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Abstract. In the calculation of eigenfrequencies of 3-D
metallic nanostructures occurs the challenge that the material
parameters depend on the desired eigenfrequency. We pro-
pose a formulation where this leads to a polynomial eigen-
value problem which can be tackled by different solving
strategies. A comparison between a Newton-type method
and a Jacobi-Davidson algorithm is given.

1 Introduction

The focus of our analysis is on nanostructures which include
a metallic substructure. In the microwave spectrum metals
can often be treated as perfect conductors without a signif-
icant loss of accuracy. If, however, the nanostructures are
supposed to operate at optical frequencies, the finite conduc-
tivity of the metallic parts and their frequency dependence
must not be neglected. Since we are interested in the compu-
tation of eigensolutions of such nanostructures, there is the
challenge that the operating frequency (the eigenvalue) is not
a-priori known. Thus, the material dispersion leads to a non-
linear eigenvalue formulation.

The rest of the paper is organized as follows: Sect.2
briefly reviews the material behavior of metals at optical fre-
quencies. In Sect.3 we derive in the first part a continuous
eigenvalue representation which is able to take the dispersion
into account. In the second part of Sect.3 this representation
is discretized. Section4 reviews several solving strategies
for polynomial eigenvalue problems. Finally a numerical ex-
ample is presented in Sect.5.

2 Metals at optical frequencies

There are several publications which investigate experimen-
tally the optical properties of noble metals such as gold and
silver (Johnson and Christy, 1972; Ordal et al., 1983; Palik,
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1997; Rakic et al., 1998). It turns out that the material val-
ues obtained by measurements can be fairly approximated by
Drude or a Drude-Lorentz models. These are rational func-
tions which are able to depict one or more resonance effects
in a specific frequency range. In general the dependency of
the permittivity on the frequencyε(ω) shall be approximated
by a general 2nd order model

ε(ω) = ε0

(
ε∞ +

β0 + jωβ1

α0 + jωα1 − ω2

)
. (1)

Hereε0 is the permittivity of free-space, the parametersε∞,
α0, α1, β0 andβ1 are real-valued, and anejωt time depen-
dency is implied. Figure1 exemplarily shows the real and
imaginary part of the relative permittivity of silver in the in-
frared range. The data from (Johnson and Christy, 1972) can
be fitted by the parameter setε∞=5, α0=0, α1=3.22e13,
β0=1.96e32,β1=0 of a Drude approximation.

The imaginary part of the complex permittivity can be
reinterpreted as a conductivity, and from the conductivity
the skin-depth can easily be calculated. For instance, at a
wavelength of 1.5 microns we obtain a skin-depth of 140 nm,
which implies that we can not model thin sheets of a mate-
rial like silver as a good or even perfect electrical conductor
at optical frequencies.

3 Eigenmode formulation

3.1 Non-linear and polynomial eigenvalue problem

In the following, we derive the non-linear eigenvalue formu-
lation for structures with dispersive materials. For the sake
of simplicity, we assume a homogeneous medium and begin
in the continuous rather than the discrete regime. The eigen-
mode formulation for the electrical field strengthE follows
from Maxwell’s equations in frequency domain and reads

curl
1

µ
curl E = ω2 ε(ω) E. (2)
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The rest of the paper is organized as follows: Section 2
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Fig. 1. Real and imaginary part of the relative permittivity of silver
in the infrared range.
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The dispersion of the permittivityε(ω) shall be given by a
Drude model as motivated in Sect.2:

ε(ω) = ε0

(
ε∞ +

β0

jωα1 − ω2

)
. (3)

We insert Eq. (3) into Eq. (2) and obtain the complex, non-
hermitian, polynomial eigenvalue problem (PEP) inω

(ω3a3 + ω2a2 + ωa1 + a0)E = 0. (4)

The coefficientsai are given by

a0 = −jα1Acc, a1 = ε0β0 + Acc,

a2 = jε0ε∞α1, a3 = −ε0ε∞, Acc = curl
1

µ
curl.

