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Abstract. It is shown that the well-known Voltage Source It is to show that one of these inductors can be replaced by a
Shift Theorem due to Blakesley and its dual version, the Cur-short circuit while the other three inductors are to be replaced
rent Source Shift Theorem as well as the rules for the transby some coupled inductors such that again the original and
formation of networks with loops of capacitors or cut sets of the modified subnetwork have the same terminal behavior.

inductors into networks without such loops or cutsets, resp., Chua and Green generalize in Chua and Green, 1976 these
and the relationships between capacitance coefficients angguivalences to nonlinear RLCM-networks including capac-

partial capacitors are special cases of general theorems on th@y voltage-source loops or inductor current-source cutsets.
terminal behavior of networks. The proof of these theorems In almost all of today’s circuit simulators the network

is based on the theory of terminal behavior of networks. Formodels to be analyzed are described by means of differential-

these proofs we do not need the substitution theorem wit Igebraic equations. The so called index (Hairer and Wanner,

its strong uniqueness assumptions. This fact is an essentiﬁg%, Reich, 1992) describes an essential property of this

gg\éaen:zgﬁ in comparison to the original proof given by Chuaclass of equations. The equivalences considered in Chua and

Green, 1976 can be used to reduce the index of the corre-

sponding differential algebraic equation. This is an essential

feature for the development of circuit simulation software

1 Introduction since index reduction improves the convergence properties
of numerical integration procedures for this special type of

The the Voltage Source Shift Theorem (Desoer and Kuhequations.

1969; Chua, 1987) goes back to the paper of T. H. Blakesley £ yhe proof of these equivalences Chua and Green use

in 1894. . ! mathematical induction. To verify the corresponding base
Blakesley considers two cases. In the first one a voltaggien, they rely on the Substitution Theorem of network the-
source is shifted from one branch of an incidence cut |ntoOry (Desoer and Kuh, 1969: Chua, 1987). This fact is the
the complementary subset of branches of this cut. In the Sec chjjies heel of their proof since the Substitution Theorem
ond one a voltage source is shifted from one branch of an,, e ysed only, if both the original network and the network
arblt_rary cutset into the complementary subset of branChe?hodified by means of this theorem have the same finite num-
of this cutset. ber of solutions (cf. Haase, 1985) or, in the standard version

Th(_a Current Source Shift Theorem (Desoer and Kuh,pegoer and Kuh, 1969, Chua, 1987), only unique solutions.
1969; Chua, 1987) is the dual form of the Voltage Sourceryye jnto account, for nonlinear networks it is impossible to
Shift Theorem. While the latter is definitely connected with o< re that this assumption is always fulfilled.

the name of Blakesley, we was unable to identify the inventor . .
The examples of equivalent networks mentioned above are

of the Current Source Shift Theorem. ol ’ lth f the terminal b
Chua and Lin consider in Problem 10-9 of Chua and Lin, special cases of more general tneorems ot e terminal be-
havior of networks. Here we present only the central results

1975 a network including a subnetwork which consists of dthe id behind thei o th th let
only one loop with four capacitors. It is to show that this and the ideas benind their proots, a paper wi € complete
g_roofs is in preparation (Reibiger, 2009).

subnetwork can be replaced by a tree of three coupled capa ) ) _ )
itors such that the original and the modified subnetwork have For network theoretical notations used in the following we
the same terminal behavior. Analogously, they consider therefer to (Reibiger, 2008, 2003a, b). Especially we need here

ing of four inductors which are a cutset of the given network. Work, of matrix representationsf the elements of itaniver-
sal signal setof theprojectionsof its solution setlefined by

subsets of its branch set and that of damonical represen-
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68 A. Reibiger: Generalizations of Blakesley’s Source Shift Theorem

The constitutive relation of a netwotk/’=(C, V) is de- Because the subnetwafk's consists of independent volt-
noted as aonductance-likeonstitutive relation if it is not  age sources only and its complementary subnetwétkhas
only any binary relation but rather a right-unique relation, a conductance-like constitutive relation, there exists a col-
i.e. a mapping which assigns to each elemenf domV a umn matrixu”¥ and a column-matrix valued mapping@
uniquei=Y(u). Similarly we refer to) as arresistance-like  such that
constitutive relation i) is a left-unique relation. Then—1 | |
is a mapping which assigns to each elemeot its domain u®=uP’|domu™ and i“=Gu) 2

