrounded mostly by noise. Detection of signal
above noise level is the standard process in signal theory. The
resulting velocity patterns for torso and legs are displayed in
Fig. 5. In both graphs the step frequency is visible. The legs
with a high velocity deviation and the torso with lower veloc-
ity deviation and also visible error. For the robust detection
of periodic oscillations it will be changed from time domain
to frequency domain. To avoid low frequency components
from acceleration process a high pass filter is applied to the
signal. The resulting spectrum is shown in Fig.6. As ex-
pected the magnitude at the step frequency of 1.3 Hz is for
the legs more than 10 dB higher than those of the torso. Con-
sequently the leg movement will be used for further evalua-
tion.
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Table 1. Confusion matrix with actual classes (I: Person, II: Other
object) as columns and predicted classes as rows for linear discrim-
ination.

I II

I 0.385 0.143
II 0.022 0.450

4 Statistical evaluation

Due to the periodic nature the step frequency is a feature can-
didate for a statistical evaluation. Because of known depen-
dencies between step frequency and velocity for human gait,
it is expected to be useful to combine these both features.
Other objects which also produce a Doppler spectrum will
not show these dependencies and should not be localized in
the feature space. For discrimination two classes are created
with class one including all walking persons and class two in-
cluding all other objects. Class one consists of 74 data points
and class two of 108 data points. The scatter plot shows a
localisation of class one which makes it possible to separate
both classes. The easiest way to do this is to construct a
linear separation boundary using methods of linear discrim-
ination analysis. The scatterplot with the decision boundary
can be seen in Fig.7 and the resulting confusion matrix in
Table 1. The resubstitution misclassification rate with this
trained classifier is 16.5%. The linear classifier is not able to
discriminate between points of class two lying below the lo-
calized class one. This can be improved by the construction
of a nonlinear classifier. A widely used method to do this is
the use of support vector machines (SVM). The nonlinearity
is obtained with the use of nonlinear kernel functions. The
kernel functions used here were radial basis functions. The
resulting decision boundary with this classifier can be seen in
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curves. The main parameters describing the human gait are
step rate and mean velocity which could be obtained from
this curves. The two dimensional scatter plot of these two
features shows the possibility to discriminate between human
gait and other objects. This discrimination was first done bya
linear classifier and then improved with a nonlinear classifier
using support vector machines.
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Fig. 8. Scatterplot with nonlinear decision boundary

I II
I 0.385 0.088
II 0.022 0.505

Table 2. Confusion matrix with actual classes (I: Person, II: Other
object) as columns and predicted classes as rows for discrimination
with SVM

Fig. 8. Scatterplot with nonlinear decision boundary.

Table 2. Confusion matrix with actual classes (I: Person, II: Other
object) as columns and predicted classes as rows for discrimination
with SVM.

I II

I 0.385 0.088
II 0.022 0.505

Fig. 8 and in Table2 the associated confusion matrix. With
this classifier the resubstitution misclassification rate sinks to
11%.

5 Summary

The movement of different body parts can be made visible
with a short-time Fourier transform of a CW radar signal.
From this display it is possible to extract different velocity
curves. The main parameters describing the human gait are
step rate and mean velocity which could be obtained from
this curves. The two dimensional scatter plot of these two
features shows the possibility to discriminate between human
gait and other objects. This discrimination was first done by a
linear classifier and then improved with a nonlinear classifier
using support vector machines.
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