3.2 Discrete formulation

The eigenvalue formulation is discretized using the finite in-
tegration technique (FIT) (Weiland, 1977, 1996). In this very
general framework Maxwell’s equations are transformed into
algebraic equations – the Maxwell’s Grid Equations – which
can be used further to formulate e.g. a discrete wave equa-
tion. The degrees of freedom of the FIT approach are the
so-called grid voltages_e, which are defined on the edges of a
three-dimensional Cartesian grid. Finally, the discrete repre-
sentation of the non-linear eigenvalue problem Eq. (2) reads

Acc
_e = ω2M ε(ω)_e. (5)

Here, the large and sparse matrixAcc is the curl-curl system
operator and includes the double curl operation as well as the
permeability distribution of the structure. The diagonal ma-
trix M ε is the generalized permittivity operator. The searched
eigenvalue is the squared angular frequencyω2, and the field
distribution is defined by the eigenvector_e. The dimension
of the problem isNe ×Ne, with Ne the number of grid edges.

In a straight forward manner, we can also find a discrete
representation of the PEP Eq. (4) using FIT

9(ω)_e = (ω3A3 + ω2A2 + ωA1 + A0)
_e = 0, (6)

where Ai are the spatially discretized coefficient matrices
corresponding to theai of Eq. (4). This representation also
supports an arbitrary inhomogeneous material distribution
(including the dispersive permittivity), and it turns out that
the usual facet-weighted averaging procedure at material in-
terfaces does not need any special treatment. In FIT with
Cartesian grids the matricesA3 andA2 are diagonal, andA1
andA0 are sparse. The resulting PEP is complex and non-
Hermitian.

4 Solver for polynomial eigenvalue problems

The PEP from Sect.3.2can be solved in different ways, and
we briefly discuss four variants.

4.1 Fixed-point iteration

A first idea is to evaluateM ε(ω) at a certain frequencyωi and
to solve a standard linear eigenvalue problem from Eq. (5) for
the eigenfrequencyωi+1:

Acc
_e = ω2

i+1M ε(ωi)
_e. (7)

This approach defines a fixed-point iteration process
ωi+1=8(ωi), where the operator8 includes a solving step
of standard linear eigenvalue problem.

This scheme works well (but not very fast) in many cases.
However, the proof of its convergence for general cases –
e.g. using Banach’s fixed-point theorem – is quite challeng-
ing due to the complex nature of the eigenvalue problem in-
volved.

4.2 Linearization via companion matrix

A direct way to solve any PEP is to use the so-called compan-
ion matrix of the PEP. A PEP of orderi can be recast into a
generalized linear eigenvalue problem of the formAx=λBx,
where

A =


0 I · · · 0
...

...
. . .

...
...

...
... I

−A0 −A1 · · · −Ai−1

 , (8)

B =


I

. . .

I
Ai

 , x =


_e

ω_e
...

ωi−1_e

 .

For a problem of polynomial orderi with n×n matrices, this
approach leads to(i−1)×n additional eigenvalues, which are
not necessarily all solutions of the original PEP and therefore
have to be dropped. Since this approach leads to large and
typically ill-conditioned matrices, it is only feasible for small
PEPs.
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4.3 Newton-type methods for PEPs

The Newton method for polynomial eigenvalue problems
may be regarded as a generalization of the method of inverse
iteration (Schreiber, 2008). The algorithm yields one eigen-
pair at a time and is based on a functionf of the eigenvector
u and the eigenvalueω

f

([
u

ω

])
=

([
9(ω)u

wH u − 1

])
. (9)

It includes the matrix polynomial9(ω) from Eq. (6) and a
normalization vectorw, which has to be chosen such that
wH u=1 holds throughout the iteration. The first derivative
of Eq. (9) is given by the Jacobian

J

([
u

ω

])
=

[
9(ω) 9 ′(ω)u

wH 0

]
(10)

where9 ′(ω) denotes the derivation of Eq. (6). For a given
starting guess of the eigenpair(u0, ω0), the Newton correc-
tion at stepi is defined by

J

([
ui

ωi

]) [
1ui+1
1ωi+1

]
= −f

([
ui

ωi

])
(11)

and

ui+1 = ui + 1ui+1, ωi+1 = ωi + 1ωi+1.

Therefore, the linear system Eq. (11) has to be solved in each
iteration step. The Newton algorithm is terminated if the
norm of the residual

r = 9(ω)u (12)

is sufficiently small.

4.4 Jacobi-Davidson algorithm for PEPs

The PEP in the form Eq. (6) can also be solved using a
Jacobi-Davidson algorithm (JD) (Sleijpen et al., 1996; Bai
et al., 2000). This method is intended to find one or more
interior eigenvalues of the spectrum near a given targetω0.

