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3-D eigenmode calculation of metallic nano-structures
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Abstract. In the calculation of eigenfrequencies of 3-D 1997 Rakic et al, 1999. It turns out that the material val-
metallic nanostructures occurs the challenge that the materiales obtained by measurements can be fairly approximated by
parameters depend on the desired eigenfrequency. We pr@rude or a Drude-Lorentz models. These are rational func-
pose a formulation where this leads to a polynomial eigen-tions which are able to depict one or more resonance effects
value problem which can be tackled by different solving in a specific frequency range. In general the dependency of
strategies. A comparison between a Newton-type methodhe permittivity on the frequenay(w) shall be approximated
and a Jacobi-Davidson algorithm is given. by a general 2nd order model
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1 Introduction

o o Hereeg is the permittivity of free-space, the parametexs
The focus of our analysis is on nanostructures which include,, ., g, and g, are real-valued, and an® time depen-

a metallic substructure. In the microwave spectrum metalqjency is implied. Figurd exemplarily shows the real and
can often be treated as perfect conductors without a signifimaginary part of the relative permittivity of silver in the in-
icant loss of accuracy. If, however, the nanostructures argrared range. The data frondghnson and Christt972 can
supposed to operate at optical frequencies, the finite condugse fitted by the parameter set, =5, ag=0, a1=3.22¢13,
tivity of the metallic parts and their frequency dependenceﬂozl'%eg,z,ﬂl:o of a Drude approximation.

must not be neglected. Since we are interested in the compu- ¢ imaginary part of the complex permittivity can be
tation of eigensolutions of such nanostructures, there is th‘?einterpreted as a conductivity, and from the conductivity
challenge that the operating frequency (the eigenvalue) is Ndfye skin-depth can easily be calculated. For instance, at a
a-priori known. Thus, the material dispersion leads to a nonyyayelength of 1.5 microns we obtain a skin-depth of 140 nm,
linear eigenvalue formulation. which implies that we can not model thin sheets of a mate-

The rest of the paper is organized as follows: S@ct. iy |ike silver as a good or even perfect electrical conductor
briefly reviews the material behavior of metals at optical fre- 5t gptical frequencies.

quencies. In SecB we derive in the first part a continuous

eigenvalue representation which is able to take the dispersion

into account. In the second part of Se&this representation 3 Eigenmode formulation

is discretized. Sectiod reviews several solving strategies

for polynomial eigenvalue problems. Finally a numerical ex- 3-1  Non-linear and polynomial eigenvalue problem

ample is presented in Seét. . . . .
P P In the following, we derive the non-linear eigenvalue formu-

lation for structures with dispersive materials. For the sake
2 Metals at optical frequencies of simplicity, we assume a homogeneous medium and begin
in the continuous rather than the discrete regime. The eigen-
There are several publications which investigate experimenmode formulation for the electrical field strengkhfollows
tally the optical properties of noble metals such as gold androm Maxwell's equations in frequency domain and reads
silver (Johnson and Christy1972 Ordal et al, 1983 Palik,
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c3)00 250 2143 1875  166.7 150 where A; are the spatially discretized coefficient matrices

corresponding to the; of Eq. @). This representation also
50k — ] supports an arbitrary inhomogeneous material distribution
Tt~ L (including the dispersive permittivity), and it turns out that
w  -100F D{e} T ~a T the usual facet-weighted averaging procedure at material in-
' T~ terfaces does not need any special treatment. In FIT with
-150 Ofe } ~ ] . . . .

r . Cartesian grids the matricdsg; andA» are diagonal, ané 1

-200 . . ’ - andAg are sparse. The resulting PEP is complex and non-
1000 1200 1400 1600 1800 2000

A/ nm Hermitian.

Fig. 1. Real and imaginary part of the relative permittivity of silver

in the infrared range. 4 Solver for polynomial eigenvalue problems

The PEP from SecB.2can be solved in different ways, and

The dispersion of the permittivits(w) shall be given by a Ve briefly discuss four variants.

Drude model as motivated in Segt. 41 Fixed-point iteration

Bo
€(w) = €o <600 + Jwal—_w2> : ®3) Afirstidea is to evaluat®l . (w) at a certain frequenay; and
to solve a standard linear eigenvalue problem from Eqof

We insert Eq. §) into Eq. @) and obtain the complex, non-  the eigenfrequency; ,1:
hermitian, polynomial eigenvalue problem (PEPin
. ) Acce = 02 Mg (w))e. ©)
(w°az + w“az + way + ag) E = 0. (4)

o ) This approach defines a fixed-point iteration process
The coefficients;; are given by w;+1=®(w;), Where the operatob includes a solving step
of standard linear eigenvalue problem.

