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Abstract. Today Discrete Fourier Transforms (DFTs) are ap-
plied in various radio standards based on OFDM (Orthogonal
Frequency Division Multiplex). It is important to gain a fast
computational speed for the DFT, which is usually achieved
by using specialized Fast Fourier Transform (FFT) engines.
However, in face of the Software Defined Radio (SDR) de-
velopment, more general (parallel) processor architectures
are often desirable, which are not tailored to FFT compu-
tations. Therefore, alternative approaches are required to
reduce the complexity of the DFT. Starting from a matrix-
vector based description of the FFT idea, we will present dif-
ferent factorizations of the DFT matrix, which allow a reduc-
tion of the complexity that lies between the original DFT and
the minimum FFT complexity. The computational complexi-
ties of these factorizations and their suitability for implemen-
tation on different processor architectures are investigated.

1 Introduction

Recently multi-carrier modulation techniques, such as
OFDM, have received great attention in high-speed data
communication systems and have been selected for several
communication standards (e.g. WLAN, DVB and WiMax).
A central baseband signal processing task required in OFDM
transceivers is the Fourier transform of the received data,
which is generally realized as FFT (Cooley, 1965). To meet
the real-time processing requirements, various specialized
FFT processors have been proposed (Son, 2002). On the
other hand Software Defined Radio (SDR) approaches for
mobile terminals are gaining momentum (Dillinger, 2003).
To meet the demand for high computing power and flexi-
bility, specific reconfigurable accelerators (Heyne, 2004) or
parallel processor architectures (Berthold, 2004) are used.
The DFT can be implemented as FFT, which defines the
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optimum in terms of mathematical complexity, but as the
used architectures are not necessarily optimized for butterfly
structures, the question arises: Are there any efficient pro-
cedures, which reduce the computational complexity of the
DFT significantly (as far as possible to the FFT complex-
ity), but at the same time are more tailor-made to specific
hardware architectures than the FFT?. In this paper a matrix-
vector based formulation of the FFT algorithm (Van Loan,
1992) is derived from the respective matrix factorizations of
the DFT matrix. Due to the structure of the butterfly matrices
and the matrix factorizations, the matrix-vector based FFT
allows several separations of the resulting matrix product.
These separations have an increased computational complex-
ity compared to the FFT, but because of their mathematical
structure they allow more flexible implementations on dif-
ferent architectures (e.g. multi processors, vector processors,
accelerated systems). The paper is organized as follows: In
Sect.2 we will clarify the definition and notation of the DFT.
A short repetition of the FFT idea and the corresponding fac-
torization is described in Sect.3. Then, in Sect.4 differ-
ent separations of the butterfly matrices are presented, which
lead to different algorithmic structures and different compu-
tational complexities. Implementation issues of these separa-
tions and their suitability for different hardware architectures
are discussed. Conclusions are given in Sect.5.

2 Discrete Fourier Transform (DFT)

The sequence ofN (with N=2m, m∈ N) complex numbers
x1, · · ·, xN is transformed into the sequence ofN complex
numbersy1, · · ·, yN by the DFT according to

yt =

N∑
n=1

xnw
(t−1)(n−1)
N , t = 1, · · · , N, (1)

where wN=e−j 2π
N is a primitive N -th root of the unity.

The DFT can also be formulated as a matrix vector prod-
uct (Van Loan, 1992). With xN=[x1· · ·xN ]

T
∈ CN and

yN=[y1· · ·yN ]
T

∈ CN , the DFT can be described as matrix
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vector productyN=FN ·xN , whereFN ∈ CN×N is the DFT-
Matrix with elementsfnt=w

(t−1)·(n−1)
N andn, t=1, · · ·, N .

3 Matrix-vector based FFT

To give a repetition of the known radix-2 FFT algo-
rithms (Cooley, 1965), this section will show the connection
between the matrixFN and the matrixFN/2, which enables
us to compute anN -point DFT from a pair of (N/2)-point
DFTs. To transfer the FFT idea to the DFT matrix, we in-
troduce a so-called permutation matrixPN of size(N×N),
which performs an odd-even ordering of the rows (multiplied
from the left withPN ) or columns (multiplied from the right
with PT

N ) of a matrix. FurthermorePT
N ·PN=IN holds. The

following factorizations and separations are shown for the
decimation in time (DIT) FFT. They can be easily transferred
to the decimation in frequency (DIF) FFT.