The main idea within the JD method is to project the
PEP on a low-dimensional orthogonal subspaceV, which
leads to a low-dimensional PEP with coefficient matrices
M i=V∗AiV. The low-dimensional PEP can be solved by the
companion matrix approach from Sect.4.2 and any method
for generalized eigenvalue problems. The low-dimensional
eigenvectors is expanded to full size again,u=Vs, which
leads to the current approximative eigenvectoru. Sinceu

is an approximation, the residual Eq. (12) has to be calcu-
lated, and the process stops if the norm ofr is sufficiently
small. Since this typically does not occur after the first iter-
ation step, a so-called correction equation is formulated and
solved, which produces an additional vector, which extends
the subspace.

This procedure is repeated until convergence. The compu-
tationally most expensive task inside the JD iteration is the
solution of the correction equation, which reads(

I −
pu∗

u∗p

)
9(θ)(I − uu∗)t = −r. (13)

Here,9 is the polynomial from Eq. (6) evaluated at the last,
best estimationθ (namely the Ritz value),t is the correc-
tion vector,r the residual,u=Vs the best actual approxi-
mation of the searched eigenvector, andp=9 ′(θ). In the
beginning of the JD process the user-defined targetω0 may
be more accurate than an extracted Ritz value. Therefore
we setp=9 ′(ω0) until the residual is below a predefined
tolerance, in order to get a better correction vectort . (This
was proposed in (Hochstenbach and Sleijpen, 2008).) For the
solution of the correction Eq. (13) we use a preconditioned
bicgstab(l) method (Sleijpen and Fokkema, 1993). As pre-
conditioner we use an LU decomposition of the polynomial
evaluated at the target valueω0. Therefore the LU decompo-
sition has to be established only once per JD run.

4.5 Validation

A simple way to validate a specific implementation from
the Newton method from Sect.4.3 or the JD method from
Sect. 4.4 is to go back to the fixed-point formulation in
Eq. (7) and to execute one single step of the iteration. In
all numerical tests our results yield accuracies in the range of
numerical noise.

5 Numerical example

As an example we take a bow tie slot antenna which can be
regarded as a resonator at optical wavelengths. A potential
application is in spectroscopy where field confinement and
focusing is desirable. An extensive study can be found e.g. in
Guo et al., 2008.

5.1 Setup

The structure consists of a layer of silver and the dimensions
are given in Fig.2. The material parameters of silver are
taken from Sect.2, where Eq. (1) returns a Drude model
Eq. (3) and the resulting PEP is of order three. The per-
meability is chosen to beµ=µ0. For the geometric mod-
eling we use the commercial tool CST MICROWAVE STU-
DIO (Computer Simulation Technology AG (CST)). The dis-
cretization of one quarter of the whole structure (due to sym-
metry) uses a rather coarse mesh with only 15×16×22 grid
lines, leading to 13 657 complex degrees of freedom. (Note
that in this presentation we concentrate on solving strategies
rather than the convergence of our grid model towards the
“real” solution.) In order to model a whole array of bow tie
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Fig. 2. Bow tie antenna structure with a = 270 nm, b = 240 nm, d = 50 nm and thickness of t = 10 nm. The transversal dimensions are
dx = dy = 500 nm. The polarization of the incident TEM wave and the resulting transversal boundary conditions are shown at the center
and at the right.

complex degrees of freedom. (Note that in this presentation
we concentrate on solving strategies rather than the conver-
gence of our grid model towards the ’real’ solution.) In order
to model a whole array of bow tie antennas illuminated by
a plane wave, the transversal boundary conditions are cho-
sen to be perfectly electric and perfectly magnetic conduct-
ing (cf. Fig. 2). In propagation direction we apply Berenger’s
perfectly matched layer (PML) (Berenger, 1994) to truncate
the computational domain appropriately. The PML itself
consists of frequency dependent materials, but here we eval-
uate the PML once at our starting frequency ω0 instead of
including its frequency dependence into the eigenvalue for-
mulation. Nevertheless, to determine the eigenfrequency of
the bow tie antenna, a complex non-Hermitian polynomial
eigenvalue problem has to be solved, and we compare the re-
sults of the Newton method from Section 4.3 to those of the
JD method from Section 4.4, both of them implemented in
MATLAB. Convergence is supposed to be reached when the
norm of the residual (12) is less than 1e-9.

