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Abstract. The contribution describes a systematic method
to efficiently determine frequency-domain electromagnetic
antenna fields and characteristics for a broad spectrum via
a single time-domain (e.g., Finite-Difference Time-Domain,
FDTD) calculation. From a time-domain simulation of an
antenna driven by a wide-band signal, a single modified
Fourier transformation yields the frequency-domain multi-
pole amplitudes. The corresponding multipole expansions
are valid for the entire spectrum of the input pulse and at any
point outside a minimum sphere enclosing the antenna. This
allows a computationally cheap and elegant post-processing
of arbitrary antenna characteristics. As an example of use
the method is applied to determine high-resolution three-
dimensional radiation patterns of an antipodalVivaldi an-
tenna.

1 Introduction

Multipole techniques have often been employed in the con-
text of antenna fields. For example, they have been used to
derive general properties of linear antennas such as the rela-
tions between the field modal amplitudes and the elements
of the antenna’s equivalent circuit (Chu, 1948), and to de-
rive expressions for the antennaQ and the bandwidth (Fante,
1969; Yaghjian and Best, 2005). Moreover, multipole ex-
pansions in spherical, in cylindrical, and in Cartesian coordi-
nates are the basis to calculate the probe-corrected far-field
from measured or estimated values of the antenna near field
(Hansen, 1988). The present method provides a receipt to
obtain the frequency-domain spherical-multipole amplitudes
from given time-domain near-field data. According to the
surface equivalence theorem (Balanis, 1989) the electric far-
field is completely determined by the tangential components
of the field data (and resulting surface currents) on a closed
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surface, surrounding all scattering objects. Here, a discrete
version of this theorem, namely the spherical-multipole in-
terface (Klinkenbusch, 1995), is applied: In parallel to the
time-stepping process of a time-domain near-field solver the
tangential near-field on an arbitrarily chosenHuygenssurface
(that is, an imaginary closed surface enclosing the antenna
structure) is replaced by a suitably chosen number of equiv-
alent electric and magnetic elementary dipoles. The dipoles’
amplitudes are temporally linearly interpolated. The cor-
responding time-domain spherical-multipole amplitudes are
then deduced by means of the inverse Fourier transform of
the bilinear form of the free-space dyadic Green’s function
in spherical coordinates, valid at far-field observation points.

Conventional time-domain near-field solvers (like FDTD)
have intrinsic near-to-far-field routines that are based on the
method of retarded potentials (Luebbers et al., 1991) and
therefore make use of the closed form of this Green’s func-
tion. As a consequence, a new integration over the near-field
values is necessary for each observation point, and/or suit-
able interpolation routines are necessary (Boag and Shlivin-
ski , 2007), which might be ineffective for large numbers of
desired far-field points. In contrast, the time-domain mul-
tipole amplitudes have to be calculated only once, and the
field values in arbitrary observation points are obtained by
a simple superposition. Moreover, in the case of a wide-
band transient pulse as the antenna signal, a numerically per-
formed modified Fourier transform of the time-domain mul-
tipole amplitudes directly yields the frequency-domain mul-
tipole amplitudes of the antenna field for the entire frequency
spectrum of this transient pulse. These frequency-domain
multipole amplitudes can be used to analyze the antenna field
(and other quantities of interest) at any point outside a mini-
mum sphere enclosing all radiating elements (not just in the
far-field) and at all frequencies of interest.

For the description of the present method, we first give
a brief introduction to spherical-multipole expansions and a
short description of the spherical-multipole interface. After
that, we show how to efficiently implement the necessary
convolution integrals into the time-stepping process of the
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near-field solver. Finally we deduce the frequency-domain
multipole amplitudes directly from their time-domain coun-
terparts. To validate the present method and to demonstrate
its capability of treating radiation problems of practical inter-
est, the implementation of the method into a standard FDTD
solver is applied to determine high resolution three dimen-
sional radiation patterns of an ultra wide-band balanced an-
tipodalVivaldi antenna.

2 Frequency- and time-domain spherical multipole field
representations

In any homogenous domain the frequency-domain electro-
magnetic field at circle frequencyω can be represented in
spherical coordinates (r, ϑ, ϕ) by the spherical-multipole ex-
pansion

E(r, ω)=

=

∑
n,m

{
An,m(ω)Nn,m(r)+

Z

j
Bn,m(ω)Mn,m(r)

}
, (1)

H (r, ω)=

=−

∑
n,m

{
j

Z
An,m(ω)Mn,m(r)+Bn,m(ω)Nn,m(r)

}
. (2)

Here,Z=
√
µ/ε denotes the intrinsic impedance of the sur-

rounding media, and we have used the abbreviation

∑
n,m

=

∞∑
n=1

n∑
m=−n

.

