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Abstract. This paper presents Low Noise Amplifier (LNA)
versions designed for 1.575 GHz L1 Band Global Position-
ing System (GPS) applications. A 0.35µm standard CMOS
process is used for implementation of these design versions.
Different versions are designed to compare the results, an-
alyze some effects and optimize some critical performance
criteria. On-chip inductors with different quality factors and
a slight topology change are utilized to achieve this variety. It
is proven through both on-wafer and on-PCB measurements
that the LNA versions operate at a supply voltage range vary-
ing from 2.1 V to 3.6 V drawing a current of 10 mA and
achieve a gain of 13 dB to 17 dB with a Noise Figure (NF) of
1.5 dB. Input referred 1 dB compression point (ICP) is mea-
sured as−5.5 dBm and−10 dBm for different versions.

1 Introduction

The demand on current GPS applications forces the design of
high performance, low cost L1 frequency band (1.575 GHz
center frequency) receivers. Galileo/GPS combined system
is under development and this will allow the realization of
much higher precision applications (Alvarado et al., 2007).
On the other hand, the Assisted GPS (A-GPS) concept ne-
cessitates the integration of GPS receiver into the mobile
phone requiring improvement in receiver sensitivity, linearity
and power consumption (Bokinge et al., 2006; van Diggelen,
2002). The demand is more intensive on highly integrated,
compact solutions. Therefore, the GPS receiver building
blocks should be convenient for SoC or possibly SiP imple-
mentation with a small amount of off-chip circuit compo-
nents as possible. The target is to design an LNA with an
optimum layout to be integrated in a receiver chip. The input
and output of LNA is optimized for 50� terminations mak-
ing it suitable for integration into heterodyne receiver struc-
tures with external Image Reject Filter. A block diagram of
a possible application is depicted in Fig. 1.
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LNA is a critical building block on the received signal
path. Important parameters of the performance of a receiver
such as Noise Figure (NF), input impedance matching, re-
verse isolation, stability and linearity performance are mainly
determined by the LNA (Razavi, 1998). The circuit topology
and component selections to improve LNA performance in
one criterion do not usually work in favor of all other per-
formance criteria. Thus, a compromise is to be done during
the decision for circuit topology and components. One of the
performance criteria may take the priority depending on the
application needs. Different versions are designed for this
purpose through utilizing different Q on-chip inductors and
a slight topology change. A highly integrated solution im-
plemented in a standard CMOS technology with lower mask
costs is a critical design target.

Different versions of LNA are designed and fabricated
with a 0.35µm standard CMOS technology and measure-
ments are performed on-wafer and on-PCB. The design pro-
cedure and experimental results with comparisons are pre-
sented in this paper.

2 LNA circuit design

As mentioned in the introduction part, the NF of LNA has
the most critical effect on the overall NF of the system. In
order to have an overall NF of less than 2 dB for high pre-
cision GPS applications, the LNA NF should be kept well
below 1.5 dB. 1.2 dB NF for the impedance-matched LNA
in package could relax the noise requirements of cascaded
components. A summary of the requirements are given in
Table 1.

Different topologies are considered to achieve the perfor-
mance targets. The LNA should provide sufficient gain at
a bandwidth of 20.46 MHz for GPS L1 band applications.
An amplifier topology with an inductive-capacitive load can
achieve this requirement. Furthermore such a load selection
keeps the NF at a low level. An ideal LNA should provide
isolation of the signals at the input and output very well. The
parasitic signals at the output of the LNA should not cou-
ple to the LNA input, possibly resulting in parasitic signal
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Table 1. Target requirements.

Supply voltage 2.1 V . . . 3.6 V
Supply current 10 mA
Center frequency 1.575 GHz
Input/output impedance 50�
S11, S22 <−10 dB
S21 >15 dB
S12 <−25 dB
NF <1.5 dB
ICP −10 dBm
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Figure 1: Integration of LNA in a GPS Receiver 
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Different versions of LNA are designed and fabricated 

with a 0.35 µm standard CMOS technology and meas-

urements are performed on-wafer and on-PCB.  The 

design procedure and experimental results with com-

parisons are presented in this paper.  
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As mentioned in the introduction part, the NF of LNA 
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system.  In order to have an overall NF of less than 

2 dB for high precision GPS applications, the LNA 

NF should be kept well below 1.5 dB.  1.2 dB NF for 

the impedance-matched LNA in package could relax 
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summary of the requirements are given in Table 1. 

