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Abstract. The analysis of the mixed analogue and digital
structure of charge-pump phase-locked loops (CP-PLL) is a
challenge in modelling and simulation. In most cases the
system is designed and characterized using its continuous
linear model or its discrete linear model neglecting its non-
linear switching behaviour. I.e., the time-varying model is
approximated by a time-invariant representation using its av-
erage dynamics. Depending on what kind of phase detector
is used, the scopes of validity of these approximations are
different. Here, a preeminent characterization and simula-
tion technique based on the systems event-driven feature is
presented, merging the logical and analogue inherent char-
acteristics of the system. In particular, the high-grade non-
linear locking process and the dead-zone are analyzed.

1 Introduction

Phase-locked loops (PLL) are widely used and can be uti-
lized to synchronize an oscillator in phase and frequency. If
the PLL is absolutely synchronized, the phase error between
the input signal and the oscillator signal is minimal. As soon
as a phase error occurs, the oscillator will be readjusted un-
til the phase error is again minimal (Gardner, 1980, 1966;
Best, 1993; Shu and Sanchez-Sinencio, 2005). Depending
on what kind of phase detector (PD) is used, the lock mar-
gin sensitively varies (Best, 1993; Wolaver, 1991). If the
PLL is stable and the loop bandwidth is wide enough, the
locked system has a dynamic, which can be described by an
averaged/linearized model. By using a tri state phase and
frequency detector (PFD), the PLL is locked if the absolute
phase error remains smaller than 2π (Best, 1993; Wolaver,
1991; Den Dulk, 1988). Generally, there are two operating
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ranges in CP-PLL systems: the linear operating range and the
non-linear operating range. The linear operating range is de-
fined by the linear model of the PLL and can be assigned as
that range where the PLL is locked. Even if the PLL is locked
and all non-idealities (dead-zone, non-linear characteristic of
the VCO etc.) are neglected, the PLL possesses a weak non-
linear behaviour caused by the logical switching of the PFD.
Furthermore, while the PLL is out-of-lock, the system shows
a high-grade non-linear behaviour. The non-linear operat-
ing range is also called the pull-in range. For this purpose,
the PLL is characterized by considering the switching of the
PFD. In addition a new lock detection circuitry delivering re-
liable information about the status of the output clock signal
is presented. This is a direct consequence of the character-
ization of the switching behaviour. The proposed method
monitors and detects when the phase error between the ref-
erence and the synthesized output clock leaves (out-of lock)
or enters (locked) the phase and frequency detector’s linear
range (ϕe ∈ [−2π,2π ]). For this, the digital information of
the PFD monitoring the closed loop is scanned along the tran-
sient progress of the system. We will focus here on the case
of a tri state PFD. A methodology is presented, which allows
to identify and to characterize a CP-PLL by means of its in-
herent non-linear switching behaviour.

Beside the switching of the PLL, another non-linearity
is considered and characterized. The dead-zone due to the
PFD and the charge-pump, mostly considered as a static non-
linearity embedded into the linear continuous approximation,
represents a dynamic non-ideality caused by the delays of the
PFD’s logic and the charge-pump’s slew-rate (Hedayat et al.,
1999). An advanced PFD model for accurate simulations of
CP-PLL systems is presented.

In Sect.2.1 the general structure of the CP-PLL is envis-
aged. Section2.2 presents the continuous linear model of a
second order high-gain phase-locked loop. The non-linear
behaviour (without non-idealities) and the linear model are
compared and characterized in Sect.2.3. For this, special
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havioural non-linear model of the dead-zone is introduced.
In section 2 a direct implication (application) of section 1.3
is presented.

1 Modelling

The PLL offers various models and various non-linearities.
In the following, the main focus is pointed upon the non-
linear behaviour of the PFD. For this, the switching prop-
erties and the linear model are compared. Additionally, an
advanced PFD model is introduced.

1.1 Architecture

For simplicity, an integer-N PLL frequency synthesizer ar-
chitecture is considered (see fig. 1). The PLL consists of five
functional blocks.
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Fig. 1. Schematic representation of a charge-pump phase-locked
loop.

– PFD: The phase and frequency detector is a purely digi-
tal device having two output signals (vup(t) andvdn(t))
and is driven by the falling (or rising) edges of its input
signals (reference signalvref(t) and VCO signalvvco(t)
[if no divider is used] respectively the divider output sig-
nal vdiv(t)) estimating the phase error betweenvref(t)
andvvco, div(t).

