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Abstract. In this paper a decision-directed Multiple-Input
Multiple-Output (MIMO) channel tracking algorithm is en-
hanced to raise the channel estimate accuracy. While DDCE
is prone to error propagation the enhancement employs chan-
nel decoding in the tracking process. Therefore, a quantized
block of symbols is checked on consistency via the channel
decoder, possibly corrected and then used. This yields a more
robust tracking of the channel in terms of bit error rate and
improves the channel estimate under certain conditions.

Equalization is performed to prove the feasibility of the
obtained channel estimate. Therefore a combined signal con-
sisting of data and pilot symbols is sent. Adaptive filters are
applied to exploit correlations in time, frequency and spatial
domain. By using good error-correcting coding schemes like
Turbo Codes or Low Density Parity Check (LDPC) codes,
adequate channel estimates can be acquired even at low sig-
nal to noise ratios (SNR). The proposed algorithm among
two others is applied for channel estimation and equalization
and results are compared.

1 Introduction

MIMO-OFDM combines two powerful techniques for next
generation wireless communication systems. For develop-
ment accurate channel estimates of certain environments are
required to derive realistic parameters for Monte-Carlo sim-
ulations of MIMO channels. They can be obtained by ap-
plying a MIMO system and an appropriate channel estima-
tion algorithm in the respective environment. In Akhtman
and Hanzo (2007) a channel tracking algorithm based upon a
MIMO Recursive Least Square (RLS) algorithm is proposed.
MIMO RLS channel estimation has obvious advantages over
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traditional interpolation approaches. On the one hand, time
and spatial diversity can be exploited which makes it suitable
for spatial multiplexing MIMO system design approaches
even in fast time-varying environments. On the other hand,
due to the filter structure the output depends only on the cur-
rent input, therefore the channel estimate is available almost
delay-free rather then after whole frame processing as in in-
terpolation if time variance is reflected.

The paper is structured as follows. The system model is
described in Sect.2. The employed MIMO-OFDM RLS al-
gorithm is reviewed in Sect.3. The enhancement to this algo-
rithm is shown in Sect.4. Finally, the performance of Turbo
Codes and LDPC Codes as channel coding schemes in this
context is compared using the mean square error of the chan-
nel estimate and the MIMO system’s bit error rate (BER)
versus SNR in Sect.5, before concluding in Sect.6.

2 System model

The vector of received valuesr at the time samplem of a
MIMO system is a superposition ofL·NT previously send
samples and the currentNT samples. It is given by

r [m] =

L∑
l=0

H[l, m] · s[m − l] + w[m], (1)

where s[m] denotes the current vector of symbols of ev-
ery transmit antenna,w an identically, independently dis-
tributed (i.i.d.) additive white Gaussian noise term andH
the MIMO channel matrix. The past sent samples are de-
noted bys[m−l], for l 6=0. For simulations the data symbols
of theK subcarrier are modulated by an inverse Fast Fourier
Transform (IFFT). Every value corresponding to a transmit
antenna of the resulting vectors is transmitted using the for-
mula above. If a time variant channel is assumed, for every
samplem the channel matrix differs from the previous one.
It is modeled such that the movement of the terminal results
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in a Doppler shift of the send signal. This property is in-
tegrated inH[l, m] by first generating independent channel
matrices from everym, l and second filtering over timem for
every tapl with the Jakes spectrum, that reflects the spread of
the Doppler shifts in the frequency domain. In a simulation
only a finite number of Doppler frequencies can be realized,
therefore the Jakes spectrum is sampled at 16 non-zero fre-
quencies. The result is a continuously time-varying channel,
even for small terminal velocities (Pätzold, 1999).

In the frequency domain the system model in Eq. (1) can
be described in the time invariant case as

r [n, k] = H[n, k] · s[n, k] + w[n, k], (2)

wheren denotes the time index of an OFDM symbol and
k its subcarrier index. The MIMO channel coefficients
Hr,t , r=1, . . . , nR, t=1, . . . , nT are normal i.i.d. random
variables for every tap. As described above they may vary
over time and frequencyn, k in a MIMO-OFDM frame.
Through the whole discussion and in the simulations a frame
consists of 256 OFDM symbols of which the first 128 are
pilots to train the adaptive filters. The source bits are coded
using modern coding schemes like Turbo Codes and LDPC
Codes. The codes are constructed such that one codeword
fits in an OFDM symbol. Thus for aM-QAM modulation
scheme and code rateRC the codeword length set to

nC = K · RC · log2 M. (3)

It is important for the ability to track time-variant channels
that the symbols in a transmitted OFDM symbol can be de-
coded at once.