. _ —1,: .
a.unlqueu_v @. It must be emphaS|zed .‘h"’?t a netvyork are constitutive equations &f** or N/, resp. The elements
with a conductance- or resistance-like constitutive relation is N . s el oh
; - . ~of uP? are the prescribed voltages df* andi =G @) is
not necessarily a resistive network and not necessarily a lin- : e . .
a representation of the constitutive relatioméf in conduc-
ear one, too.
tance form.
The restriction ofuP" to the domain ofz¥s on the right
2 Generalized Current Source Shift Theorems hand side of Eq.4) is necessary since in the general case
the signal pairgu, i) € V have domains which are proper
The Current-Source Shift Theorem (Desoer and Kuh, 1969subintervall$ of domuP" . But to simplify the notation we

Chua, 1987) is one of the classical theorems on the termina$kip the appendix|'dom«'®" in the following.
behavior of networks. To determine the terminal behavior &f with respect to

In this section we consider a connected network/C We connect\ with a norator network\" with skeleton
N=(C, V) with associated reference directions, with at leastC=(g, —g) whereg is a tree with node set’:=K and a
one loop, and without self-loops. We assume thaton-  branch set with | Z|=| 2| branches. The branches of this
sists of two complementary subnetwork®S and /¢, The  tree are connected parallel to thatgf.
subnetwork\/Vs has the branch sef's and consists of in- Let \V denote this interconnection.
dependent voltage sources only, of course, without voltage- For the analysis of\" then an appropriate system of be-
source loops. The subnetwokk® has the branch st and havioral equations is setted up. Elimination of the branch
a conductance-like constitutive relation. Branch and nodevoltages and currents of its subnetwavkresults in a system
set of A" are denoted by and K, resp. Clearly, it holds of constitutive equations of a canonical representative of the
Z—zvsy zo. terminal behavior o\ defined by the skeletot;, G). After

sists of at least two branches. A oA A .
Theorem 2.1 Let A'=(C, V) denote that canonical repre-

Because\ has associated reference directions there exists . . . i
an oriented grapt such thal=(G., G). Sentative of the terminal behavior &f defined by the skele-

; S i ot i ; tonC:=(Gy, Gur). R
gtrSvI\:;fheQ/;r:;clﬁosp(l,ejzstrs’c:)r;lesriitii)ssgi ﬁ ‘Z;ﬁiﬂg?%gf © Then the constitutive relation ¢f can be represented with
and a minimal subsez{' c 29, ie., Zy=2"SU Z¢'. Be-
causeN includes at least one loop, the corresponding set
Zy:=2g:=2%\ 2Z of links is nonvoid and consists merely by means of the system
of branches ofz¢.

A suitable numbering of the branches. &t presupposed
the fundamental cutset matrix @&§ defined byG; can be
partitioned as follows

Svs = ( 0 FVS) , Scl = (ECI FCI) , (3)

uS=uPv, i¢= SCIG(tSclucl + tSvsupv) (4)
of constitutive equations in hybrid form.

As a canonical representative of the terminal behavior of

S <E(\)/s E0c| 1;\5) ’ ) N the network\ does not include any loops.

whereEVS and E€ are|2VS|x |2V or | 2§ | x| 28| unitma- 3 Generalized Voltage Source Shift Theorems

trices, resp.

Using r?umberings of the branch seg's z¢ Ztcrl Blakesley’s Voltage Source Shift Theorem (Blakesley, 1994;
and Z¢|, preserving the arrangement of the correspondingP€S0€r and Kuh, 1969; Chua, 1987) is a further example of
branches introduced by the numberingfo fix the matrix ~ O of the classical theorems on the terminal behavior of net-

S in Eq. (1) we assign to each signal pair, i) of the univer-  WOTKS.

sal signal set of\’ matrix representations of the quantities !N this section we consider a netwatk=(C, V) with as-
U, ez, Uz, Uzl Uz, andi, iz, iza, i zg), iz These Sociated reference directions, branch Sghode sek’, and

matrix representations are now in the same order denoted by 1Typical examples for such situations are networks with finite

u, u's, u®, utCr', uﬁ(' andi,iVs,i®, itf', ilﬁ', resp. escape times, cf. e.g. Chua and Lin, 1975, p. 442.
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A. Reibiger: Generalizations of Blakesley’s Source Shift Theorem 69

a resistance-like constitutive relation. Becaléeéhas asso-  stitutive relation of AV can be represented by the following
ciated reference directions, there exists an oriented gfaph constitutive equation
such thaC=(g, §).