– CP: The charge-pump delivers a currentip(t), driven
by the PFD outputsvup(t) andvdn(t).

– LF: The loop filter is a low-pass filter, which converts
the currentip into a voltagevctl(t) filtering the alternat-
ing current component.

– VCO: The oscillating outputvvco(t) of the VCO is con-
trolled by the loop filter’s output voltagevctl(t).

– N: The divider is a periodic or a modulo N counter, al-
lowing frequency multiplication (fvco ⋅N = fdiv).

1.2 Linearized Continuous Model

It is assumed, that the system is stable. This is mainly as-
sured when the denominator of the following phase transfer
function (second order PLL) is hurwitzian and the reference
frequencyfref is notably higher than the loop natural fre-
quencyfn = !n/(2�) (Gardner, 1980). In general, it can be

said, that if a second order CP-PLL is locked (the absolute
phase error∣'e∣ remains smaller than2�), the linear con-
tinuous approximation can be used to describe the average
dynamic behaviour. It holds

H(s) =
2�!ns+ !2

n

s2 + 2�!ns+ !2
n

, (1)

where

� =
R1C1

2
!n (2)

denotes the damping factor and!n =
√

K/C1 represents the
natural frequency, whereK = KvIp is called the loop gain.
Obviously, the linear model can not describe the non-linear
pull-in process.

1.3 Non-linear Model and Characterization

vref ↓vref ↓
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Fig. 2. Finite state machine of the phase and frequency detector
driven by the falling edges of the reference signalvref(t) and the
VCO or the divider output signalvvco(t) respectivelyvdiv(t).

In the following, the non-linear signature of the switched
differential equation system caused by the finite state ma-
chine is characterized. For this, the VCO is considered as
an ideal integrator. Non-idealities like dead-zone and non-
linear characteristic of the VCO are neglected. With this
assumption, the only non-linearity of the loop is related to
the switching behaviour of the digital PFD. The traditional
PFD (tri state PFD) is a sequential circuit, driven by the
falling or rising edges of its input signals (reference signal
vref and VCO respectively divider signalvvco,div, where the
subscripts ”vco” or ”div” denote a PLL without divider re-
spectively with divider). In a more abstract view, the PFD
can be represented by a finite state machine consisting of
three states. Fig. 2 shows the state graph of the PFD, driven
by a given type of edges (falling edges or rising edges ofvref
andvvco,div). The states of the PFD are represented by the
logical output signalsvup andvdn and can be defined with
{vup = 0; vdn = 1} =̂S−1, {vup = 0; vdn = 0} =̂S0 and
{vup = 1; vdn = 0} =̂S+1. It is obvious, that the charge-
pump is controlled by these states, i. e. by the PFD output
signalsvup andvdn. The interrelation between the states of
the PFD and the solution of the differential equation of the
switching system is presented in equations (3) and (5).

xn+1 = Φ(tn − tn+1)xn+
∫ tn+1

tn

Φ(tn − �)bip(S(�)) d� (3)

Fig. 1. Schematic representation of a charge-pump phase-locked
loop.

PFD state sequences are considered. The last subsection
of Sect.2 is dedicated to a particular non-linearity. A be-
havioural non-linear model of the dead-zone is introduced.
In Sect.3 a direct implication (application) of Sect.2.3 is
presented.

2 Modelling

The PLL offers various models and various non-linearities.
In the following, the main focus is pointed upon the non-
linear behaviour of the PFD. For this, the switching prop-
erties and the linear model are compared. Additionally, an
advanced PFD model is introduced.

2.1 Architecture

For simplicity, an integer-N PLL frequency synthesizer ar-
chitecture is considered (see Fig.1). The PLL consists of
five functional blocks.
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and is driven by the falling (or rising) edges of its input
signals (reference signalvref(t) and VCO signalvvco(t)

[if no divider is used] respectively the divider output sig-
nal vdiv(t)) estimating the phase error betweenvref(t)

andvvco,div(t).

– CP: The charge-pump delivers a currentip(t), driven by
the PFD outputsvup(t) andvdn(t).

– LF: The loop filter is a low-pass filter, which converts
the currentip into a voltagevctl(t) filtering the alternat-
ing current component.

