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Abstract. Modern VLSI manufacturing technology has kept
shrinking down to the nanoscale level with a very fast trend.
Integration with the advanced nano-technology now makes it
possible to realize advanced parallel iterative algorithms di-
rectly which was almost impossible 10 years ago. In this pa-
per, we want to discuss the influences of evolving VLSI tech-
nologies for iterative algorithms and present design strate-
gies from an algorithmic and architectural point of view. Im-
plementing an iterative algorithm on a multiprocessor array,
there is a trade-off between the performance/complexity of
processors and the load/throughput of interconnects. This is
due to the behavior of iterative algorithms. For example, we
could simplify the parallel implementation of the iterative al-
gorithm (i.e., processor elements of the multiprocessor array)
in any way as long as the convergence is guaranteed. How-
ever, the modification of the algorithm (processors) usually
increases the number of required iterations which also means
that the switch activity of interconnects is increasing. As an
example we show that a 25×25 full Jacobi EVD array could
be realized into one single FPGA device with the simplified
µ-rotation CORDIC architecture.

1 Introduction

Modern VLSI manufacturing technology has kept shrinking
down to Deep Sub-Micron (DSM) with a very fast trend
and Moore’s law is expected to hold for the next 10 years
(Gelsinger, 2008). Now, since the DSM nano-technology
allows the integration of an ever-increasing number of IP
macro-cells on a single silicon die, parallel multiprocessor
platforms have received great attention and have been re-
alized into several state-of-the-art applications (e.g., Dual-
Core CPU, MPSoC and Parallel Computing) (Vangal et al.,
2007; Wolf, 2004; Vitullo et al., 2008).

10 years ago, for 0.35µm technology, design engineers
were focusing on reducing the area size. Later, when it came
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to 0.13µm technology they paid huge efforts to improve the
signal delay and reduce the power consumption. As the VLSI
manufacturing technology keeps shrinking down into 65 nm,
the design methodology for nano-circuits poses new chal-
lenges: area requirements of the wire interconnections are
increasing explosively in relation to the area of processor el-
ements, bus transmission bottleneck in the million transis-
tors SoC designs, and leakage current is now dominating the
power consumption (Sainarayanan et al., 2007; Stine et al.,
2007).

These changes bring us to analyze the impacts on paral-
lel iterative algorithms as VLSI technology keeps evolving.
As long as the convergence properties of the iterative algo-
rithms are guaranteed, it is possible to modify/simplify the
architecture during the iteration steps and reduce the com-
putational complexity significantly with regard to the imple-
mentation. However, this simplification will usually cause an
increased number of iterations for convergence. Therefore,
it actually becomes a trade-off problem between the perfor-
mance/complexity of the hardware, the load/throughput of
interconnects and the overall energy/power consumption due
to the behavior of parallel iterative algorithms.

Computing the Eigenvalue Decomposition (EVD) with the
parallel Jacobi method is used as an example since the con-
vergence of this methodology is very robust to modification
of the processor elements. Finally, a VLSI design concept for
parallel iterative algorithms is presented which takes into ac-
count the influence of the modifications on area, timing delay
and power consumption.

The paper is organized as follows: in Sect.2 we will first
describe the design concepts for parallel iterative algorithms.
After that, we will further clarify the definition of the serial
and parallel Jacobi method, respectively, in Sect.3. Then,
in Sect.4 the design issues of the Jacobi EVD array and
their suitability for different hardware implementations are
discussed, which lead to the simplifiedµ-rotation CORDIC
processor. Section5 shows the experimental and syntheses
results. Section6 concludes this paper.
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2 Design concept and implementation issues

A design concept for parallel iterative algorithms, is pre-
sented taking into consideration the influences of different
VLSI technologies in terms of area, power and timing de-
lay. Implementing an iterative algorithm on a multiprocessor
array, there is a trade-off between the complexity of an itera-
tion step (assuming that the convergence of the algorithm is
retained) and the number of required iteration steps. For ex-
ample, suppose we have a hardware platform, which requires
an iteration step of the iterative algorithm to be executedK

times in order to obtain the convergence. The iteration step
is executed in parallel on the platform. If we simplify the
processors in order to improve the logical utilization of the
platform, the number of required iterations usually increase
from K to K+L. It also means that the switch activity of
interconnects between these processor elements is increas-
ing due to the behavior of iterative algorithm. How to find
a superior solution to balance the design criteria is the major
issue of this paper, especially for low-power or limited-area
devices.

