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Abstract. It is shown that the well-known Voltage Source
Shift Theorem due to Blakesley and its dual version, the Cur-
rent Source Shift Theorem as well as the rules for the trans-
formation of networks with loops of capacitors or cut sets of
inductors into networks without such loops or cutsets, resp.,
and the relationships between capacitance coefficients and
partial capacitors are special cases of general theorems on the
terminal behavior of networks. The proof of these theorems
is based on the theory of terminal behavior of networks. For
these proofs we do not need the substitution theorem with
its strong uniqueness assumptions. This fact is an essential
advantage in comparison to the original proof given by Chua
and Green.

1 Introduction

The the Voltage Source Shift Theorem (Desoer and Kuh,
1969; Chua, 1987) goes back to the paper of T. H. Blakesley
in 1894.

Blakesley considers two cases. In the first one a voltage
source is shifted from one branch of an incidence cut into
the complementary subset of branches of this cut. In the sec-
ond one a voltage source is shifted from one branch of an
arbitrary cutset into the complementary subset of branches
of this cutset.

The Current Source Shift Theorem (Desoer and Kuh,
1969; Chua, 1987) is the dual form of the Voltage Source
Shift Theorem. While the latter is definitely connected with
the name of Blakesley, we was unable to identify the inventor
of the Current Source Shift Theorem.

Chua and Lin consider in Problem 10-9 of Chua and Lin,
1975 a network including a subnetwork which consists of
only one loop with four capacitors. It is to show that this
subnetwork can be replaced by a tree of three coupled capac-
itors such that the original and the modified subnetwork have
the same terminal behavior. Analogously, they consider there
in Problem 10-11 a network including a subnetwork consist-
ing of four inductors which are a cutset of the given network.
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It is to show that one of these inductors can be replaced by a
short circuit while the other three inductors are to be replaced
by some coupled inductors such that again the original and
the modified subnetwork have the same terminal behavior.

Chua and Green generalize in Chua and Green, 1976 these
equivalences to nonlinear RLCM-networks including capac-
itor voltage-source loops or inductor current-source cutsets.

In almost all of today’s circuit simulators the network
models to be analyzed are described by means of differential-
algebraic equations. The so called index (Hairer and Wanner,
1996; Reich, 1992) describes an essential property of this
class of equations. The equivalences considered in Chua and
Green, 1976 can be used to reduce the index of the corre-
sponding differential algebraic equation. This is an essential
feature for the development of circuit simulation software
since index reduction improves the convergence properties
of numerical integration procedures for this special type of
equations.

For the proof of these equivalences Chua and Green use
mathematical induction. To verify the corresponding base
step they rely on the Substitution Theorem of network the-
ory (Desoer and Kuh, 1969; Chua, 1987). This fact is the
Achilles heel of their proof since the Substitution Theorem
can be used only, if both the original network and the network
modified by means of this theorem have the same finite num-
ber of solutions (cf. Haase, 1985) or, in the standard version
(Desoer and Kuh, 1969, Chua, 1987), only unique solutions.
Take into account, for nonlinear networks it is impossible to
ensure that this assumption is always fulfilled.

The examples of equivalent networks mentioned above are
special cases of more general theorems of the terminal be-
havior of networks. Here we present only the central results
and the ideas behind their proofs; a paper with the complete
proofs is in preparation (Reibiger, 2009).

For network theoretical notations used in the following we
refer to (Reibiger, 2008, 2003a, b). Especially we need here
the notions ofconstitutiveandbehavioral equationsof a net-
work, of matrix representationsof the elements of itsuniver-
sal signal set, of theprojectionsof its solution setdefined by
subsets of its branch set and that of thecanonical represen-
tativesof its terminal behaviorwith respect to a prescribed
terminal class family.
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The constitutive relation of a networkN=(C,V) is de-
noted as aconductance-likeconstitutive relation if it is not
only any binary relation but rather a right-unique relation,
i.e. a mapping which assigns to each elementu of domV a
uniquei=V(u). Similarly we refer toV as anresistance-like
constitutive relation ifV is a left-unique relation. ThenV−1

is a mapping which assigns to each elementi of its domain
a uniqueu=V−1(i). It must be emphasized that a network
with a conductance- or resistance-like constitutive relation is
not necessarily a resistive network and not necessarily a lin-
ear one, too.

2 Generalized Current Source Shift Theorems

The Current-Source Shift Theorem (Desoer and Kuh, 1969;
Chua, 1987) is one of the classical theorems on the terminal
behavior of networks.