– VCO: The oscillating outputvvco(t) of the VCO is con-
trolled by the loop filter’s output voltagevctl(t).

– N: The divider is a periodic or a modulo N counter, al-
lowing frequency multiplicationfvco= fdiv ·N .

2.2 Linearized continuous model

It is assumed, that the system is stable. This is mainly assured
when the denominator of the following phase transfer func-
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Fig. 2. Finite state machine of the phase and frequency detector
driven by the falling edges of the reference signalvref(t) and the
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tion (second order PLL) is hurwitzian and the reference fre-
quencyfref is notably higher than the loop natural frequency
fn = ωn/(2π) (Gardner, 1980). In general, it can be said,
that if a second order CP-PLL is locked (the absolute phase
error |ϕe| remains smaller than 2π ), the linear continuous
approximation can be used to describe the average dynamic
behaviour. It holds

H(s) =
2ζωns +ω2

n

s2+2ζωns +ω2
n
, (1)

where

ζ =
R1C1

2
ωn (2)

denotes the damping factor andωn =
√

K/C1 represents the
natural frequency, whereK = KvIp is called the loop gain.
Obviously, the linear model can not describe the non-linear
pull-in process.

2.3 Non-linear model and characterization

In the following, the non-linear signature of the switched dif-
ferential equation system caused by the finite state machine
is characterized. For this, the VCO is considered as an ideal
integrator. Non-idealities like dead-zone and non-linear char-
acteristic of the VCO are neglected. With this assumption,
the only non-linearity of the loop is related to the switching
behaviour of the digital PFD. The traditional PFD (tri state
PFD) is a sequential circuit, driven by the falling or rising
edges of its input signals (reference signalvref and VCO re-
spectively divider signalvvco,div, where the subscripts “vco”
or “div” denote a PLL without divider respectively with di-
vider). In a more abstract view, the PFD can be represented
by a finite state machine consisting of three states. Figure2
shows the state graph of the PFD, driven by a given type of
edges (falling edges or rising edges ofvref andvvco,div). The
states of the PFD are represented by the logical output signals
vup andvdn and can be defined with{vup= 0;vdn= 1}=̂S−1,
{vup = 0;vdn = 0}=̂S0 and{vup = 1;vdn = 0}=̂S+1. It is ob-
vious, that the charge-pump is controlled by these states, i. e.
by the PFD output signalsvup andvdn. The interrelation be-
tween the states of the PFD and the solution of the differential
equation of the switching system is presented in Eqs. (3) and
(5).

xn+1 = 8(tn− tn+1)xn+
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Φ(⋅) represents the state-transition matrix,b is the control
matrix, the vectorx is denoted as the vector of state vari-
ables andip(S(�)) is the charge-pump current controlled by
the statesS(⋅) of the PFD, whereS(⋅) ∈ [S+1,S0,S−1] and
is controlled by the reference signalvref(t) and the output
signalvvco, div. Therefore,S(�) is a function ofvref(�) and
vvco, div(�):

S(�) = S(vref(�), vvco, div(�)) (4)

Obviously, there are three states modulating the charge-pump
current into three constant values. It holdsip(S(�)) ∈
[+Ip, 0,−Ip]. Thus, equation (5) results:

xn+1 = Φ(tn − tn+1)xn+

⎧















⎨















⎩

+Ip

∫ tn+1

tn

Φ(tn − �)b d� , S+1

0 , S0

−Ip

∫ tn+1

tn

Φ(tn − �)b d� , S−1

(5)

By using a first order passiveR − C loop filter (Gardner,
1980; Hedayat et al., 1997; Daniels and Farrell, 2008), a sec-
ond order loop results.
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Fig. 3. While the second order PLL delivers a phase error between
−2� < 'e < 2� the PLL is called locked and the linear approxi-
mation provides a good average conformity.

As it can be observed on fig. 3, when the loop is locked (i. e.
the absolute phase error∣'e∣ remains smaller than2�) and
stable with a reference frequencyfref notably higher than the
loop natural frequency, the linearized continuous-time model
represents a good approximation of the average behaviour. In
addition to the damped sinusoidal dynamics, the non-linear
model possesses a comp-shaped behaviour (illustrated in fig.
3). This comb-shaped structure indicates the stateS(t) of
the PFD. The heights of the peaks is correlated to the prod-
uct of the loop filters resistorR1 and the charge-pump cur-
rent ip(S(�)). All the peaks of the comb-shaped structure
directed upwards are associated to the logical stateS+1. The
peaks directed downwards are related to the PFD stateS−1.