In this paper, we selected the Jacobi EVD method as a typ-
ical iterative algorithm since the convergence of this method-
ology is very robust to modification of the processor elements
(Brent and Luk, 1985; Gotze et al., 1993; Goetze and Hek-
stra, 1995; Klauke and Goetze, 2001). We have investigated
the influences in DSM design with different sizes of multi-
processor arrays (i.e., 4×4, 16×16 and 25×25). After that,
several modifications of the algorithm/processor were stud-
ied and their impacts on different FPGA devices were inves-
tigated (e.g., Xilinx Virtex series in 0.22µm, 0.15µm and
65 nm). According to these analyses, we present an efficient
strategy to comply with the design criteria, especially in bal-
ancing the number of iterations and the computational com-
plexity.

3 Eigenvalue decomposition

An Eigenvalue decomposition of a real symmertricn×n

matrix A is obtained by factorizingA into three matrices
A=Q ∧ QT , whereQ is an orthogonal matrix (QQT

=I )
and∧ is a diagonal matrix which contains the eigenvalues of
A.

3.1 Jacobi method

The cyclic-by-row Jacobi method computes the EVD of a
n×n symmetric matrix iteratively by applying a sequence of
orthonormal rotations to the left and the right of the matrix
A, as shown in the following:

Ak+1 = QkAkQ
T
k , with k = 0, 1, 2, . . . ,

(1)

whereQk is an orthonormal rotation by the angleθ in the
(i, j) plane:

Qk =

col i col j
↓ ↓



1 0 · · · 0

0
. . .

cosθk sinθk ← row i
...

. . .
...

− sinθk cosθk ← row j
. . . 0

0 · · · 1
.

(2)

The order of sequential plan rotations{Qk} is called cyclic-
by-row manner, if(i, j) is chosen as follows:

(i, j) = (1, 2)(1, 3) . . . (1, n)(2, 3) . . . (2, n) . . . (n− 1, n) .

(3)

The execution of allN=n(n−1)/2 index pairs(i, j) is called
a sweep. After several sweeps are applied, the matrixA will
converge into a diagonal matrix∧, which contains the eigen-
values:

lim
k→∞

Ak = diag[λ1, λ2, . . . , λn] =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn

 . (4)

In practice we can observe the Frobenius norm of the off-
diagonal elements until it is close to zero or perform a prede-
fined number of sweeps which depends on the size of matrix
A.

We have to choose the rotation angle in order to annihi-
late the off-diagonal elements of MatrixA by solving a 2×2
symmetric EVD subproblem as shown in the following:

[
a′ii a′ij
a′ji a′jj

]
=

[
cosθ − sinθ

sinθ cosθ

] [
aii aij

aji ajj

] [
cosθ − sinθ

sinθ cosθ

]T

.

(5)

We can solve the subproblem and cause the maximal reduc-
tion {ai,j , aj,i}=0 by applying an optimal angle of rotation
θopt:

θopt =
1

2
arctan(τ ) , (6)

whereτ=
2aij

ajj−aii
, and the range ofθopt is limited to|θopt|≤

π
4 .
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Fig. 1. A 4×4 EVD array,n=8.

3.2 Parallel Jacobi EVD array

The parallel array presented by Brent and Luk consists of
n
2×

n
2 Processor Elements (PEs) and each PE contains a 2×2

sub-block of the matrix to be decomposed (Brent and Luk,
1985). Figure1 shows a typical 4×4 EVD array with 16
PEs. This systolic Jacobi array can performn2 subproblem
in parallel and each sweep requiresn−1 steps. Initially each
PE holds a 2×2 sub-matrix ofA:

PEpq =

(
a2p−1,2q−1 a2p−1,2q

a2p,2q−1 a2p,2q

)
,

wherep andq = 1, 2, · · · , n
2 .