3.1 FFT-Matrix decomposition

Applying PT
N to the right of the DFT-matrixFN yields

F′

N = FN · PT
N =

F N
2

D N
2

· F N
2

F N
2

−D N
2

· F N
2

 . (2)

The resulting productF′

N has the following structure: The
odd indexed columns, forming the left half ofF′

N , are com-
posed ofFN/2, while the even indexed columns, form-
ing the right half ofF′

N , are composed ofDN/2·FN/2 and
−DN/2·FN/2. This matrix can be decomposed into the prod-
uct of two matrices (as shown in Eq.3),

F′

N =

 I N
2

D N
2

I N
2

−D N
2

 ·

F N
2

0

0 FN
2

 (3)

whereDN/2 is a diagonal matrix with elementsdnn=w
(n−1)
N

andn=1, · · ·, N/2. The first matrix represents FFT butterfly
operations, while the second matrix contains two indepen-
dent DFTs of lengthN/2. Note that the second matrix is a
block diagonal matrix.

3.2 Matrix-Vector based computation of the FFT

To apply the modified DFTF′

N to an input vectorxN , a per-
mutation ofxN is required, i.e.

PN · xN = [xoxe]
T , (4)

with xo ∈ C
N
2 the odd andxe ∈ C

N
2 the even indexed part of

xN . Introducingy1, y2 ∈ C
N
2 we can formulate the DFT as

follows:

yN =

[
y1
y2

]
= FN · xN = FN · PT

N · PN︸ ︷︷ ︸
IN

·xN (5)

=

 I N
2

D N
2

I N
2

−D N
2


F N

2
0

0 FN
2

 ·

xo

xe


Usingyo=F N

2
·xo andye=F N

2
·xe we obtain:

y1 = yo + D N
2

· ye = yo + d N
2

· ∗ye (6)

y2 = yo − D N
2

· ye = yo − d N
2

· ∗ye. (7)

With d N
2

the vectorized diagonal ofD N
2

, with (·∗) the
component-wise vector multiplication and taking into ac-
count that the two products are identical, Eq. (6) and Eq. (7)
need altogetherN2 multiplications and 2· N

2 additions. It is
easy to see that a DFT of sizeN can be executed by two
DFTs of sizeN

2 . ForN=2m this process can be recursively
repeatedm= log2 N times. The required number of oper-
ations then will beN

2 log2 N multiplications andN log2 N

additions, which represents the complexity of the FFT.

3.3 Factorization of the DFT matrix

To obtain alternative factorizations of the DFT matrix, the
number of recursions described in the previous section can be
modified. Introducing a new parameterk we can define the
number of performed recursions asm−k with N=2m giving
the size of the initial DFT matrix. For arbitrarym andk the
resulting block submatrices inFB are of size(2k

×2k) and
can be executed as independent DFTs (or FFTs). Because the
length of the input vectorxN is given byN=2m the number
of block submatrices equals 2m/2k

=2m−k. After calculating
2m−k independent DFTs,m−k butterfly matricesBi have to
be applied to finish the calculation. The entire DFT is then
given as

yN = Bm−k · Bm−k−1 · · · B1 · FB · xP , (8)

with xp the(m−k)-times permuted input vectorxN . An ex-
ample form=4 andk=2 is given below.
Example 1:

yN =

⎡
⎣ I8 D8

I8 −D8

⎤
⎦

︸ ︷︷ ︸
B2

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I4 D4 0 0

I4 −D4 0 0

0 0 I4 D4

0 0 I4 −D4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B1

·

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

F N
4

0 0 0

0 F N
4

0 0

0 0 F N
4

0

0 0 0 F N
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
FB

·xp
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3.4 Construction of butterfly matrices