In difference to Sect2 we consider here the terminal be- u=R(i) (6)
havior of A with respect to a prescribed terminal class fam-j resistance form.
ily (Kp)ieL which includes in the general case more than one ko the representation of the constitutive relationibby

terminal class. Especially we are here interested in that Cutyeans of a system of constitutive equations we introduce the
sets of the corresponding interconnections consisting only ofns5t2

branches ofZ and do not partition anyone of the termingl uio =0, up=MR(Riy). (7)
classesC; (I € L). We assume that each such cutset consists NN . e )
of at least two branches. Let V'=(C, V) andN'=(C, V) denote the canonical repre-

In difference to Sect our prior aim is here not the deter- Sentatives of the terminal behavior.f or V, resp.defined
mination of some canonical representatives of the terminaPy the skeletor’:=C:=(g, §). 3
behavior ofA” but rather the determination of a netwokk The proof that the networks” and\” have the same termi-
with the same skeleton and the same terminal behavior as tHa@l behavior with respect t0€;),¢.. is now a little bit more

given network\” whereas additionally some branchesf ~ involved then that of the proof of Theoretl in Sect.2.
are realized inV by a short-circuit This is owed the fact that it is now in the general case im-

. . ) possible to derive for the canonical representatives of these
To determine the terminal behavior df, and later on  henyorks constitutive equations in closed form. Neverthe-
that of \V, with respect tak;),c, we connect their terminal  |ess it can be shown, for details see Reibiger, 2009, that the
classes with a norator networK with skeletonC=(G, —G)  canonical representative§ and A are identical, because
and branch se€. The graphg is a forest. The node set of thejr skeletons are identical by definition and their consti-
each tree of this forest is equal to exactly one of the terminaktive relations are both equal to the set of all paifsi)

classes<; (I € L). The interconnection ol with A" may fulfilling for some value of the variablgy the equations
be denoted b\V'=(C, V). Let G, andG. denote its voltage

and current graph an# its branch set. Fi=MRM iy, (8)

There exists a minimal subsgt, C Z such that the sub- P =iy 9)

graphs of the voltage and the current grapb\ofyenerated

by Zio:=Z U Z;, are spanning forests of these graphs. Letand are therefore identical.

Zik:=Z \ Zj denote the corresponding set of links. Us-  In that manner we obtain a proof for the following theo-

ing an appropriate numbering of the branches\bfthere  rem.

exist a|Zi|x|Z| matrix F, a|Zik|x|Z5| matrix F, and a :

| Zik| x| 21| unit matrix E such that the matrices Theorem 3.1 The networks\V" and A have the same ter-
minal behavior with respect to the terminal class family

My=(—F F E), Mc=(F F E) (5) (KieL-

In the terminology introduced in Willems, 1991, Polder-
are the fundamental loop matrices of the voltage and currengnann and Willems, 1998 the system of E@.4nd @) is an

graph ofV, resp., defined by these spanning forests. example for the representation of a constitutive relation by
The branches o, are that branches realized I by means of a constitutive equation with a latent variable.
short-circuits. If the branch setZ of the interconnection alV" with the

norator network\/ includes a spanning coforest, then the
rank of the submatri¥’ of the matrices\t, and M, is equal

to | Zk|. Under this assumption it is without additional as-
sumptions on the properties of the column-matrix valued

By means of the same numbering of the br_ancheg_of
used for the determination of the matrices and M, we as-
sign to each signal paiiz, 1) of the universal signal set df

matrix representation. For simplicity this matrix represen- . : o . .
zatioi i di?]oetzz aga?n Wol_)s plctly this ma eprese mapping R possible to eliminate the latent variahig in-
_ . T cluded in Eqg. 8). This elimination results in a constitutive
Using numberings preserving the arrangements of theequation for\/ hybrid form.
branches of the subsess, Z, Zi, Zk C Z defined by

the numbering of the branches Bfwe assign taiz, iz, proved wherein forV' networks are admitted which include