(7)

The optimal angelθopt, which is able to annihilate the
off-diagonal elements (a2p−1,2q anda2p,2q−1), is computed
by diagonal PEs (i.e.,PE11, PE22, PE33 andPE44) using
Eq. (6). After these rotation angles are computed, they will
be sent to the off-diagonal PEs. This transmission is indi-
cated by the dashed lines in Fig.1. All PEs will perform a
two-sided rotation with the corresponding row(θr) and col-
umn(θc) rotation angles.

PE
′

pq = Q(θr) · PEpq ·Q(θc)
T,

whereQ(θ) =

[
cosθ − sinθ

sinθ cosθ

]
.

(8)

One sweep needs to performn−1 parallel rotation steps. Af-
ter these rotations are applied, the local matrices are inter-
changed between processors as indicated by the solid lines
in Fig. 1 for execution of the next sweep. We can use the
CORDIC processor to realize the BLV EVD array (Walther,
1971; Volder, 1959; Parhi and Nishitani, 1999). It should be
noticed that since we selected the CORDIC processor to ap-
proximate the rotation, we can transmit the tanθopt directly
instead of the angles (see Sect.4). In this way, we can im-

prove efficiency of the communication bus and make this sys-
tolic array more suitable for VLSI implementation.

4 Architecture considerations

In this section we will show the reasons why it is necessary
to simplify the CORDIC architecture and how to achieve this
goal. As the evaluation of the VLSI technology keeps shrink-
ing down to the nanoscale, it is possible to implement a full
Jacobi EVD array into one single FPGA device (Ahmed-
said et al., 2003). However if we still use the original full
CORDIC processor which is generated by the Xilinx IP-
CORE library (www.xilinx.com), only moderate parallelism
can be obtained due to the limited FPGA configuration re-
sources. For example, we could only realize a 6×6 multicore
array at most in the biggest Xilinx FPGA device as shown in
Table2. Therefore, we must simplify the CORDIC architec-
ture in order to fit the design criteria.

At first we have slightly modified a simplified scaling
freeµ-rotation CORDIC which was presented inGoetze and
Hekstra(1995) as shown in Fig.2. It is able to perform the
single inner iteration efficiently. This simplified PE has 2
adders, 2 shifters and 4 multiplexers, and it reduces the num-
ber of inner iterations from 16 or 32 times for a full CORDIC
with word length 16 and 32 bits, respectively, to only one or
6 inner iterations with the CORDIC circular rotation mode.
However, decreasing the inner iterations will cause an in-
creased number of outer sweeps because of the imprecise
inner iterations. Therefore, the simplified CORDIC archi-
tecture can reduce the size of area but requires more sweeps.
On the other hand, the full CORDIC architecture needs fewer
sweeps but requires more area.

Table1 gives a setA approximated rotation angles for a
simplified 32-bits scaling freeµ-rotation CORDIC PE. For
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Fig. 2. The block diagram of a simplified CORDIC PE, including 2
adders, 2 shifters and 4 multiplexers.

a given accuracynm, this look-up table is constructed using
the aforementioned four approximation methods inGoetze
and Hekstra(1995). These orthonormalµ-rotations are cho-
sen such that they satisfy a predefined accuracy condition in
order to approximate the original rotation angles and are con-
structed by the cheapest possible method. It should be no-
ticed that we have slightly modified the look-up table. First,
since we only need the tanθ for searching the optimal angle
in Eq. (6), we can store 2× tanθ instead of performing arctan
operation to reverse the rotation angle in the look-up table.
Second, we look into the critical path in Table1. For angle
indexk=−1, it requires six cycles per iteration. In fact, the
global clock in synchronous circuit is usually determined by
the critical path, which also means that the maximum timing
delay per iteration is 6 cycles. Therefore, in order to improve
the computational balance, we repeat the inner iteration steps
of the angles until they are close to the critical one. For ex-
ample, when an optimal rotation angle indexk=−8, it will
repeat three times from the index−8 to the index−10. In
this way, we can balance the overall computing overhead and
improve the computational efficiency.