The coefficients of these expansions are referred to as the
(frequency-domain) electric and magnetic multipole am-
plitudesAn,m(ω) and Bn,m(ω), respectively. The vector
spherical-multipole functions are deduced from particular
solutions of the Helmholtz equation in spherical coordinates
as

Mn,m(r) = zn(κr)mn,m(ϑ, ϕ),

Nn,m(r) = −
zn(κr)

κr
n(n+ 1)Yn,m(ϑ, ϕ)r̂

−
1

κr

d

dr
[rzn(κr)] nn,m(ϑ, ϕ).

Here, the angular-dependent factors consist of the vector
functions

mn,m(ϑ, ϕ) = −
1

sin(ϑ)

∂Yn,m(ϑ, ϕ)

∂ϕ
ϑ̂ +

∂Yn,m(ϑ, ϕ)

∂ϑ
ϕ̂,

nn,m(ϑ, ϕ) =
∂Yn,m(ϑ, ϕ)

∂ϑ
ϑ̂ +

1

sin(ϑ)

∂Yn,m(ϑ, ϕ)

∂ϕ
ϕ̂

and are based on the surface spherical-harmonics

Yn,m(ϑ, ϕ)=

√
2n+ 1

4π

(n−m)!

(n+m)!
Pmn (cosϑ)ejmϕ .

They particularly form a complete set of orthogonal vector
functions on theR3-sphere. Here,Pmn denotes an associated
Legendre function of the first kind, see (Abramowitz and Ste-
gun, 1972) for details. Moreover,zn(κr) represents a spheri-
cal Bessel function, whereκ=ω

√
µε denotes the wavenum-

ber. In particular, spherical Bessel function of the first kind
zn=jn are chosen to match regularity at the origin, whereas
spherical Hankel functions of the 2nd kindzn=h

(2)
n are cho-

sen to coincide with Sommerfeld’s radiation condition.
With a suitable approximation of the mentioned spherical

Hankel function, the electric far-field can be written as

E∞(r, ω)= −
e−jκr

κr

∑
n,m

jn
{
An,m(ω) nn,m(ϑ, ϕ)

−Z0 Bn,m(ω) mn,m(ϑ, ϕ)

}
.

This field is easily Fourier transformed to the time-domain
electric far-field representation (Oetting and Klinkenbusch,
2005):

e∞(r, t)= −
1

r

∑
n,m

{
an,m(t −

r
vc
) nn,m(ϑ, ϕ)

−Z0 bn,m(t −
r
vc
) mn,m(ϑ, ϕ)

}
,

wherevc=1/
√
µ0ε0 denotes the velocity of light. The time-

domain multipole amplitudesan,m andbn,m are formally re-
lated to their frequency-domain counterpartsAn,m andBn,m
by the (modified) Fourier transforms

an,m(t) = jn
vc

2π

∞∫
−∞

An,m(ω)

ω
e+jωtdω,

bn,m(t) = jn
vc

2π

∞∫
−∞

Bn,m(ω)

ω
e+jωtdω.

3 Time-domain near-to-far-field transformation by a
spherical-multipole interface

In order to determine the time-domain multipole ampli-
tudesan,m(t) andbn,m(t), the spherical-multipole interface
(Klinkenbusch, 1995) is employed: The field components
on a surfaceS, surrounding all radiating sources (Huygens-
surface), are replaced by a finite number of appropriately
chosen electric and magnetic elementary dipoles. Assum-
ingNel electric dipoles at locationsr [i]

el , i ∈ {1, . . . , Nel} and

Nmag magnetic dipoles atr [i]
mag, i ∈

{
1, . . . , Nmag

}
, the cor-

responding current momentsc [i]
el andc

[i]
mag are obtained by

the near-field data as

cel(r
[i])= n̂

[i]
S × H (r [i])1

[i]
f ,

cmag(r
[i])= − n̂

[i]
S × E(r [i])1

[i]
f .
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1
[i]
f denotes the corresponding surface area of the particu-

lar surface element, whilên[i]
S represents the outwardly ori-

ented unit vector perpendicular to that surface element. Now
the time-domain multipole amplitudes are easily found by a
summation of all of the dipoles fields via suitable convolution
integrals containing the current momentsc

[i]
el andc

[i]
mag (Oet-

ting and Klinkenbusch, 2005; Klinkenbusch and Oetting,
2007). In a discrete form (at time-stepsk1t (k=0,1,2, ...))
and applying a temporal linear interpolation of the discrete
current momentsc k [i]

el :=c
[i]
el (k1t ) and c

k [i]
mag:=c

[i]
mag(k1t ),

we arrive at the following numerically implementable rep-
resentations:

an,m(k1t )=
(−1)n+m

2n(n+ 1)
×

×

{
Z

Nel∑
i=1

w−1∑
l=−w

[
ψ l,[i]n

(
c
k−l [i]
el + l1k−l

ce

)
· ζ [i]

n,m

−
χ
l,[i]
n

1t
1k−l
ce · ξ [i]

n,m

]