5.2 Results

An estimation of the eigenfrequency can be obtained, e.g.,
by measurements or a scattering parameter simulation, see
(Guo et al., 2008) for details. In our case the searched eigen-
frequency is at 192.4 THz. Fig. 3 shows the number of itera-
tions needed by the Jacobi-Davidson and Newton method to
generate an eigenpair for different target frequencies ω0. In
almost all cases the Jacobi-Davidson method needs less iter-
ations than the Newton method for our specific setup. How-
ever, it is questionable which eigenpairs are actually found.
Fig. 4 shows the eigenfrequencies generated by the Jacobi-
Davidson and Newton method for different target frequencies
ω0. It turns out that the result of the Newton method strongly
depends on the chosen target frequency ω0 for the first step
of (11). On the contrary the Jacobi-Davidson method reliably
generates the same eigenvalue also for less accurately chosen
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different target frequencies ω0.

target frequencies. Fig. 5 shows the time needed for the com-
putation of the eigenfrequency (including only those runs
which led to the desired eigenvalue of 192.4 THz). Again
the JD method outperforms the Newton approach in all cases
considered here.

Finally Fig. 6 shows the distribution of electrical field
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dx=dy=500 nm. The polarization of the incident TEM wave and the resulting transversal boundary conditions are shown at the center and
at the right.
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antennas illuminated by a plane wave, the transversal bound-
ary conditions are chosen to be perfectly electric and per-
fectly magnetic conducting (cf. Fig.2). In propagation di-
rection we apply Berenger’s perfectly matched layer (PML)
(Berenger, 1994) to truncate the computational domain ap-
propriately. The PML itself consists of frequency dependent
materials, but here we evaluate the PML once at our start-
ing frequencyω0 instead of including its frequency depen-
dence into the eigenvalue formulation. Nevertheless, to de-
termine the eigenfrequency of the bow tie antenna, a com-
plex non-Hermitian polynomial eigenvalue problem has to
be solved, and we compare the results of the Newton method
from Sect.4.3to those of the JD method from Sect.4.4, both
of them implemented in MATLAB . Convergence is supposed
to be reached when the norm of the residual Eq. (12) is less
than 1e-9.
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(Guo et al., 2008) for details. In our case the searched eigen-
frequency is at 192.4 THz.

Figure 3 shows the number of iterations needed by the
Jacobi-Davidson and Newton method to generate an eigen-
pair for different target frequenciesω0. In almost all cases the
Jacobi-Davidson method needs less iterations than the New-
ton method for our specific setup. However, it is questionable
which eigenpairsare actually found

Figure 4 shows the eigenfrequencies generated by the
Jacobi-Davidson and Newton method for different target fre-
quenciesω0. It turns out that the result of the Newton method
strongly depends on the chosen target frequencyω0 for the
first step of Eq. (11). On the contrary the Jacobi-Davidson
method reliably generates the same eigenvalue also for less
accurately chosen target frequencies.

Figure5 shows the time needed for the computation of the
eigenfrequency (including only those runs which led to the
desired eigenvalue of 192.4 THz). Again the JD method out-
performs the Newton approach in all cases considered here.

Finally Fig. 6 shows the distribution of electrical field
strength of the eigenfrequency at 192.4 THz. It is mainly
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Fig. 5. Computation times of JD and Newton method for target
frequencies, which lead to the searched eigenvalue.

Fig. 6. Contour plot of the field distribution of the eigensolution
at 192.4 THz: The x-component of the electrical field strength is
confined within the slot of the bow tie antenna.

strength of the eigenfrequency at 192.4 THz. It is mainly
orientated in x-direction (like the incident plane wave) and
is concentrated within the slot of the bow tie antenna as pro-
posed in the literature.

6 Conclusions

After a review of the behavior of metals at optical frequen-
cies, an eigenfrequency formulation which is capable to
deal with frequency dispersive materials has been presented.
The formulation is based on the finite integration technique
and leads to a polynomial eigenvalue problems (PEP). Four
strategies to solve this PEP have been presented and tested.
As a numerical example we have used a bow tie slot antenna
(Guo et al., 2008) which consists of silver and operates at
a wavelengths around 1.5 microns. We have computed its
resonance frequency and compared the Newton method and
the Jacobi-Davidson method. It turns out that the Jacobi-
Davidson method is more robust in terms of poorly chosen
target frequencies and also faster at least in our implementa-
tion.

If the match of measurement data of material properties
requires higher order polynomial functions, our formulation
of Section 3 can easily be extended and will lead to higher
order matrix polynomials.
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