Figure3 shows a block diagram of a 4×4 full Jacobi EVD
array including one controller and 16 PEs. The shaded di-
agonal processors will first search the optimal rotation angle
and then forward these angles to the off-diagonal PEs.

5 Experimental results

In this work, we have simulated four different cases of the
cyclic–by–row parallel Jacobi EVD method in Matlab and
on Xilinx FPGA respectively:

Table 1. The setA of µ-rotations for 32-bit accuracy, showing the
method used, the tanθ angle and the cost of rotation and scaling.

angle
index

method angle cost
(shift-add
operations)

cycle repeat

k 2× tanθk rot. scl. count

−1 IV 1.49070 4 8 6 1
−2 IV 0.54296 4 6 5 1
−3 IV 0.25501 4 6 5 1
−4 IV 0.12561 4 4 4 1

−5 III 6.25841×10−2 6 0 3 2
−6 III 3.12606×10−2 6 0 3 2
−7 III 1.56263×10−2 6 0 3 2

−8 II 7.81266×10−3 4 0 2 3
−9 II 3.90627×10−3 4 0 2 3
−10 II 1.95313×10−3 4 0 2 3
−11 II 9.76563×10−4 4 0 2 3
−12 II 4.88281×10−4 4 0 2 3
−13 II 2.44141×10−4 4 0 2 3
−14 II 1.22070×10−4 4 0 2 4
−15 II 6.10352×10−5 4 0 2 5

−16 I 3.05176×10−5 2 0 1 6
−17 I 1.52588×10−5 2 0 1 6
−18 I 7.62939×10−6 2 0 1 6
−19 I 3.81470×10−6 2 0 1 6
−20 I 1.90735×10−6 2 0 1 6
−21 I 9.53674×10−7 2 0 1 6
−22 I 4.76837×10−7 2 0 1 6
−23 I 2.38419×10−7 2 0 1 6
−24 I 1.19209×10−7 2 0 1 6
−25 I 5.96046×10−8 2 0 1 6
−26 I 2.98023×10−8 2 0 1 6
−27 I 1.49012×10−8 2 0 1 6
−28 I 7.45058×10−9 2 0 1 5
−29 I 3.72529×10−9 2 0 1 4
−30 I 1.86265×10−9 2 0 1 3
−31 I 9.31323×10−10 2 0 1 2
−32 I 4.65661×10−10 2 0 1 1

1. Full rotation CORDIC with 32 iteration steps.

2. Half rotation CORDIC with 16 iteration steps.

3. Simplifiedµ-rotation CORDIC with one single inner it-
eration step (µ-CORDIC).

4. Simplified µ-rotation CORDIC with 6 inner iteration
steps (6-CORDIC).

5.1 Matlab simulation

At present we have tested with numerous random symmet-
ric matricesA of size 4×4 to 50×50. Figure4 shows the
average number of Shift-Add operations needed to compute
the eigenvalues for each size of EVD array. Apparently, both
Full and Half CORDIC require much more effort than the
simplified CORDIC. The 6-CORDIC requires a little more
than theµ-CORDIC in average. On the other hand, we have
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Fig. 3. The block diagram of a 4×4 Jacobi EVD array with 16µ-
rotation elements for FPGA implementation.

also simulated the number of the sweeps as shown in Fig.5.
Here, when the Jacobi EVD array’s size is 20×20, theµ-
CORDIC requires 13 sweeps which is almost twice than the
Full CORDIC. Although the simplifiedµ-rotation CORDIC
PE can improve the computational efficiency, it also in-
creases the timing delay. The simplified 6-CORDIC not only
requires less sweeps than theµ-CORDIC but also reduces
the timing delay. Therefore, the simplified 6-CORDIC is ac-
tually a good compromise between the timing delay and the
computational effort.