+

Nmag∑
i=1

w−1∑
l=−w

ψ
l,[i]
n

1t
1k−l
cm · π [i]

n,m

}
, (3)

and

bn,m(k1t )=
(−1)n+m

2n(n+ 1)
×

×

{
1

Z

Nmag∑
i=1

w−1∑
l=−w

[
ψ l,[i]n

(
c k−l [i]mag + l1k−l

cm

)
· ζ [i]

n,m

−
χ
l,[i]
n

1t
1k−l
cm · ξ [i]

n,m

]

−

Nel∑
i=1

w−1∑
l=−w

ψ
l,[i]
n

1t
1k−l
ce · π [i]

n,m

}
. (4)

Here we have used the abbreviations

1l
ce =

(
c
l,[i]
el − c

l−1,[i]
el

)
and 1l

cm =

(
c l,[i]mag − c l−1,[i]

mag

)
for all l ∈ Z, where the three vector functionsζ

[i]
n,m, ξ [i]

n,m and
π

[i]
n,m are defined by

ζ [i]
n,m =

1

r [i]

(
n(n+ 1)Y [i]

n,−mr̂ + n
[i]
n,−m

)
,

ξ [i]
n,m =

1

vc

(
n(n+ 1)Y [i]

n,−mr̂ + 2n
[i]
n,−m

)
,

π [i]
n,m =

1

vc
m

[i]
n,−m.

Note that Y
[i]
n,−m=Yn,−m(ϑ

[i], ϕ[i]),

m
[i]
n,−m=mn,−m(ϑ

[i], ϕ[i]) and n
[i]
n,−m=nn,−m(ϑ

[i], ϕ[i]).

The two scalar factorsχ l,[i]n andψ l,[i]n represent integrals
within the interval [l1tvc

r [i]
, (l + 1)1tvc

r [i]
], (l ∈ Z), which

involve Legendre polynomials and which can be evaluated
completely analytically. The first factor reads

ψ l,[i]n =
τ

[i]
l+1P

′
n(t

[i]
l+1)rect(t [i]l+1)− τ

[i]
l P

′
n(t

[i]
l )rect(t [i]l )

n(n+ 1)
,

wherePn denotes a Legendre polynomial of the first kind

and ordern, t [i]l =l1tvc
r [i]

, andτ [i]
l =

(
t
[i]
l

2
− 1

)
. The rectangle

function is defined in the usual way as

rect(x)=

{ 1 : |x| < 1/2
1/2 : |x|=1/2

0 : |x| > 1/2.

In the casen>1 the second factor reads

χ l,[i]n =
λ
l+1,[i]
n rect(t [i]l+1)− λ

l,[i]
n rect(t [i]l )

(n− 1)(n+ 2)
,

with

λl,[i]n =τ
[i]
l

(
t
[i]
l P

′
n(t

[i]
l )− Pn(t

[i]
l )
)
.

In the casen=1 we finally derive

χ
l,[i]
1 =

1

3

[
t
[i]
l+1

3
rect(t [i]l+1)− t

[i]
l

3
rect(t [i]l )

+

(
rect(t [i]l+1)− rect(t [i]l )

)2 ]
.

In order to efficiently fit the calculation of this expressions
into the time-stepping of the time-domain near-field solver,
the Legendre polynomials can be calculated by a recently
proposed time-recursive scheme (Adam and Klinkenbusch,
2006): (

Pn(t
[i]
l+1)

τ
[i]
l+1P

′
n(t

[i]
l+1)

)
=M [i]

l

(
Pn(t

[i]
l )

τ
[i]
l P

′
n(t

[i]
l )

)
,

where the update operatorM [i]
l is given by

M [i]
l =

4τ [i]
l+1

4τ [i]
l+1−1[i]2n(n+1)

×

×


4τ [i]
l+1+1

[i]2n(n+1)

4τ [i]
l+1

1[i]τ
[i]
l+1+1

[i]τ
[i]
l

2τ [i]
l τ

[i]
l+1

1[i]n(n+1)
4τ [i]
l +1[i]2n(n+1)

4τ [i]
l

 ,
with temporal increment1[i]

=
1tvc
r [i]

.