For all simulations presented pilots and data symbols are
send to compute a bit error rate as a confidence level for the
estimated channel impulse response.

The pilot tones are organized as in code division multi-
plexing (CDM) manner. A single symbol is mapped to a se-
quence. The sequences are pairwise orthogonal thus prevent-
ing mutual interference. Each transmit antenna sends its own
sequence. A set of orthogonal sequences are (Frank-Zadoff-
Chu, 1972) sequences which are used for channel estimation
in the training phase.

3 Adaptive MIMO RLS channel estimation

The employed MIMO-OFDM-Recursive Least Squares
(RLS) algorithm, proposed in Akhtman and Hanzo (2007),
is due to find a solution to the Wiener-Filter problem:

minE{(r [k] − H[k] · s[k])2
}. (4)

The global solution is called Wiener-Hopf equation

H[k] = (8−1
[k]θ [k])H . (5)

with

8[k] = E
{
s[k] · sH

[k]

}
∀k

θ [k] = E
{
s[k] · rH

[k]

}
∀k. (6)

In general the expectation values are unknown and must be
estimated. To derive the RLS algorithm Eq. (4) is modified
to get the following optimization problem: The channel es-
timateH̃[n, k] at time instantn on subcarrierk should map
the data symbolss[n, k] in such a way that the distance to the
actually received symbols is minimized

minε = min‖r̃ [n, k] − H̃[n, k] · s[n, k]‖2. (7)

The RLS implementation of this solution replaces the expec-
tation value with an exponentially weighted sum. Therefore
the matrices can be calculated recursively:

8[n, k] =

n∑
m=1

ξn−ms[m, k]sH
[m, k]

= ξ8[n − 1, k] + s[n, k]sH
[n, k] (8)

and

θ[n, k] =

n∑
m=1

ξn−ms[m, k]rH
[m, k]

= ξθ [n − 1, k] + s[n, k]rH
[n, k]. (9)

Still Eq. (5) is the global minimum and used to calculate
the channel matrixH. By the ξ weighting, newer samples
have greater impact on the channel estimate thus adaptivity
on time variant channels can be achieved. For lower SNR
a ξ→1 is in favor of averaging noise out but the algorithm
loses its ability to adapt to time varying channels (Haykin,
2001). So a compromise has to be found, it is set toξ :=0.95.

By employing such an estimator for every subcarrier, the
complete channel transfer functionHk

r,t [n] for every SISO
channel of the MIMO system is calculated for every OFDM
symbol.

Next step is to distinct the corresponding meaningful CIR
taps from noise. This is done by an eigenvalue tracking al-
gorithm called Projection Approximation Subspace Tracking
(PAST) (Yang, 1995). The meaningful CIR taps build a sub-
space in the signal space which is reasonably smaller than
the signal space. In tracking only the subspace complexity
can be reduced especially in focus on the third step, in which
the CIR taps are predicted for the next OFDM symbol.

The CIR subspaceαl
r,t [n] can be calculated using an RLS

algorithm which minimizes the following cost function

min
W

J (W) = E{‖H − WWH H‖
2
}, (10)

in which W denotes the subspace transformation matrix.
Again replacing expectation value with an exponentially
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Fig. 1. Block diagram of proposed algorithm enhancement

where
el[n] = α̂l[n]− qH

l [n− 1]α̂l[n− 1] (19)

is the a-priori prediction error, which is given by α̂l[n] =
(αl[n], αl[n− 1], . . . , αl[n−MP + 1])T that covers the his-
tory of the l-th CIR tap. The RLS prediction gain vector is
given by

kl[n] =
Pl[n− 1]α̂l[n]

β + α̂H
l [n]Pl[n− 1]α̂l[n]

(20)

and the recursively calculated, inverse of the covariance matrix
of the relevant CIR taps by

Pl[n] =
1
β

(
IMP +1 − kl[n]α̂H

l [n]
)

Pl[n− 1]. (21)

Likewise, β is a weight factor, but it has been stated that the
impact on the algorithm’s convergence is very low [6]. It is
set to β := 0.9.