Table 1: Target Requirements 

Supply Voltage 2.1 V … 3.6 V 

Supply Current 10 mA 

Center Frequency 1.575 GHz 

Input/Output Impedance 50 Ω 

S11,S22 < -10 dB 

S21 > 15 dB 
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Fig. 1. Integration of LNA in a GPS receiver.

transmissions from the antenna. This performance specifi-
cation can be optimized through minimizing S12 parameter
of the LNA. This attenuation in the reverse signal path, in
other words reverse isolation is very critical for the overall
receiver performance as well. In addition to this fact, a low
S12 value provides the stable operation of an LNA. As well
as providing reverse isolation and stability which are very
critical, good isolation of input and output stage of the LNA
brings the advantage of treating input and output impedance
matching separately, performing some changes at the input
stage of LNA for better impedance matching does not disturb
the impedance seen at the output drastically. Using a cas-
code amplifier topology provides adequate reverse isolation
and stability. The inductive degeneration topology provides
the amplifier to achieve real input impedance. This is critical
for input impedance matching with 50�. Regarding these
considerations, an amplifier topology with cascode n-MOS
transistors, inductive capacitive load and a source degenera-
tion inductor is selected for core circuit of LNA. This circuit
is depicted in Fig. 2.

The inductive source degeneration proves good results
when input impedance matching is considered. It provides
creating a resistive part in addition to the reactive part seen
at the gate of the input n-MOS transistor. This fact can be
mathematically expressed with the following Eq. (1) where
Cgs is the gate-source capacitance of input transistor M1 and
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gm is its transconductance.
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It is a hard task to fix the input impedance exactly to 50�

using only a degeneration inductor. Trying to increase the
transconductance through increasing the width of the tran-
sistor does not help to improve the resistive part of in-
put impedance. In addition, the possibility of increasing
transconductance through increasing the current is also lim-
ited since there is a maximum limit for the current consump-
tion. Increasing the value ofLs helps to increase the resis-
tive part of impedance, however, when small signal analysis
is considered, it is obvious that increasing the source degen-
eration inductance results in lower gain. Due to technology
and design limitations, the real part is lower than required
50�. There is also a capacitive part of input impedance. To
balance this and achieve a good input matching, an inductor
should be placed on the signal path prior to the gate of input
transistor. The Noise Figure considerations indicate that an
inductor on the signal path should have a high quality fac-
tor in order to contribute less to the NF. On-chip inductors
do not have a high enough quality factor for this application
in the circuit with the given technology. Due to these facts,
the inductor used for matching (Lmatch) is implemented as a
high Q off-chip component. The bond wire inductance, ef-
fect of package and PCB parasitic circuit elements should
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As long as there is a good input matching, the LNA 

can be treated as a voltage amplifier for noise calcula-

tions and its noise factor F can be taken into consid-
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This assumption is valid as long as the resonance of 

amplifier with the input circuit is achieved and 0w is 

the resonant frequency.  The resonant frequency 
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should be achieved for a better noise performance.  
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Lmatch are decided through a set of simulations to op-

timize noise parameters.  The simulation results for 

the sources of noise in the LNA circuit are shown in 

the following diagram.  The contribution of input tran-

sistor thermal noise and noise due to resistances on 

signal path can be compared. 

 

The noise model for on-chip components and the es-

timated series resistance for off-chip discrete matching 

inductor are used for this simulation.  It can be con-

cluded that using an on-chip inductor instead would 

have contributed much more on the overall NF. 
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mentation, the inductor modeling should be completed 

before the necessary simulations.  The inductor values 

and their quality factors should be known and the 

parasitic extractions should be performed.  The load 

inductor resonates with two capacitances and maxi-

mizes the gain at a resonant frequency.  The output 

impedance seen at this frequency is ideally only resis-

tive and 50 Ω for a good matching at the output.  The 

capacitors, C2  & C3 have much higher quality factor 

compared to the inductor.  Therefore, the overall Q of 

the load is mainly determined by the Q of the inductor.  

Utilization of a higher Q inductor will generate a 

sharper resonance characteristic and as a result a 
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range of interest with a high maximum value of S21.  
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with a decreased value of maximum S21.  The process 

variations should be taken into account during the 

simulations for deciding component values.  A gain 
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variations may alter the component values and shift 
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maximum gain provides more flexibility against these 

problems.  It is decided to investigate the optimum Q 

of the available on-chip inductors to have an opti-

mized S21 response.  Two different 7 nH inductors 

with different quality factors are used for this purpose.  

Two different versions of LNA with the same topology 

are designed.  The capacitor values to resonate with 

the inductor are also slightly different for the two ver-

sions as well to achieve resonance at the desired fre-

quency and to obtain good output matching (S22 

characteristic).  The Q of two 7 nH inductors used for 

this design can be viewed in Figure 6. 
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be modeled accurate and taken into account for a good in-
put impedance matching at the desired frequency range. To
compensate the inductive impedance and to fix the resistive
part exactly to 50�, a matching capacitorCmatch is also uti-
lized. The circuit showing the off-chip components placed
on the input signal path and the parasitic inductive effects of
package and PCB are depicted in Fig. 3.

The main noise sources of a LNA with such inductive de-
generation topology are the intrinsic thermal noise of input
transistor M1, the gate resistance associated with it (Rg) and
the resistance dependent to theQ of off-chip inductance for
matching and the bond wire and conductor on PCB (Rm).
The noise equivalent circuit for the LNA at the input transis-
tor side is shown in Fig. 4.