Consequently, from an algorithmic point of view, there
is no doubt that we would rather realize the Jacobi method
by utilizing the orthonormal simplifiedµ-rotation CORDIC
method. However, when it comes to the VLSI circuit design
(i.e., here we use VHDL for RTL design), things become to-
tally different.

5.2 FPGA implementation

We have modeled aµ-rotation CORDIC PE in VHDL
and compared with a full-pipeline CORDIC which is gen-
erated by the Xilinx Coregen automatically. Later, we
synthesized these two CORDIC processors by Xilinx ISE
into three different FPGA devices. It should be noticed
that the word-length is 32 bits. Table2 shows the syn-
theses results for Area, Timing Delay and the size of
EVD array for each FPGA device (e.g., XCV1000-6FG680
0.22µm, XC2V8000-5FF1517 0.15µm and XC5VL330-
2FF1760 65 nm). There are some important points that can
be observed.
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Fig. 5. The required number of sweeps vs. Jacobi EVD array sizes
for different CORDIC solutions.

First of all, for the XCV1000-6FG680 0.22µm, we are
not able to implement a full EVD array directly because of
the FPGA device could not provide enough configuration re-
sources for implementation. Second, when the VLSI tech-
nology came to 0.15µm, the FPGA device still can not pro-
vide enough hardware resources for regular CORDIC imple-
mentation. However, it is possible to implement a 14×14
EVD array with the presentedµ-rotation CORDIC architec-
ture. Although it needs more sweeps than the regular one, it
enables significantly increased parallelism compared to the
full CORDIC method. Finally, when the VLSI design keeps
shrinking down into 65nm we are able to realize a 25×25
EVD array for solving the Eigenvalue problem of a 50×50
symmetric matrixA with the simplifiedµ-rotation CORDIC
PE. Using the 6-CORDIC method allows three times the
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Table 2. Area, Delay and the maximal size of EVD array of different Xilinx FPGA devices (i.e., XCV1000-6FG680, XC2V8000-5FF1517
and XC5VL330-2FF1760).

XCV1000, 0.22µm XC2V8000, 0.15µm XC5VL330, 65 nm

6-CORDIC×3

Area 454/24.576 LUTs 464/93.184 LUTs 332/207.360 LUTs
Delay 12.506 ns (79.9 MHz) 8.802 ns (113.6 MHz) 3.934 ns (254.2 MHz)
EVD 7×7 14×14 25×25
Matrix 14×14 28×28 50×50

Full CORDIC

Area 5.938/24.576 LUTs 5.938/93.184 LUTs 5.938/207.360 LUTs
Delay 14.977 ns (66.8 MHz) 7.295 ns (137.1 MHz) 3.52 ns (284 MHz)
EVD 2×2 4×4 6×6
Matrix 4×4 8×8 12×12

matrix size of the full CORDIC. Therefore, utilizing the Full
CORDIC would cause a partition problem and the processor
array would require handling the partition sequentially. This
requires an external memory and a more complicated control
routine.

6 Conclusions

In this paper, we presented a design concept for parallel
iterative algorithms when the VLSI design keeps evolving
into nanoscale. For iterative algorithms we are able to sim-
plify/modify the PEs as long as the convergence is guaran-
teed, such that the parallelism of the implementation can be
increased. This is paid for by an increased number of it-
erations. Computing the EVD by the parallel Jacobi algo-
rithm was used as an example. We have synthesized it into
three different Xilinx FPGA devices. The experimental re-
sults show that we can realize a 25×25 full Jacobi EVD ar-
ray into Xilinx XC5VL330 65nm FPGA device. In future
work we will investigate the influences of the interconnects,
i.e., with advancing VLSI technology the simplified PEs be-
come smaller and smaller in comparison with the intercon-
nection structure of the processor array. This fact requires
that the varying importance of interconnects must be incor-
porated into the design concept.
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