Increasing the order of recursionm−k will also increase the
number of butterfly matricesBi . While the independent DFT
submatrices inFB can be processed independently, the but-
terfly matrices can be treated in different ways:

·As sequence of matrix multiplications

m−k−1∏
i=0

Bm−k−i

·As one matrix multiplication with the butterfly product ma-
trix

B =

m−k−1∏
i=0

Bm−k−i

·As partly combined matrix multiplication with the products

p1∏
i=0

Bm−k−i

p2∏
i=p1−1

Bm−k−i

m−k−1∏
i=pr−1

Bm−k−i

with arbitrarily chosen integer numbersp fulfilling
(1<p1<p2<. . .<pr<m − k).

Example 2: The following example illustrates the con-
struction of the butterfly matrices. For the given parameters
m=8 andk=4 already 2m−k

=24
=16 small DFTs are exe-

cuted byFB . The structure of the remaining butterfly matri-
cesBi is depicted in Fig.1 on the left hand side (non-zero
elements are depicted as lines). The product of the butterfly
matrices for increasingi is shown on the right hand side. The
matrices are all of dimension 28

× 28, the variablenz in the
figure shows the number of non-zero elements. Focusing on
the butterfly product matrix in the bottom right, we can find
that onlynz=4096 of all 28 · 28

=65536 elements are non-
zero. This means, every 16-th diagonal of the butterfly prod-
uct matrix is non-zero, since the other multiplications have
already been performed by the block diagonal matrixFB . In
general, every 2k-th diagonal is non-zero, which means, that
the interspace will be enlarged with increasingk.

4 Implementation

In this section we will compare different separations of the
butterfly matrix in terms of complexity and implementation
issues.

4.1 Complexity

The application of the DFT matrix requires(N − 1)·(N − 1)

multiplications, i.e. the product of all rows and columns, ex-
cept the first row/column, which is all ones:

MDFT = N2
− 2N + 1 = 2m

· 2m
− 2 · 2m

+ 1.
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Fig. 1. The single butterfly matricesBi on the left hand side; their
products on the right hand side.
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all ones:

MDFT = N2 − 2N + 1 = 2m · 2m − 2 · 2m + 1.

The FFT is based on butterfly operations, which require
N/2 = 2m−1 multiplications each (see section 3.2). Since
we havem butterfly matrices, we obtain:

MFFT = m · 2m−1 =
N

2
log2 N.

In the following we will examine the complexity of four dif-
ferent separations, which we expect to lie betweenMDFT

andMFFT .
Separation A.We use (Bm−k · · ·B1 ·FB), where the sub-

matrices ofFB are executed as independent DFTs and the
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The FFT is based on butterfly operations, which require
N/2=2m−1 multiplications each (see Sect.3.2). Since we
havem butterfly matrices, we obtain:

MFFT = m · 2m−1
=

N

2
log2 N.

In the following we will examine the complexity of four dif-
ferent separations, which we expect to lie betweenMDFT and
MFFT.

Separation A. We use (Bm−k· · ·B1·FB ), where the sub-
matrices ofFB are executed as independent DFTs and the
butterfly matrices are separately executed one by one. The
number of the DFT blocks inFB is 2m−k and each DFT needs
2k

·2k
−2·2k

+1 multiplications. The number of butterfly ma-
trices ism−k and each butterfly needs 2m−1 multiplications.
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This leads to

MA = (m − k) · 2m−1
+ (2k

· 2k
− 2 · 2k

+ 1) · 2m−k.

Separation B.We useB·FB , where the submatrices ofFB

are still executed as independent DFTs, andB is the but-
terfly product matrix. Since only every 2k-th diagonal is
occupied, the number of required multiplications forB is
(2m

− 1)·(2m

2k − 1). The number of multiplications forFB

is identical to separation A , such that

MB = (2m
− 1) · (

2m

2k
− 1) + (2k

· 2k
− 2 · 2k

+ 1) · 2m−k.