In this section we consider a connected network
N=(C,V) with associated reference directions, with at least
one loop, and without self-loops. We assume thatN con-
sists of two complementary subnetworksN vs andN cl. The
subnetworkN vs has the branch setZvs and consists of in-
dependent voltage sources only, of course, without voltage-
source loops. The subnetworkN cl has the branch setZcl and
a conductance-like constitutive relation. Branch and node
set ofN are denoted byZ andK, resp. Clearly, it holds
Z=Zvs

∪ Zcl.
SinceN does not include self-loops, each of its loops con-

sists of at least two branches.
BecauseN has associated reference directions there exists

an oriented graphG such thatC=(G,G).
SinceN vs is loopless, there exists inG a spanning tree

Gtr with a branch setZtr consisting of all branches ofZvs

and a minimal subsetZcl
tr ⊂ Zcl, i.e.,Ztr=Zvs

∪ Zcl
tr . Be-

causeN includes at least one loop, the corresponding set
Zlk :=Zcl

lk :=Zcl
\Zcl

tr of links is nonvoid and consists merely
of branches ofZcl.

A suitable numbering of the branches ofN presupposed
the fundamental cutset matrix ofN defined byGtr can be
partitioned as follows

S =

(
Evs 0 F vs

0 Ecl F cl

)
, (1)

whereEvs andEcl are|Zvs
|×|Zvs

| or |Zcl
tr |×|Zcl

tr | unit ma-
trices, resp.

Using numberings of the branch setsZvs, Zcl, Zcl
tr ,

andZcl
lk , preserving the arrangement of the corresponding

branches introduced by the numbering ofZ to fix the matrix
S in Eq. (1) we assign to each signal pair(u, i) of the univer-
sal signal set ofN matrix representations of the quantities
u, uZvs, uZcl , uZcl

tr
, uZcl

lk
, andi, iZvs, iZcl , iZcl

tr
, iZcl

lk
. These

matrix representations are now in the same order denoted by
u, uvs, ucl, ucl

tr , ucl
lk andi, i vs, i cl, i cl

tr , i cl
lk , resp.

Because the subnetworkN vs consists of independent volt-
age sources only and its complementary subnetworkN cl has
a conductance-like constitutive relation, there exists a col-
umn matrix upv and a column-matrix valued mappingG
such that

uvs
= upv

| domuvs and i cl
= G(ucl) (2)

are constitutive equations ofN vs orN cl , resp. The elements
of upv are the prescribed voltages ofN vs andi cl

=G(ucl) is
a representation of the constitutive relation ofN cl in conduc-
tance form.

The restriction ofupv to the domain ofuvs on the right
hand side of Eq. (2) is necessary since in the general case
the signal pairs(u, i) ∈ V have domains which are proper
subintervalls1 of domupv . But to simplify the notation we
skip the appendix “| domuvs” in the following.

To determine the terminal behavior ofN with respect to
K we connectN with a norator networkÑ with skeleton
C̃=(G̃, −G̃) where G̃ is a tree with node set̃K:=K and a
branch setZ̃ with |Z̃|=|Ztr| branches. The branches of this
tree are connected parallel to that ofGtr.

Let N̄ denote this interconnection.
For the analysis ofN̄ then an appropriate system of be-

havioral equations is setted up. Elimination of the branch
voltages and currents of its subnetworkN results in a system
of constitutive equations of a canonical representative of the
terminal behavior ofN defined by the skeleton(G̃, G̃). After
an exchange of variables we obtain the following theorem.

Theorem 2.1 Let N̂=(Ĉ, V̂) denote that canonical repre-
sentative of the terminal behavior ofN defined by the skele-
ton Ĉ:=(Gtr,Gtr).

Then the constitutive relation of̂N can be represented with

Svs
:= ( 0 F vs) , Scl

:= (Ecl F cl) , (3)

by means of the system

uvs
= upv , i cl

= SclG(tSclucl
+

tSvsupv) (4)

of constitutive equations in hybrid form.

As a canonical representative of the terminal behavior of
N the networkN̂ does not include any loops.

3 Generalized Voltage Source Shift Theorems

Blakesley’s Voltage Source Shift Theorem (Blakesley, 1994;
Desoer and Kuh, 1969; Chua, 1987) is a further example of
one of the classical theorems on the terminal behavior of net-
works.

In this section we consider a networkN=(C,V) with as-
sociated reference directions, branch setZ, node setK, and

1Typical examples for such situations are networks with finite
escape times, cf. e.g. Chua and Lin, 1975, p. 442.
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a resistance-like constitutive relation. BecauseN has asso-
ciated reference directions, there exists an oriented graphG
such thatC=(G,G).