IV. THE DDCE ENHANCEMENT

In the discussed algorithm the symbols s are estimated by
equalizing the corresponding received symbols s̃ = H−1r.
A traditional DDCE scheme would then map the symbol
estimates s̃ on the nearest constellation symbols. This can be
described by a quantization operation Q: ŝ = Q{s̃} which
maps the infinite set of equalized symbols to the finite set of
constellation symbols. The output symbol depends only on the
euclidean distance of the symbol estimate to the constellation
symbols as commonly used in ”hard decision“ demodulation.
The algorithm reviewed in the previous section depends highly
on correctly decided symbols ŝ that are used instead of the
at the receiver unknown send symbols s. Once a symbol is
decided wrong the channel estimate is changed and further
symbols are less likely to be correctly equalized. Through the
PAST algorithm frequency coupling the error on a subcarrier
spreads upon the others and finally the predictor outputs
for all subcarriers are affected. The whole process of error
propagation starts and the algorithm is unlikely to recover if
not re-initialized.

Identified the weakness in the quantization it is possible to
make an improvement. As said, to achieve minimum delay in
processing a time varying channel, the channel coding is done
on every OFDM symbol separately. Therefore, the codeword
length is linked to the number of subcarriers as stated in (3);
the associated symbol vector of the t-th antenna is denoted
with st.

The single symbol mapping or quantization operationQ will
be replaced by decisions based upon a codeword Ĩ = C−1{s̃t}
and ŝt = C{Ĩ} we can write a new quantization operation as
Q′{·} := C{C−1{·}}. Through the decoding and re-encoding
symbol errors will be corrected and the corrected versions are
used to update the channel estimate in (8) and (9).

Therefore the estimated symbols s̃t are soft demodulated.
The corresponding Log-Likelihood Ratios (LLR) Ĩ are input
of the used decoder. Both Turbo Codes’ and LDPC Codes’
decoder use LLRs. The possibly corrected decoder output must
be modulated and is then equivalent to the mapped versions
ŝ and can be fed into the MIMO RLS algorithm. The whole
scheme is visualized in figure 1.

However, if the noise is too high and too many errors occur
in a codeword the underlying decoding procedure might intro-
duce more errors through unsuccessful iterative decoding than
there are originally. This is in particular the case for LDPC
Codes. Thus, below the threshold of a sufficiently probable
correct decoding, the proposed enhancement performs worse
than the unmodified algorithm. Only above that threshold a
gain in channel estimation in terms of mean square error can
be realized.

V. SIMULATION RESULTS

TABLE I
MIMO-OFDM SYSTEM PARAMETERS

NT ×NR 2× 4
number of subcarriers K 128
samples of guard interval 8
number of OFDM symbols per frame 256
number of training symbols 128
channel model COST207 BU
channel order L 8
bandwidth 12.5 MHz
carrier frequency 2.412 GHz
normalized Doppler frequency fd,n 0.0018921
terminal velocity v 77 km/h

For the following results the system parameters are given in
table I. The MIMO transmission scheme is chosen as spatial
multiplexing, i.e. two independent data streams are transmitted
over the two transmit antennas. It lies in the structure of the
MIMO RLS algorithm to find an optimal combination of the
four receive signals to reconstruct the transmit signals.

Fig. 1. Block diagram of proposed algorithm enhancement.

weighted sum yields

J (W[n]) = E{‖H[n] − W[n]WH
[n]H[n]‖

2
}

=

n∑
i=1

ηn−i
‖H[i] − W[i]WH

[i]H[m]‖
2.

(11)

For α[n]=WH
[n]H[n]≈WH

[n−1]H[n], again the discrete
Wiener-Hopf equation is the minimum, which can be com-
puted by

W[n] = CαH[n]C−1
HH [n] (12)

where

CαH[n] =

n∑
i=1

ηn−iH[i]αH
[i] (13)

= ηCHα[n − 1] + H[n]αH
[n] (14)

and

CHH [n] =

n∑
i=1

ηn−iH[i]HH
[i] (15)

= ηCHH [n − 1] + H[n]HH
[n]. (16)

Again, η is a weight factor that reconsiders time variant be-
havior and is also set toη:=0.95.