4 Evaluation of antenna far- and near-fields

Consider an arbitrary linear antenna which radiates into the
free unbounded space. The related electromagnetic problem
is solved by a suitable near-field solver (as FDTD) using a

www.adv-radio-sci.net/7/43/2009/ Adv. Radio Sci., 7, 43–48, 2009



46 J. Adam and L. Klinkenbusch: Efficient evaluation of antenna fields

Fig. 1. CAD drawing of the antipodal Vivaldi antenna.

wide-band pulse as the antenna input signal. The correspond-
ing time-domain far-field multipole amplitudes are then eval-
uated as proposed in Sect.3. The corresponding frequency-
domain multipole amplitudesAn,m andBn,m are formally re-
lated to the time-domain ones by the modified Fourier trans-
forms

An,m(ω) = j−n ω

vc

∞∫
−∞

an,m(t)e
−jωtdt, (5)

Bn,m(ω) = j−n ω

vc

∞∫
−∞

bn,m(t)e
−jωtdt. (6)

Thus, we obtain the frequency-domain multipole amplitudes
for the entire range of the spectrum of the input pulse by
a (generally numerically performed but cheap) Fourier trans-
form. The frequency-domain electromagnetic field at any de-
sired frequency and any desired point outside the minimum
sphere is then analytically obtained by means of simply eval-
uating (1) and (2).

As a consequence, these representations can be used to
conveniently and analytically post-process the antenna near-
and far-field and to obtain any related parameters.

5 Numerical Results: Vivaldi Antenna Fields by means
of an FDTD solver

The proposed multipole-based near-to-far-field algorithm
has been integrated into a (for research purposes pro-
vided) source-code of XFdtd, a commercially available 3-D
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Fig. 2. Spectrum of the transient feed pulse, defined by
1t=2.9345 ps,fc=5 Ghz, andβ=200 time-steps.

FDTD code (Remcom Inc., 1998) (scattered field formula-
tion, PML). In this case, the near-field data is given in dis-
crete form (Taflove and Hagness, 2005; Kunz and Luebbers,
1993). The discrete convolution sums (3) and (4) have been
implemented in the FDTD time-stepping process. Hence,
the multipole amplitudesan,m and bn,m are calculated as
“on the fly” with the FDTD nearfield solver. During the
post-processing stage, the frequency-domain multipole am-
plitudes have been computed by the means of equations (5)
and (6) through a numerical (discrete) Fourier transforma-
tion.

The implementation has been applied to determine the ra-
diation pattern of an ultra wide-band balanced antipodal Vi-
valdi antenna1. The antenna is comprised of three perfectly
electrically conducting (PEC) layers where the outer ground
plane layers are flared in the opposite direction of the Vi-
valdi. The substrate of the antenna is 49×90×3.15 mm3 and
is constructed of a Duroid material with a relative permittiv-
ity of 2.32; see Fig.1 for a CAD drawing of the structure. In
order to obtain a wide-band and well defined spectrum, the
antenna feed is driven by a Gaussian modulated sine pulse

s(t) = E0e
−α(t−β1t )

2
sin(2πfc(t − β1t )),

with center frequencyfc=5 GHz. 1t=2.9345 ps denotes
the temporal increment (in seconds) given by the FDTD
solver, the pulse widthβ (in time-steps) is defined by

β=
4

√
α1t

=200, and the loss factor readsα=

(
4
β1t

)2
. The

corresponding frequency spectrum is shown in Fig.2. The
feed is applied in line with the center conductor at the base

1http://www.remcom.com/xfdtd/examples/
vivaldi-antenna-geometry.html
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Fig. 3. Three dimensional radiated power pattern (normalized) at
1 GHz.

Fig. 4. Three dimensional radiated power pattern (normalized) at
2 GHz.

of the strip line. The source resistance at the feed is set to
50 Ohms to best match the input impedance of the antenna.
The XFdtd antenna is simulated using 1.5×1.575×1.5 mm3

cells (ŷ dimension modified to match the 3.15 mm thickness)
in a space of 68×43×101 cells (plus eight cells of PML in
each direction). The obtained frequency-domain multipole
amplitudes are employed to determine high-resolution three-
dimensional power radiation patterns of the provided antenna
within the entire (discrete) spectrum of the input pulse, which
is easily seen to be

P(ω, ϑ, ϕ)=
4π

κ2
0E

2
0

∣∣∣∣∣∑
n,m

jn
[
− An,m(ω) nn,m(ϑ, ϕ)

−Z0 Bn,m(ω) mn,mϑ, ϕ))
]∣∣∣∣∣

2

.

Fig. 5. Three dimensional radiated power pattern (normalized) at
5 GHz.

Fig. 6. Three dimensional radiated power pattern (normalized) at
9 GHz.

The low computational cost of this post-processing even ad-
mits to produce radiation-pattern-films within a few minutes.
Figs.3–6 show the radiated power patterns for an input fre-
quency of 1 GHz, 2 GHz, 5 GHz and 9 GHz, respectively.

6 Conclusions

We have presented an efficient method to calculate
frequency-domain near-and far-fields of antennas for a wide
frequency spectrum by a single time-domain run of an arbi-
trary near-field solver. We have demonstrated the applicabil-
ity of the present method by the implementation into a stan-
dard FDTD code including an analysis of an ultra wide-band
balanced antipodal Vivaldi antenna.
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