In difference to Sect.2 we consider here the terminal be-
havior ofN with respect to a prescribed terminal class fam-
ily (Kl)l∈L which includes in the general case more than one
terminal class. Especially we are here interested in that cut-
sets of the corresponding interconnections consisting only of
branches ofZ and do not partition anyone of the terminal
classesKl (l ∈ L). We assume that each such cutset consists
of at least two branches.

In difference to Sect.2 our prior aim is here not the deter-
mination of some canonical representatives of the terminal

behavior ofN but rather the determination of a network¯̄N
with the same skeleton and the same terminal behavior as the
given networkN whereas additionally some branches ofZ
are realized in¯̄N by a short-circuit.

To determine the terminal behavior ofN , and later on
that of ¯̄N , with respect to(Kl)l∈L we connect their terminal
classes with a norator network̃N with skeletonC̃=(G̃, −G̃)

and branch set̃Z. The graphG̃ is a forest. The node set of
each tree of this forest is equal to exactly one of the terminal
classesKl (l ∈ L). The interconnection ofN with Ñ may
be denoted byN̄=(C̄, V̄). Let Ḡv andḠc denote its voltage
and current graph and̄Z its branch set.

There exists a minimal subsetZfo ⊂ Z such that the sub-
graphs of the voltage and the current graph ofN̄ generated
by Z̄fo:=Z̃ ∪ Zfo are spanning forests of these graphs. Let
Zlk :=Z \ Zfo denote the corresponding set of links. Us-
ing an appropriate numbering of the branches ofN̄ there
exist a|Zlk |×|Z̃| matrix F̃ , a |Zlk |×|Zfo| matrix F , and a
|Zlk |×|Zlk | unit matrixE such that the matrices

M̄v=(−F̃ F E), M̄c=(F̃ F E) (5)

are the fundamental loop matrices of the voltage and current
graph ofN̄ , resp., defined by these spanning forests.

The branches ofZfo are that branches realized in¯̄N by
short-circuits.

By means of the same numbering of the branches ofZ̄
used for the determination of the matricesM̄v andM̄v we as-
sign to each signal pair(ū, ı̄) of the universal signal set of̄N
a matrix representation. For simplicity this matrix represen-
tation is denoted again by(ū, ı̄).

Using numberings preserving the arrangements of the
branches of the subsetsZ, Z̃, Zfo, Zlk ⊂ Z̄ defined by
the numbering of the branches of̄Z we assign toūZ , ūZ̃ ,
ūZfo , ūZlk and toı̄Z , ı̄Z̃ , ı̄Zfo , ı̄Zlk the corresponding matrix
representations. These matrix representations are denoted in
the same order byu, ũ, ufo, ulk andi, ı̃, ifo, ilk .

BecauseN has a resistance-like constitutive relation there
exists a column-matrix valued mappingR such that the con-

stitutive relation ofN can be represented by the following
constitutive equation

u=R(i) (6)

in resistance form.
For the representation of the constitutive relation of¯̄N by

means of a system of constitutive equations we introduce the
ansatz

ufo = 0, ulk = MR(tR ilk) . (7)

Let N̂=(Ĉ, V̂) andŇ=(Č, V̌) denote the canonical repre-

sentatives of the terminal behavior ofN or ¯̄N , resp.defined
by the skeleton̂C:=Č:=(G̃, G̃).

The proof that the networksN and ¯̄N have the same termi-
nal behavior with respect to(Kl)l∈L is now a little bit more
involved then that of the proof of Theorem2.1 in Sect.2.
This is owed the fact that it is now in the general case im-
possible to derive for the canonical representatives of these
networks constitutive equations in closed form. Neverthe-
less it can be shown, for details see Reibiger, 2009, that the
canonical representativeŝN and Ň are identical, because
their skeletons are identical by definition and their consti-
tutive relations are both equal to the set of all pairs(ũ, ı̃)

fulfilling for some value of the variableilk the equations

F̃ ũ = M R(tM ilk) , (8)

ı̃ =
tF̃ ilk (9)

and are therefore identical.
In that manner we obtain a proof for the following theo-

rem.

Theorem 3.1 The networksN and ¯̄N have the same ter-
minal behavior with respect to the terminal class family
(Kl)l∈L.

In the terminology introduced in Willems, 1991, Polder-
mann and Willems, 1998 the system of Eqs. (8) and (9) is an
example for the representation of a constitutive relation by
means of a constitutive equation with a latent variable.

If the branch setZ̃ of the interconnection ofN with the
norator networkÑ includes a spanning coforest, then the
rank of the submatrix̃F of the matricesM̄v andM̄v is equal
to |Zlk |. Under this assumption it is without additional as-
sumptions on the properties of the column-matrix valued
mappingR possible to eliminate the latent variableilk in-
cluded in Eq. (8). This elimination results in a constitutive
equation forN̂ hybrid form.