The prediction of the CIR subspace is then straight-
forward RLS prediction by minimizing

J (αl) =

n∑
i=1

βn−i
|αl[i + 1] − qH

l [n]αl[i]|
2. (17)

and the recursion of the filter coefficientsql
r,t [n] can effi-

ciently be calculated with

ql[n] = ql[n − 1] + kl[n − 1]e∗

l [n], (18)

where

el[n] = α̂l[n] − qH
l [n − 1]α̂l[n − 1] (19)

is the a-priori prediction error, which is given by
α̂l[n]= (αl[n], αl[n−1], . . . , αl[n−MP +1])T that covers

the history of thel-th CIR tap. The RLS prediction gain vec-
tor is given by

kl[n] =
Pl[n − 1]α̂l[n]

β + α̂
H
l [n]Pl[n − 1]α̂l[n]

(20)

and the recursively calculated, inverse of the covariance ma-
trix of the relevant CIR taps by

Pl[n] =
1

β

(
IMP +1 − kl[n]α̂

H
l [n]

)
Pl[n − 1]. (21)

Likewise,β is a weight factor, but it has been stated that the
impact on the algorithm’s convergence is very low (Schafhu-
ber and Matz, 2005). It is set toβ:=0.9.

4 The DDCE enhancement

In the discussed algorithm the symbolss are estimated by
equalizing the corresponding received symbolss̃=H−1r . A
traditional DDCE scheme would then map the symbol esti-
mates̃son the nearest constellation symbols. This can be de-
scribed by a quantization operationQ: ŝ=Q{s̃} which maps
the infinite set of equalized symbols to the finite set of con-
stellation symbols. The output symbol depends only on the
euclidean distance of the symbol estimate to the constella-
tion symbols as commonly used in “hard decision” demod-
ulation. The algorithm reviewed in the previous section de-
pends highly on correctly decided symbolsŝ that are used
instead of the at the receiver unknown send symbolss. Once
a symbol is decided wrong the channel estimate is changed
and further symbols are less likely to be correctly equalized.
Through the PAST algorithm frequency coupling the error on
a subcarrier spreads upon the others and finally the predictor
outputs for all subcarriers are affected. The whole process
of error propagation starts and the algorithm is unlikely to
recover if not re-initialized.

Identified the weakness in the quantization it is possible
to make an improvement. As said, to achieve minimum de-
lay in processing a time varying channel, the channel cod-
ing is done on every OFDM symbol separately. Therefore,
the codeword length is linked to the number of subcarriers
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A. Turbo vs. LDPC Codes

In figure 2 a measure for the channel estimate quality, the
normalized mean squared error (NMSE), is given for LDPC
and Turbo Codes of M = 4 and M = 16 QAM. It is calculated
by

NMSE =

N−1∑
n=0

K−1∑
k=0

nT∑
t=1

nR∑
r=1

∣∣∣Hr,t[n, k]− H̃r,t[n, k]
∣∣∣2

N−1∑
n=0

K−1∑
k=0

nT∑
t=1

nR∑
r=1
|Hr,t[n, k]|

. (22)

The decoder algorithm implementation for LDPC codes is
based on belief propagation [7], for Turbo Codes the Log-
MAP algorithm is used. Both decoder approximate a-posteriori
probabilities from the soft decision inputs and decide them.
For the 16-QAM modulation scheme the code rate RC was
lowered to 1/4 to match the same Eb/N0 as with 4-QAM
and RC = 1/2. It is shown that the proposed enhancement
improves the channel estimate quality in terms of MSE.
All solid lines, which denote the enhanced scheme, finally
are below the dashed ones, which denote the basic DDCE
approach, even for 16-QAM modulation which requires higher
accuracy in magnitude. The minimum of MSE is reached when
also the BER in figure 3 first hits its minimum, i.e. error-free
transmission of 15 frames. If the transmission is not error-
free, in the case the SNR is too low, the proposed scheme
performs much worse than the basic algorithm. This holds in
terms of MSE and BER. In this case the decoding algorithms
try to determine the possibly corrupted message bits from a
large portion of corrupted check bits. The iterative result may
end in a decoded bit word that has a larger Hamming distance
than the unprocessed message bits to the original message.
This introduces even more symbol errors in RLS algorithm
than the basic algorithm would. So applying this scheme at
very low SNR yields no gain, even more loss. But above the
threshold of virtually error-free decoding a gain in MSE can
be realized.