= —jo1A = A . .
a0 jerdee,  a1=€ofo+ Acc, This scheme works well (but not very fast) in many cases.

_ _ A — curl 1 | However, the proof of its convergence for general cases —
92 = J€0€o®1, 43 = —€0€e0,  Aee = CUN - CUIL e.g. using Banach'’s fixed-point theorem — is quite challeng-
ing due to the complex nature of the eigenvalue problem in-

3.2 Discrete formulation volved.

The eigenvalue formulation is discretized using the finite in-4-2  Linearization via companion matrix

tegration technique (FITWeiland 1977, 199§. In this very . .
general framework Maxwell's equations are transformed intoA direct yvayftohsolla\/lzesrkl Egg |sfto Lése the ts)o-called compan-
algebraic equations — the Maxwell’s Grid Equations — which lon matrix of the ) of ordércan be recast into a

can be used further to formulate e.g. a discrete wave equagenerallzed linear eigenvalue problem of the fokm=1Bx,

tion. The degrees of freedom of the FIT approach are theWhere

so-called grid voltages, which are defined on the edges of a ro | ... 0
three-dimensional Cartesian grid. Finally, the discrete repre-
sentation of the non-linear eigenvalue problem Bjjréads A —

: ®)

A = 0®M(w)e. (5)

Here, the large and sparse mathix. is the curl-curl system ' @A
operator and includes the double curl operation aswellasthe, | .. = we
permeability distribution of the structure. The diagonal ma- ~ — | ’ - :
trix M is the generalized permittivity operator. The searched A w—le

eigenvalue is the squared angular frequentyand the field . . ] )

distribution is defined by the eigenvecter The dimension ~ FOr @ problem of polynomial ordemwith n>n matrices, this

of the problem isV, x N,, with N, the number of grid edges. approach Iea_ds t0—1) xn additional e_|genvalues, which are
In a straight forward manner, we can also find a discretenot necessarily all solutions of the original PEP and therefore

representation of the PEP Ed) (sing FIT have to be dropped. Since this approach leads to large and
typically ill-conditioned matrices, it is only feasible for small
U(w)e = (0°A3 + w?As + wA1 + Ag)e = 0, (6)  PEPs.
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4.3 Newton-type methods for PEPs This procedure is repeated until convergence. The compu-
tationally most expensive task inside the JD iteration is the

The Newton method for polynomial eigenvalue problems sojution of the correction equation, which reads

may be regarded as a generalization of the method of inverse

iteration Schreiber2008. The algorithm yields one eigen- pu*
pair at a time and is based on a functiprof the eigenvector I
u and the eigenvalue

) YOI —uu™)t = —r. (13)

u*p
Here, V¥ is the polynomial from Eq.§) evaluated at the last,

f ([” ]) — <[ \I;{(“’)” D (9)  best estimatiord (namely the Ritz value)t is the correc-

@ win—1 tion vector, r the residualu=Vs the best actual approxi-
mation of the searched eigenvector, gng¥’(9). In the
beginning of the JD process the user-defined tadganay
be more accurate than an extracted Ritz value. Therefore
we setp=V’'(wg) until the residual is below a predefined
tolerance, in order to get a better correction veeto(This

u U(w) ¥V (w)u was proposed irHochstenbach and Sleijpg2008.) For the
J ([w]) = [ wH 0 } (10) solution of the correction Eq18) we use a preconditioned

bicgstab(l) methodSleijpen and Fokkemd993. As pre-
whereV’(w) denotes the derivation of Egg)( For a given  conditioner we use an LU decomposition of the polynomial
starting guess of the eigenpdirg, wg), the Newton correc-  evaluated at the target valug. Therefore the LU decompo-
tion at step is defined by sition has to be established only once per JD run.

J ([:‘)'l ]) [ic’:iﬂ =—f <[le D (11) 4.5 Validation

A simple way to validate a specific implementation from

the Newton method from Sect.3 or the JD method from

wi 1 =u; +Auj,q, wit1 = 0 + Aw; 1. Sect.4.4 is to go back to the fixed-point formulation in
Eqg. (7) and to execute one single step of the iteration. In

Therefore, the linear system E41j has to be solved in each all numerical tests our results yield accuracies in the range of

iteration step. The Newton algorithm is terminated if the numerical noise.