In Reibiger, 2009 a generalization of Theorem3.1 is
proved wherein forN networks are admitted which include
additionally subnetworks consisting of independent current
sources.
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4 Concluding remarks

We have presented generalizations of the well-known Source
Shift Theorems.

Theorem2.1 includes as special cases both the Current
Source Shift Theorem and some of the examples discussed in
Chua and Lin, 1975. Since the constitutive relations of non-
degenerated linear and nonlinear capacitor networks can be
represented by conductance-like constitutive equations, the
theorem of Chua and Green (Chua and Green, 1976) for the
elimination of loops consisting of coupled capacitors and in-
dependent voltage sources is another special case of Theo-
rem2.1.

Theorem3.1 includes as special cases both Blakesley’s
Voltage Source Shift Theorem and some of the examples
discussed in Chua and Lin, 1975. Since the constitutive
relations of nondegenerated linear and nonlinear inductor
networks can be represented by resistance-like constitutive
equations, the theorem of Chua and Green (Chua and Green,
1976) for the elimination of cutsets consisting of coupled in-
ductors and independent current sources is also a special case
of Theorem3.1 and its generalization proved in Reibiger,
2009.

The proofs of these theorems are obtained by a unified
method based on a theory of terminal behavior of networks
developed in Reibiger, 1985, 1986, 2003. The interconnec-
tion of the networks under consideration with trees or forests
of norators are substantial parts of this approach. Other ap-
plications of this method are to find in Reibiger, 1986, 1997,
2008; Reibiger et al., 2003. By the way, these results show
that norators (and nullators, too) are by no means “patholog-
ical” objects in network theory since their introduction sim-
plifies and unifies the representation of network theory and
delivers even starting points for developing important analy-
sis methods.

The most essential applications of the Theorems2.1 and
3.1are their use for the reduction of the index of differential-
algebraic equations (Reich, 1992) for the analysis of RLCM
networks by the elimination of voltage source-capacitor
loops and current source-inductor cutsets.

For index reduction by means of an elimination of the volt-
age source-capacitor loops of any RLCM network by means
of Theorem2.1the networkN introduced in Sect.2 has to be
that subnetwork of the given network which includes all volt-
age sources and capacitors which form such loops. Clearly,
it can be thereby not permitted that some of the terminals of
this subnetwork are in its complementary “external” network
directly connected by capacitors or voltage sources.

Similarly, for index reduction by means of an elimina-
tion of the current source-inductor cutsets of any RLCM net-
work by means of Theorem3.1the networkN introduced in
Sect.3 has to be that subnetwork of the given network which
includes all current sources and inductors which form such
cutsets.

A simple algorithm for the detection of the corresponding
subnetworks of a given network is described in Pottle, 1966.
This algorithm is based on the transformation of the inci-
dence matrix of the voltage (or current) graph of the network
under consideration into a row-echelon form.

If N is a capacitor network withn nodes whose voltage
graph is a complete graph (cf. Thulasiraman and Swamy,
1992) with(n + 1)n/2 branches, then it is by Theorem2.1
possible to replace this network by a canonical represen-
tative N̂ consisting ofn coupled capacitors whose voltage
graph is a star-like tree. This transformation is the inverse
of a classical transformation (Sommerfeld, 1988, Meetz and
Engl, 1980, Leuchtmann, 2005) assigning to the matrix of
capacitance coefficients introduced by J. C. Maxwell, (1980,
art. 87), a network consisting of so called partial capacitors
since the matrix of capacitance coefficients can be directly in-
terpreted as the coefficient matrix of a system of constitutive
equations of a network with a star-like voltage graph consist-
ing of coupled capacitors Meetz and Engl, (1980, 482 pp.).
Both kinds of capacitive networks can be used as models for
physical multi-electrode capacitors. Yet, from the point of
view of the theory of differential-algebraic equations as well
as the theory of state-space equations it follows that for mod-
eling of a physical multi-electrode capacitor there are gen-
erally network models based on a tree of coupled capacitors
to prefer over that based on a complete graph of uncoupled
capacitors.

The proof of Theorems3.1is not a dualization of the proof
of Theorem2.1, resp. It seems to be of interest whether in the
theory of graphoidale networks (Reibiger and Loose, 2007)
such a dualization is possible. However for this purpose it
would be first necessary to develop for this class of general-
ized networks a theory of multiport behavior as a counterpart
to the theory of terminal behavior considered in Reibiger,
2003a.
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