B. DDCE schemes vs. interpolation

In figure 4 the bit error rates for three MIMO-OFDM
systems (4-QAM modulated) and a single-carrier system are
compared: First a MIMO-OFDM RLS enhanced DDCE sys-
tem with LDPC Codes as channel coder, second again a
RLS enhanced DDCE system with Turbo Codes consisting of
two recursive systematic convolutional coder with generator
polynomials (7, 5) punctured to code rate 1/2. The third is a
MIMO-OFDM system with a polynomial interpolation over
distributed pilots in the time-frequency grid [8]. The last
system is the FS-BLAST where the interference is canceled
out successively from the MIMO layers [9]. The number of
pilots is equal to the RLS DDCE systems. Furthermore, its
channel code is the same as the first system’s. It is a half-rate
LDPC code built from a regular parity check matrix [10].

The RLS DDCE systems clearly outperform the inter-
polation and the FS-BLAST systems under the conditions
considered here, SNR range, channel order and Doppler shifts.
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as stated in Eq. (3); the associated symbol vector of thet-th
antenna is denoted withst .

The single symbol mapping or quantization operation
Q will be replaced by decisions based upon a codeword
Ĩ=C−1

{s̃t
} andŝt

=C{Ĩ } we can write a new quantization op-
eration asQ′

{·}:=C{C−1
{·}}. Through the decoding and re-

encoding symbol errors will be corrected and the corrected
versions are used to update the channel estimate in Eqs. (8)
and (9).

Therefore the estimated symbolss̃t are soft demodulated.
The corresponding Log-Likelihood Ratios (LLR)Ĩ are input
of the used decoder. Both Turbo Codes’ and LDPC Codes’
decoder use LLRs. The possibly corrected decoder output
must be modulated and is then equivalent to the mapped ver-
sionsŝ and can be fed into the MIMO RLS algorithm. The
whole scheme is visualized in Fig.1.

However, if the noise is too high and too many errors oc-
cur in a codeword the underlying decoding procedure might
introduce more errors through unsuccessful iterative decod-
ing than there are originally. This is in particular the case
for LDPC Codes. Thus, below the threshold of a sufficiently
probable correct decoding, the proposed enhancement per-
forms worse than the unmodified algorithm. Only above
that threshold a gain in channel estimation in terms of mean
square error can be realized.

5 Simulation results

For the following results the system parameters are given in
Table1. The MIMO transmission scheme is chosen as spatial
multiplexing, i.e. two independent data streams are transmit-
ted over the two transmit antennas. It lies in the structure of
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In figure 2 a measure for the channel estimate quality, the
normalized mean squared error (NMSE), is given for LDPC
and Turbo Codes of M = 4 and M = 16 QAM. It is calculated
by

NMSE =

N−1∑
n=0

K−1∑
k=0

nT∑
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nR∑
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∣∣∣2
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nT∑
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The decoder algorithm implementation for LDPC codes is
based on belief propagation [7], for Turbo Codes the Log-
MAP algorithm is used. Both decoder approximate a-posteriori
probabilities from the soft decision inputs and decide them.
For the 16-QAM modulation scheme the code rate RC was
lowered to 1/4 to match the same Eb/N0 as with 4-QAM
and RC = 1/2. It is shown that the proposed enhancement
improves the channel estimate quality in terms of MSE.
All solid lines, which denote the enhanced scheme, finally
are below the dashed ones, which denote the basic DDCE
approach, even for 16-QAM modulation which requires higher
accuracy in magnitude. The minimum of MSE is reached when
also the BER in figure 3 first hits its minimum, i.e. error-free
transmission of 15 frames. If the transmission is not error-
free, in the case the SNR is too low, the proposed scheme
performs much worse than the basic algorithm. This holds in
terms of MSE and BER. In this case the decoding algorithms
try to determine the possibly corrupted message bits from a
large portion of corrupted check bits. The iterative result may
end in a decoded bit word that has a larger Hamming distance
than the unprocessed message bits to the original message.
This introduces even more symbol errors in RLS algorithm
than the basic algorithm would. So applying this scheme at
very low SNR yields no gain, even more loss. But above the
threshold of virtually error-free decoding a gain in MSE can
be realized.
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In figure 4 the bit error rates for three MIMO-OFDM
systems (4-QAM modulated) and a single-carrier system are
compared: First a MIMO-OFDM RLS enhanced DDCE sys-
tem with LDPC Codes as channel coder, second again a
RLS enhanced DDCE system with Turbo Codes consisting of
two recursive systematic convolutional coder with generator
polynomials (7, 5) punctured to code rate 1/2. The third is a
MIMO-OFDM system with a polynomial interpolation over
distributed pilots in the time-frequency grid [8]. The last
system is the FS-BLAST where the interference is canceled
out successively from the MIMO layers [9]. The number of
pilots is equal to the RLS DDCE systems. Furthermore, its
channel code is the same as the first system’s. It is a half-rate
LDPC code built from a regular parity check matrix [10].