norm of the residual

It includes the matrix polynomial (w) from Eq. @) and a
normalization vectomw, which has to be chosen such that
wu=1 holds throughout the iteration. The first derivative
of Eq. 9) is given by the Jacobian

and

r=VY(wu (12) 5 Numerical example

is sufficiently small. ) )
As an example we take a bow tie slot antenna which can be
4.4 Jacobi-Davidson algorithm for PEPs regarded as a resonator at optical wavelengths. A potential
application is in spectroscopy where field confinement and
The PEP in the form Eq.6f can also be solved using a focusing is desirable. An extensive study can be found e.g. in
Jacobi-Davidson algorithm (JDBleijpen et al. 1996 Bai Guo et al, 2008
et al, 2000. This method is intended to find one or more
interior eigenvalues of the spectrum near a given tavget 5.1 Setup
The main idea within the JD method is to project the
PEP on a low-dimensional orthogonal subsp&cewhich The structure consists of a layer of silver and the dimensions
leads to a low-dimensional PEP with coefficient matricesare given in Fig.2. The material parameters of silver are
M;=V*A;V. The low-dimensional PEP can be solved by the taken from Sect2, where Eq. {) returns a Drude model
companion matrix approach from Sedt2 and any method Eq. 3) and the resulting PEP is of order three. The per-
for generalized eigenvalue problems. The low-dimensionalmeability is chosen to be=uo. For the geometric mod-
eigenvectors is expanded to full size agaim=Vs, which eling we use the commercial tool CSTI®MROWAVE STU-
leads to the current approximative eigenveaior Sinceu DIO (Computer Simulation Technology AG (C9TThe dis-
is an approximation, the residual EQ.2J has to be calcu- cretization of one quarter of the whole structure (due to sym-
lated, and the process stops if the normra$ sufficiently  metry) uses a rather coarse mesh with onlyk 16x22 grid
small. Since this typically does not occur after the first iter- lines, leading to 13 657 complex degrees of freedom. (Note
ation step, a so-called correction equation is formulated andhat in this presentation we concentrate on solving strategies
solved, which produces an additional vector, which extendgather than the convergence of our grid model towards the
the subspace. “real” solution.) In order to model a whole array of bow tie
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Fig. 2. Bow tie antenna structure with=270 nm,»=240 nm,d=50 nm and thickness at=10 nm. The transversal dimensions are
dx=dy=500 nm. The polarization of the incident TEM wave and the resulting transversal boundary conditions are shown at the center and
at the right.
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Fig. 3. Number of iterations of the JD and Newton method to con- Fig- 4. Resulting eigenvalues of the JD and Newton method for
verge for different target frequencies. different target frequencieso.

antennas illuminated by a plane wave, the transversal boundGuo et al, 2008 for details. In our case the searched eigen-
ary conditions are chosen to be perfectly electric and perfréquency is at 192.4 THz.

fectly magnetic conducting (cf. Fig). In propagation di- Figure 3 shows the number of iterations needed by the
rection we apply Berenger’s perfectly matched layer (PML) Jacobi-Davidson and Newton method to generate an eigen-
(Berenger 199[9 to truncate the Computationa| domain ap- pairfor different target frequenCiaﬁ). In almost all cases the
propriately. The PML itself consists of frequency dependentJacobi-Davidson method needs less iterations than the New-
materials, but here we evaluate the PML once at our startion method for our specific setup. However, it is questionable
ing frequencywo instead of including its frequency depen- Which eigenpairsre actually found

dence into the eigenvalue formulation. Nevertheless, to de- Figure 4 shows the eigenfrequencies generated by the
termine the eigenfrequency of the bow tie antenna, a ComJacobi-Davidson and Newton method for different target fre-
plex non-Hermitian polynomial eigenvalue problem has toduenciesno. It turns out that the result of the Newton method
be solved, and we compare the results of the Newton metho8trongly depends on the chosen target frequencsor the

from Sect4.3to those of the JD method from Sedt4, both  first step of Eq. 11). On the contrary the Jacobi-Davidson
of them implemented in MrLAB . Convergence is supposed Method reliably generates the same eigenvalue also for less
to be reached when the norm of the residual B@) {s less ~ accurately chosen target frequencies.