Separation C. We again useB·FB , but now the subma-
trices of FB are executed as independent FFTs. There are
k·2k−1 multiplications required for each FFT, and totally
there are 2m−k FFT blocks, so the number of multiplications
is given as

MC = (2m
− 1) · (

2m

2k
− 1) + k · 2k−1

· 2m−k.

Separation D. A special case of separation C is separa-
tion D, which describes a partly parallel implementation of
the original FFT for the casek=m/2. The factorization is
given as

yN = Pl · FB · W · Pr · FB · xp, (9)

with W a twiddle factor diagonal matrix andPl andPr per-
mutation matrices that sort the rows and columns of a matrix,
such thatPl ·FB ·W·Pr=B is the butterfly product matrix. To
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butterfly matrices are separately executed one by one. The
number of the DFT blocks inFB is 2m−k and each DFT
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butterfly matrices ism − k and each butterfly needs2m−1
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MA = (m − k) · 2m−1 + (2k · 2k − 2 · 2k + 1) · 2m−k.

Separation B.We useB · FB , where the submatrices of
FB are still executed as independent DFTs, andB is the
butterfly product matrix. Since only every2k-th diagonal is
occupied, the number of required multiplications forB is
(2m − 1) · ( 2m

2k − 1). The number of multiplications forFB

is identical to separation A , such that

MB = (2m − 1) · (
2m

2k
− 1) + (2k · 2k − 2 · 2k + 1) · 2m−k.

Separation C.We again useB · FB , but now the subma-
trices ofFB are executed as independent FFTs. There are
k · 2k−1 multiplications required for each FFT, and totally
there are2m−k FFT blocks, so the number of multiplications
is given as

MC = (2m − 1) · (
2m

2k
− 1) + k · 2k−1 · 2m−k.
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D, which describes a partly parallel implementation of the
original FFT for the casek = m/2. The factorization is
given as

yN = Pl · FB · W · Pr · FB · xp, (9)

with W a twiddle factor diagonal matrix andPl andPr per-
mutation matrices that sort the rows and columns of a matrix,
such thatPl ·FB ·W·Pr = B is the butterfly product matrix.
To clarify this, an example is given in Figure 2 form = 4 and
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Fig. 4. Matrix-vector processor based implementation structure.

example 2, with the butterfly product matrixB on the left
and the block FFT matrixFB on the right hand side. By
sorting rows and columns ofB we can transform the sparse
diagonal matrixB to a block diagonal matrix, as shown in
b). This leads to a matrix based notation of the Jeon-Reeves
FFT algorithms [Jeon (1986)]. As the blocks (B′

1, · · · ,B′

4)
are not identical, constant twiddle factors are extracted from
the matrices, which transfers the block submatrices to DFT
matrices, like shown in c). The extracted twiddle factors are
collected inW.
The computational complexity of this separation is deter-
mined by the number of FFTs (2 · 2k) and the additional
twiddle factor multiplications (N = 2m):

MD = 2 · 2k · k · 2k−1 + 2m = 2m(1 + m/2) (10)

The number of required multiplications for separations A-D
are gi-ven in Figure 3 form = 8 and varyingk as multiples
of MFFT . The upper bound is defined by the DFT complex-
ity, the lower bound shows the FFT complexity. Note that
separation D is only defined fork = m/2 = 4.

4.2 Implementation Issues

Here we will discuss possible implementations of the pre-
sented separations on different hardware architectures. The
discussion is of a qualitative character, i.e. implementation
details like memory access, interconnection complexity or
inter processor communication time are not considered here.