The RLS DDCE systems clearly outperform the inter-
polation and the FS-BLAST systems under the conditions
considered here, SNR range, channel order and Doppler shifts.
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Fig. 3. BER comparison between basic DDCE and enhanced DDCE
implementation for Turbo and LDPC Codes.

the MIMO RLS algorithm to find an optimal combination of
the four receive signals to reconstruct the transmit signals.

5.1 Turbo vs. LDPC codes

In Fig. 2 a measure for the channel estimate quality, the nor-
malized mean squared error (NMSE), is given for LDPC and
Turbo Codes ofM=4 andM=16 QAM. It is calculated by

NMSE =

N−1∑
n=0

K−1∑
k=0

nT∑
t=1

nR∑
r=1

∣∣∣Hr,t [n, k] − H̃r,t [n, k]

∣∣∣2
N−1∑
n=0

K−1∑
k=0

nT∑
t=1

nR∑
r=1

∣∣Hr,t [n, k]
∣∣ . (22)

The decoder algorithm implementation for LDPC codes is
based on belief propagation (Pearl, 1988), for Turbo Codes
the Log-MAP algorithm is used. Both decoder approximate
a-posteriori probabilities from the soft decision inputs and
decide them. For the 16-QAM modulation scheme the code
rate RC was lowered to 1/4 to match the sameEb/N0 as
with 4-QAM andRC=1/2. It is shown that the proposed
enhancement improves the channel estimate quality in terms
of MSE. All solid lines, which denote the enhanced scheme,
finally are below the dashed ones, which denote the basic
DDCE approach, even for 16-QAM modulation which re-
quires higher accuracy in magnitude. The minimum of MSE
is reached when also the BER in Fig.3 first hits its minimum,
i.e. error-free transmission of 15 frames. If the transmission
is not error-free, in the case the SNR is too low, the proposed
scheme performs much worse than the basic algorithm. This
holds in terms of MSE and BER. In this case the decoding
algorithms try to determine the possibly corrupted message
bits from a large portion of corrupted check bits. The iter-
ative result may end in a decoded bit word that has a larger
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Table 1. MIMO-OFDM system parameters.

NT ×NR 2×4
number of subcarriersK 128
samples of guard interval 8
number of OFDM symbols per frame 256
number of training symbols 128
channel model COST207 BU
channel orderL 8
bandwidth 12.5 MHz
carrier frequency 2.412 GHz
normalized Doppler frequencyfd,n 0.0018921
terminal velocityv 77 km/h

Hamming distance than the unprocessed message bits to the
original message. This introduces even more symbol errors
in RLS algorithm than the basic algorithm would. So apply-
ing this scheme at very low SNR yields no gain, even more
loss. But above the threshold of virtually error-free decoding
a gain in MSE can be realized.

5.2 DDCE schemes vs. interpolation

In Fig. 4 the bit error rates for three MIMO-OFDM systems
(4-QAM modulated) and a single-carrier system are com-
pared: First a MIMO-OFDM RLS enhanced DDCE sys-
tem with LDPC Codes as channel coder, second again a
RLS enhanced DDCE system with Turbo Codes consisting
of two recursive systematic convolutional coder with gener-
ator polynomials(7, 5) punctured to code rate 1/2. The third
is a MIMO-OFDM system with a polynomial interpolation
over distributed pilots in the time-frequency grid (Lieberei
and Z̈olzer, 2008). The last system is the FS-BLAST where
the interference is canceled out successively from the MIMO
layers (Weikert, 2007). The number of pilots is equal to the
RLS DDCE systems. Furthermore, its channel code is the
same as the first system’s. It is a half-rate LDPC code built
from a regular parity check matrix (MacKay, 1999).

The RLS DDCE systems clearly outperform the interpo-
lation and the FS-BLAST systems under the conditions con-
sidered here, SNR range, channel order and Doppler shifts.