Uz, Uiz, AN 1012, 15, 15, 1, the corresponding matrix  ,qgitionally subnetworks consisting of independent current
representations. These matrix representations are denoted & rces.

the same order by, i, uso, ux andi, 1, i, i-
BecauseV has a resistance-like constitutive relation there
exists a column-matrix valued mappi®gsuch that the con-

In Reibiger, 2009 a generalization of Theorerl is
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70 A. Reibiger: Generalizations of Blakesley’s Source Shift Theorem

4 Concluding remarks A simple algorithm for the detection of the corresponding

subnetworks of a given network is described in Pottle, 1966.
We have presented generalizations of the well-known Sourcd his algorithm is based on the transformation of the inci-
Shift Theorems. dence matrix of the voltage (or current) graph of the network

Theorem2.1 includes as special cases both the Currentunder consideration into a row-echelon form.
Source Shift Theorem and some of the examples discussed in If V' is & capacitor network with nodes whose voltage
Chua and Lin, 1975. Since the constitutive relations of non-9raph is a complete graph (cf. Thulasiraman and Swamy,
degenerated linear and nonlinear capacitor networks can b&992) with (n + 1)n/2 branches, then it is by Theoreznl
represented by conductance-like constitutive equations, th@ossible to replace this network by a canonical represen-
theorem of Chua and Green (Chua and Green, 1976) for théative A consisting ofn coupled capacitors whose voltage
elimination of loops consisting of coupled capacitors and in-9raph is a star-like tree. This transformation is the inverse
dependent voltage sources is another special case of The8f a classical transformation (Sommerfeld, 1988, Meetz and
rem2.1 Engl, 1980, Leuchtmann, 2005) assigning to the matrix of

Theorem3.1 includes as special cases both Blakesley’scapadtance coefficients introduced by J. C. Maxwell, (1980,

Voltage Source Shift Theorem and some of the examplesart' 87), a network consisting of so called partial capacitors

discussed in Chua and Lin. 1975. Since the constitutivesmce the matrix of capacitance coefficients can be directly in-

relations of nondegenerated linear and nonlinear inductoFerpreted as the coefficient matrix of a system of constitutive

networks can be represented by resistance-like constitutivgqumIons of a network with a star-like voltage graph consist-

equations, the theorem of Chua and Green (Chua and Greefl!9 of coupled capacitors Meetz and Engl, (1980, 482 pp.).

1976) for the elimination of cutsets consisting of coupled in- Both kinds of capacitive networks can be used as models for

ductors and independent current sources is also a special caBEyS'Cal mulﬂ-electrode capgcnors. Ygt, from Fhe point of
of Theorem3.1 and its generalization proved in Reibiger view of the theory of differential-algebraic equations as well
2009 " as the theory of state-space equations it follows that for mod-

cFling of a physical multi-electrode capacitor there are gen-
i i erally network models based on a tree of coupled capacitors
method based on a theory of terminal behavior of network y b P

developed in Reibiger, 1985, 1986, 2003. The interconnecbzsgifgrgver that based on a complete graph of uncoupled
tion of the networks under consideration with trees or forests The proéf of Theorems. 1is not a dualization of the proof

of norators are substantial parts of this approach. Other AR5t Theoren? 1, resp Itseéms to be of interest whether in the
pIications.o.f this method are to find in Reibiger, 1986, 1997’theory of graiphoida-le networks (Reibiger and Loose, 2007)
tzhoszBn'oI?aetfrlge(zzrir?; ilﬁllligoc:z. tsg)tgreevgiyr’];hnizzr:giggfhﬁgé\fsuch a dualization is possible. However for this purpose it
S . ’ : o ! _“would be first necessary to develop for this class of general-
ical” objects in network theory since their introduction sim- ized networks a theory of multiport behavior as a counterpart

plifies and unifies the representation of network theory andlto the theory of terminal behavior considered in Reibiger
delivers even starting points for developing important analy-2003a '

sis methods.

The most essential applications of the Theorérisand  AcknowledgementAt this place | would like to thank my former
3.1are their use for the reduction of the index of differential- collaborator T. Nhring for stimulating discussions. Especially the
algebraic equations (Reich, 1992) for the analysis of RLCMKkey to the proof of Theorer8.1goes back to him.
networks by the elimination of voltage source-capacitor
loops and current source-inductor cutsets.
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