Separation A. Matrix-vector processors as special kind
of SIMD (Single Instruction Multiple Data) architectures are
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clarify this, an example is given in Fig.2 for m=4 andk=2.
Example 3: In a) we can see the graphical representation
of example 2, with the butterfly product matrixB on the left
and the block FFT matrixFB on the right hand side. By
sorting rows and columns ofB we can transform the sparse
diagonal matrixB to a block diagonal matrix, as shown in
b). This leads to a matrix based notation of the Jeon-Reeves
FFT algorithms (Jeon(1986)). As the blocks (B′

1, · · ·, B′

4)
are not identical, constant twiddle factors are extracted from
the matrices, which transfers the block submatrices to DFT
matrices, like shown in c). The extracted twiddle factors are
collected inW. The computational complexity of this sep-
aration is determined by the number of FFTs (2·2k) and the
additional twiddle factor multiplications (N=2m):

MD = 2 · 2k
· k · 2k−1

+ 2m
= 2m(1 + m/2) (10)

The number of required multiplications for separations A–D
are given in Fig.3 for m=8 and varyingk as multiples of
MFFT. The upper bound is defined by the DFT complexity,
the lower bound shows the FFT complexity. Note that sepa-
ration D is only defined fork=m/2=4.

4.2 Implementation issues

Here we will discuss possible implementations of the pre-
sented separations on different hardware architectures. The
discussion is of a qualitative character, i.e. implementation
details like memory access, interconnection complexity or
inter processor communication time are not considered here.

Separation A. Matrix-vector processors as special kind
of SIMD (Single Instruction Multiple Data) architectures are
discussed as possible platforms for SDR (Schoenes(2003)).
As an example we will show an implementation of sepa-
ration A using a general systolic array structure for matrix
multiplications, like depicted in Fig.4. With m=5 andk=2
we have to perform 8 DFTs of length 4 inFB . To obtain
the matrix-matrix structure we separate the input vectorxp
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into 8 parts (x1, x2, · · ·, x8) of length 4, which means that
all F4·xj with j=1, ..., 8 can be calculated independently.
The multiple matrix-vector products can then be described
as matrix-matrix productF4·Xp with Xp=[x1 x2·x8]. The
remaining butterfly operations are performed according to
Eq. (6) and Eq. (7). The even numbered columns of the
productF4·Xp are multiplied component-wise withd4 and
then added/subtracted to the corresponding odd numbered
columns. For example, the second column is multiplied by
d4 and then added/subtracted to the first column, resulting
in the intermediate vectorsy11 andy21 that are stored in the
registers of the first and second column of the processor ar-
ray. In the next step these intermediate results are multiplied
by d8 and added/subtracted to the other intermediate results.
After m − k steps the registers contain the Fourier transform
of x.
The computational complexity for this approach is only
slightly increased for small values ofk (compare Fig.3), but
a high speed partly parallel Fourier transformation can be re-
alized.

Separation B.For generic matrix-vector architectures the
DFT can be described as simple matrix-vector product using
separation B. In this case the number of required multipli-
cations is increased considerably compared to the FFT, but
nevertheless, it is interesting to see the significant decrease
of the number of multiplications (e.g. fork=3, 4, 5 in Fig.3)
compared to the DFT, just by separating the DFT matrix into
a product of the two matricesB andFB .

Separation C. To match the real time requirements in
SDR systems, general purpose processors are often com-
bined with hardware accelerators, like e.g. for the Fourier
transform. As the flexibility of these accelerators regarding
to the DFT size might be limited, separation C can be used
to map DFTs of any size onto these engines. For example
in a systems with FFT accelerators of size 64 and a required
FFT length of 256 (this corresponds tom=8 andk=6), the
block DFTs inFB can be realized on the accelerators while
the remaining 2 butterfly operations are executed as a sim-
ple matrix vector multiplication on a generic host processor.
This leads to a major flexibility regarding the DFT size of the
used accelerators in context of the required DFT size of the
specific application. Furthermore existing architectures with
fixed length FFT accelerators can be easily reused.
Depending on the difference ofm andk, the mathematical
complexity is increased (compare Fig.3). For the example
the number of required multiplications is increased by a fac-
tor 1.5, but the 4 FFTs of size 64 can be executed in parallel,
if more than one accelerator is available in the system.