As long as there is a good input matching, the LNA can
be treated as a voltage amplifier for noise calculations and its
noise factor F can be taken into consideration (Shaeffer and
Lee, 1997). The noise considerations given in Shaeffer and
Lee (1997) state the following Eq. (2) for the noise factorF ;
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Fig. 5. Contribution of noise sources in LNA circuit.

sistor.γ is a bias dependent factor andgd0is zero bias drain
conductance (Bokinge et al., 2006; Shaeffer and Lee, 1997).

Optimum values for zero bias drain conductance, gate
resistance and the resistance of matching inductor should
be achieved for a better noise performance. Gate width
of n-MOS transistor and the inductanceLmatch are decided
through a set of simulations to optimize noise parameters.
The simulation results for the sources of noise in the LNA
circuit are shown in the diagram above. The contribution of
input transistor thermal noise and noise due to resistances on
signal path can be compared.

The noise model for on-chip components and the esti-
mated series resistance for off-chip discrete matching induc-
tor are used for this simulation. It can be concluded that us-
ing an on-chip inductor instead would have contributed much
more on the overall NF.

The load inductorLd and the source degeneration in-
ductorLS are implemented as on-chip inductors to have a
more compact solution. For such an implementation, the in-
ductor modeling should be completed before the necessary
simulations. The inductor values and their quality factors
should be known and the parasitic extractions should be per-
formed. The load inductor resonates with two capacitances
and maximizes the gain at a resonant frequency. The out-
put impedance seen at this frequency is ideally only resistive
and 50� for a good matching at the output. The capacitors,
C2 andC3 have much higher quality factor compared to the
inductor. Therefore, the overallQ of the load is mainly de-
termined by theQ of the inductor. Utilization of a higher
Q inductor will generate a sharper resonance characteristic
and as a result a sharper gain (S21) characteristics at the fre-
quency range of interest with a high maximum value of S21.
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difficult. However, it provides the presence of resistive part
of input impedance. Different matching inductor and capac-
itor should be used on the application board compared to the
first two versions. It is difficult to predetermine these values
through simulations unless there is a very realistic model for
package effects. This configuration can be utilized to max-
imize the gain despite having a complicated input matching
and possibly stability problems. Small signal analysis on the
circuit indicates that removingLs results in a worse reverse
isolation and hence stability problems.

3 Results

The LNA is encapsulated in a SOIC16 Ceramic Package.
Measurements are performed on-wafer and on application
board. Measurements are performed for the three design ver-
sions with different load and degeneration inductor imple-
mentations. The chip microphotograph of the design version
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as expected. The output matching and noise figure measure-
ments on-wafer fits to the simulated results well.

The S-parameter and NF measurements on the application
PCB for version 2 and version 3 are shown in Figs. 9, 10, 11
and 12.

A good impedance matching at the input and output is
achieved for both versions with S11 and S22 less than
−10 dB at the frequency range of interest. The values of off-
chip components are optimized to have a good input match-
ing and noise figure. Although the on-wafer measurements
fit the simulated results well, the measurement on the ap-
plication board does not fit to the simulation results due to
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incomplete modeling of package and PCB parasitics. A re-
verse isolation (S12) better than 25 dB and 20 dB and S21
of 13.5 dB to 17 dB at the frequency range of interest is
achieved. The NF is higher than expected 1.3 dB from the
simulations. However the later narrowband noise measure-
ments prove better results with a NF of 1.5 dB for both ver-
sions. Input referred 1 dB Compression Point (ICP) is mea-
sured as−5.5 dBm whereas the input referred third Intercept
Point (IIP3) is measured as 3.3 dBm for version 2. ICP and
IIP3 for version 3 are measured−10 dBm and 1 dBm, re-
spectively. These results indicate a very good linearity per-
formance of the device. The measurements are performed
for supply voltage range varying from 2.1 V to 3.6 V and
only negligible changes are observed. When stability issues
are considered, it can be concluded that a stable operation
for version 1 and version 2 is achieved. On the other hand
version 3 has some stability problems at a frequency range
of 200 MHz close to the frequency band of interest. This is
again due to the incomplete modeling of parasitic effects.

A better performance for this application can be provided
with more accurate modeling of package and PCB. The LNA
IC can be integrated into a SiP environment. The matching
elements can be implemented as components on a ceramic
substrate and can be packaged together with LNA IC. A good
performance can be achieved with an accurate 3-D substrate
and package modeling for such application. Utilizing bond
wire inductance as a circuit component in the design is a very
strong motivation for these investigations since it obligates a
prefect 3-D modeling for more realistic simulations.

4 Conclusion

Three 1.575 GHz low noise amplifier versions implemented
with a 0.35µm CMOS technology were presented. The ex-
perimental results indicate 17 dB gain and 1.5 dB noise fig-
ure. A high linearity with an IIP3 of 1 dBm is achieved. Fur-
ther investigations to integrate this IC to a SiP environment
are in progress. The performance can be improved with a SiP
solution.
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