5.3 Future work

For the simulations LDPC codes where generated using a
regular parity check matrix. Recent results have shown
that irregular parity check matrices have even better error-
correcting properties (Luby et al., 1997). So additional im-
provements can be made if these codes are used. However,
the code word length has impact on the performance. In
the presented system a larger code word would need more
subcarriers thus means a longer OFDM symbol duration. A
larger OFDM symbol duration would decrease the ability

A. Turbo vs. LDPC Codes

In figure 2 a measure for the channel estimate quality, the
normalized mean squared error (NMSE), is given for LDPC
and Turbo Codes of M = 4 and M = 16 QAM. It is calculated
by

NMSE =

N−1∑
n=0

K−1∑
k=0

nT∑
t=1

nR∑
r=1

∣∣∣Hr,t[n, k]− H̃r,t[n, k]
∣∣∣2

N−1∑
n=0

K−1∑
k=0

nT∑
t=1

nR∑
r=1
|Hr,t[n, k]|

. (22)

The decoder algorithm implementation for LDPC codes is
based on belief propagation [7], for Turbo Codes the Log-
MAP algorithm is used. Both decoder approximate a-posteriori
probabilities from the soft decision inputs and decide them.
For the 16-QAM modulation scheme the code rate RC was
lowered to 1/4 to match the same Eb/N0 as with 4-QAM
and RC = 1/2. It is shown that the proposed enhancement
improves the channel estimate quality in terms of MSE.
All solid lines, which denote the enhanced scheme, finally
are below the dashed ones, which denote the basic DDCE
approach, even for 16-QAM modulation which requires higher
accuracy in magnitude. The minimum of MSE is reached when
also the BER in figure 3 first hits its minimum, i.e. error-free
transmission of 15 frames. If the transmission is not error-
free, in the case the SNR is too low, the proposed scheme
performs much worse than the basic algorithm. This holds in
terms of MSE and BER. In this case the decoding algorithms
try to determine the possibly corrupted message bits from a
large portion of corrupted check bits. The iterative result may
end in a decoded bit word that has a larger Hamming distance
than the unprocessed message bits to the original message.
This introduces even more symbol errors in RLS algorithm
than the basic algorithm would. So applying this scheme at
very low SNR yields no gain, even more loss. But above the
threshold of virtually error-free decoding a gain in MSE can
be realized.

B. DDCE schemes vs. interpolation

In figure 4 the bit error rates for three MIMO-OFDM
systems (4-QAM modulated) and a single-carrier system are
compared: First a MIMO-OFDM RLS enhanced DDCE sys-
tem with LDPC Codes as channel coder, second again a
RLS enhanced DDCE system with Turbo Codes consisting of
two recursive systematic convolutional coder with generator
polynomials (7, 5) punctured to code rate 1/2. The third is a
MIMO-OFDM system with a polynomial interpolation over
distributed pilots in the time-frequency grid [8]. The last
system is the FS-BLAST where the interference is canceled
out successively from the MIMO layers [9]. The number of
pilots is equal to the RLS DDCE systems. Furthermore, its
channel code is the same as the first system’s. It is a half-rate
LDPC code built from a regular parity check matrix [10].

The RLS DDCE systems clearly outperform the inter-
polation and the FS-BLAST systems under the conditions
considered here, SNR range, channel order and Doppler shifts.
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Fig. 2. Channel estimation error expressed in Normalized Mean Square Error
(NMSE)
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Fig. 3. BER comparison between basic DDCE and enhanced DDCE
implementation for Turbo and LDPC Codes
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Fig. 4. BER comparison enhanced DDCE scheme with a traditional
interpolation approach (LDPC coded)Fig. 4. BER comparison enhanced DDCE scheme with a traditional
interpolation approach (LDPC coded).

to track a time-varying channel. So short and yet powerful
LDPC Codes are highly desirable.

6 Conclusions

A channel tracking algorithm is extended for a DDCE that
uses a channel decoder/encoder as a symbol quantizer. It
is feasible for the algorithm to recover from errors through
the error-correcting properties of the codes. This results in
significant lower failure rate due to error propagation. A
threshold in SNR can be determined which depends on the
error-correcting performance of the applied code. Above this
threshold, the proposed DDCE code enhancement improves
the channel estimate and bit error rate that verifies the chan-
nel estimate. But it is limited due to the decoding operation a
OFDM symbol must hold a complete code word. Below the
threshold the system’s performance is degraded by the pro-
posed scheme. The choice of channel coder has impact on
the overall performance.

Even LDPC Codes from regular parity check matrices out-
performs widespread Turbo Codes in this context. Addition-
ally the MIMO-RLS scheme is compared to an interpolation
approach where the noise averaging ability of the RLS leads
to a better bit error rate.
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