Separation D. The FFT proposed by Jeon and Reeves
is especially suitable for multi processor architectures (Jeon
(1986)). However the extraction of the twiddle factors in sep-
aration D also enables the use of homogeneous parallel FFT
cores in an SDR system, as the resulting block submatrices
are all identical. This means an N-point DFT can be sepa-
rated into 2

√
N FFTs of size

√
N . The first

√
N FFTs are
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Fig. 3. Complexities for DFT, FFT and various separations.

butterfly matrices are separately executed one by one. The
number of the DFT blocks inFB is 2m−k and each DFT
needs2k · 2k − 2 · 2k + 1 multiplications. The number of
butterfly matrices ism − k and each butterfly needs2m−1

multiplications. This leads to

MA = (m − k) · 2m−1 + (2k · 2k − 2 · 2k + 1) · 2m−k.

Separation B.We useB · FB , where the submatrices of
FB are still executed as independent DFTs, andB is the
butterfly product matrix. Since only every2k-th diagonal is
occupied, the number of required multiplications forB is
(2m − 1) · ( 2m

2k − 1). The number of multiplications forFB

is identical to separation A , such that

MB = (2m − 1) · (
2m

2k
− 1) + (2k · 2k − 2 · 2k + 1) · 2m−k.

Separation C.We again useB · FB , but now the subma-
trices ofFB are executed as independent FFTs. There are
k · 2k−1 multiplications required for each FFT, and totally
there are2m−k FFT blocks, so the number of multiplications
is given as

MC = (2m − 1) · (
2m

2k
− 1) + k · 2k−1 · 2m−k.

Separation D.A special case of separation C is separation
D, which describes a partly parallel implementation of the
original FFT for the casek = m/2. The factorization is
given as

yN = Pl · FB · W · Pr · FB · xp, (9)

with W a twiddle factor diagonal matrix andPl andPr per-
mutation matrices that sort the rows and columns of a matrix,
such thatPl ·FB ·W·Pr = B is the butterfly product matrix.
To clarify this, an example is given in Figure 2 form = 4 and
k = 2.
Example 3: In a) we can see the graphical representation of

yN
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Fig. 4. Matrix-vector processor based implementation structure.

example 2, with the butterfly product matrixB on the left
and the block FFT matrixFB on the right hand side. By
sorting rows and columns ofB we can transform the sparse
diagonal matrixB to a block diagonal matrix, as shown in
b). This leads to a matrix based notation of the Jeon-Reeves
FFT algorithms [Jeon (1986)]. As the blocks (B′

1, · · · ,B′

4)
are not identical, constant twiddle factors are extracted from
the matrices, which transfers the block submatrices to DFT
matrices, like shown in c). The extracted twiddle factors are
collected inW.
The computational complexity of this separation is deter-
mined by the number of FFTs (2 · 2k) and the additional
twiddle factor multiplications (N = 2m):

MD = 2 · 2k · k · 2k−1 + 2m = 2m(1 + m/2) (10)

The number of required multiplications for separations A-D
are gi-ven in Figure 3 form = 8 and varyingk as multiples
of MFFT . The upper bound is defined by the DFT complex-
ity, the lower bound shows the FFT complexity. Note that
separation D is only defined fork = m/2 = 4.

4.2 Implementation Issues

Here we will discuss possible implementations of the pre-
sented separations on different hardware architectures. The
discussion is of a qualitative character, i.e. implementation
details like memory access, interconnection complexity or
inter processor communication time are not considered here.

Separation A. Matrix-vector processors as special kind
of SIMD (Single Instruction Multiple Data) architectures are

Fig. 4. Matrix-vector processor based implementation structure.

computed using the specialized processor cores, the results
are then permuted and multiplied byW. The remaining

√
N

blocks are again computed using the FFT cores.

5 Conclusions

The presented separations of the DFT matrix provide differ-
ent algorithmic structures, which allow a flexibility in terms
of the used hardware architectures for the implementation
of the DFT. Depending on the architecture, the most suit-
able separation can be chosen, e.g. separation A for matrix
processors or separation C for architectures using FFT hard-
ware accelerators. Depending on the chosen parameters the
computational complexity in terms of multiplications is only
slightly increased, but some architectures may benefit from
the modified algorithmic structure (e.g. addressing, bus com-
munication). The behaviour of the presented separations on
specific existing hardware architectures has yet to be exam-
ined in future work.
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