than 1e-9. Figure5 shows the time needed for the computation of the
eigenfrequency (including only those runs which led to the
5.2 Results desired eigenvalue of 192.4 THz). Again the JD method out-

performs the Newton approach in all cases considered here.
An estimation of the eigenfrequency can be obtained, e.g., Finally Fig. 6 shows the distribution of electrical field
by measurements or a scattering parameter simulation, sesrength of the eigenfrequency at 192.4 THz. It is mainly
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Fig. 5. Computation times of JD and Newton method for target L
frequencies, which lead to the searched eigenvalue. ‘ib’
X

orientated inx-direction (like the incident plane wave) and
is concentrated within the slot of the bow tie antenna as pro-

posed in the literature. Fig. 6. Contour plot of the field distribution of the eigensolution

at 192.4 THz: Thex-component of the electrical field strength is

. confined within the slot of the bow tie antenna.
6 Conclusions

After a review of the behavior of metals at optical frequen- Hochstenbach, M. E. and Sleijpen, G. L. G.: Harmonic and refined
cies, an eigenfrequency formulation which is capable to Rayleigh-Ritz for the polynomial eigenvalue problem, Numeri-
deal with frequency dispersive materials has been presented. cal Linear Algebra with Applications, 15, 35-54, 2008.

The formulation is based on the finite integration techniqueJohnson, P. B. and Christy, R. W.: Optical Constants of the Noble
and leads to a polynomial eigenvalue problems (PEP). Four Metals, Phys. Rev. B., 6, 4370-4379, 1972.

strategies to solve this PEP have been presented and testéefdal, M. A., Long, L. L., Bell, R. J., Bell, S. E., Bell, R. R.,
As a numerical example we have used a bow tie slot antenna - W- Aléxander, J.,, and Ward, C. A.: Optical properties of
(Guo et al, 2008 which consists of silver and operates at '€ Metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and

. - W in the infrared and far infrared, Appl. Opt., 22, 1099-1119,
a wavelengths around 1.5 microns. We have computed its http://a0.0sa.org/abstract.cfm?URI=ao0-22-7- 1983,

resonance frequency and compared the Newton method anghy £ p : Handbook of Optical Constants of Solids , 1997.
the Jacobi-Davidson method. It turns out that the Jacobigakic A. D., Djurgic, A. B., Elazar, J. M., and Majewski, M. L.:
Davidson method is more robust in terms of poorly chosen optical Properties of Metallic Films for Vertical-Cavity Opto-
target frequencies and also faster at least in our implementa- electronic Devices, Appl. Opt., 37, 5271-5288p://ao.0sa.org/
tion. abstract.cfm?URI=a0-37-22-5271998.

If the match of measurement data of material propertiesSchreiber, K.: Nonlinear Eigenvalue Problems: Newton-type Meth-
requires higher order polynomial functions, our formulation ~©0ds and Nonlinear Rayleigh Functionals, Ph.D. thesis, TU
of Sect.3 can easily be extended and will lead to higher order Berlin, http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-18754

matrix polynomials.
poly Sleijpen, G. L. G. and Fokkema, D. R.: Bi-CGSTAB(l) for linear

equations involving unsymmetric matrices with complex spec-
trum, Elec. Trans. Numer. Anal., 1, 11-32, 1993.

Sleijpen, G. L. G., Booten, A. G. L., Fokkema, D. R., and der
Vorst, H. A. V.: Jacobi-Davidson type methods for generalized
and polynomial eigenproblems, BIT, 36, 595-633, 1996.

Weiland, T.: Eine Methode zurdsung der Maxwellschen Gle-

ichungen @ir sechskomponentige Felder auf diskreter Basis,

Archiv fur Elektronik undUbertragungstechnik, 31, 116-120,

1977.

Weiland, T.: Time Domain Electromagnetic Field Computation
with Finite Difference Methods, International Journal of Numer-
ical Modelling, 9, 295-319, 1996.

References

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H.:
Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide, SIAM, Philadelphia, 2000.

Berenger, J.-P.: A perfectly matched layer for the absorption of elec-
tromagnetic waves, J. Comput. Phys., 114, 185-200, 1994.

Computer Simulation Technology AG (CST): CST Studio Suite
2008, http://www.cst.com2008.

Guo, H., Meyrath, T. P., Zentgraf, T., Liu, N., Fu, L., Schweizer,
H., and Giessen, H.: Optical resonances of bowtie slot an-
tennas and their geometry and material dependence, Opt. Ex-
press, 16, 7756-7766http://www.opticsexpress.org/abstract.
cfm?URI=0e-16-11-775&008.

www.adv-radio-sci.net/7/23/2009/ Adv. Radio Sci., 7, 232009


http://www.cst.com
http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-7756
http://www.opticsexpress.org/abstract.cfm?URI=oe-16-11-7756
http://ao.osa.org/abstract.cfm?URI=ao-22-7-1099
http://ao.osa.org/abstract.cfm?URI=ao-37-22-5271
http://ao.osa.org/abstract.cfm?URI=ao-37-22-5271
http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-18754