When the linear model matches with the non-linear one, the
PFD is at the stateS0. Considering fig. 3 two state sequences
can be identified. The PFD sequence corresponding to a dig-
ital overshoot is defined as

S↑ = {S+1, S0, S−1}, (6)

where the subscripted down arrow emphasizes the direction
and the state sequence of a digital undershoot is defined as

S↓ = {S−1, S0, S+1}. (7)

Generally an overshoot or an undershoot occurs if the damp-
ing � is less than1.2. In the case of a third order or a high
order PLL system (the second order filter consists of the first
order passive loop filter with a parallel smoothing capaci-
tor [see (Shu and Sanchez-Sinencio, 2005; Hedayat et al.,
1999)]), the state sequencesS↓ andS↑ do not identify the
real frequencyfvco (voltagevctl) overshoot or undershoot.
Only zero crossings of the phase error'e are detected by
these state sequences, because the phase and frequency de-
tector operates on the phase of the reference (vref ) and di-
vider (resp. VCO) output signal (vvco, div). For this reason,
the logical signature can be used for characterizing the dy-
namic behaviour of the PLL. While the PLL is out-of-lock
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Fig. 4. The pull-in process is divided into five rangesri (i ∈

[0, 1, 2, 3, 4]) and the course of events of the PFD’s statesS.

(phase error∣'e∣ > 2�), the linear model is no more valid.
Therefore the pull-in process has to be analyzed by means
of the non-linear pulse width modulated (PWM) model (see

Fig. 3. While the second order PLL delivers a phase error between
−2π <ϕe< 2π the PLL is called locked and the linear approxima-
tion provides a good average conformity.
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8(·) represents the matrix exponential of the state matrix,
b is the control vector, the vectorx is denoted as the
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real frequencyfvco (voltagevctl) overshoot or undershoot.
Only zero crossings of the phase error'e are detected by
these state sequences, because the phase and frequency de-
tector operates on the phase of the reference (vref ) and di-
vider (resp. VCO) output signal (vvco, div). For this reason,
the logical signature can be used for characterizing the dy-
namic behaviour of the PLL. While the PLL is out-of-lock
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Therefore the pull-in process has to be analyzed by means
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1980; Hedayat et al., 1997; Daniels and Farrell, 2008), a sec-
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ing � is less than1.2. In the case of a third order or a high
order PLL system (the second order filter consists of the first
order passive loop filter with a parallel smoothing capaci-
tor [see (Shu and Sanchez-Sinencio, 2005; Hedayat et al.,
1999)]), the state sequencesS↓ andS↑ do not identify the
real frequencyfvco (voltagevctl) overshoot or undershoot.
Only zero crossings of the phase error'e are detected by
these state sequences, because the phase and frequency de-
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vider (resp. VCO) output signal (vvco, div). For this reason,
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Fig. 4. The pull-in process is divided into five rangesli (i ∈

{0,1,2,3,4}) and the course of events of the PFD’s statesS.

the PFD stateS−1. When the linear model matches with the
non-linear one, the PFD is at the stateS0. Considering Fig.3
two state sequences can be identified. The PFD sequence
corresponding to a digital overshoot is defined as

S↑ = {S+1,S0,S−1}, (6)

where the subscripted down arrow emphasizes the direction
and the state sequence of a digital undershoot is defined as

S↓ = {S−1,S0,S+1}. (7)

Generally an overshoot or an undershoot occurs if the damp-
ing ζ is less than 1.2. In the case of a third order or a high
order PLL system (the second order filter consists of the first
order passive loop filter with a parallel smoothing capacitor,
seeShu and Sanchez-Sinencio, 2005; Hedayat et al., 1999),
the state sequencesS↓ andS↑ do not identify the real fre-
quencyfvco (voltagevctl) overshoot or undershoot. Only
zero crossings of the phase errorϕe are detected by these
state sequences, because the phase and frequency detector
operates on the phase of the reference (vref) and divider (resp.
VCO) output signal (vvco,div). For this reason, the logical sig-
nature can be used for characterizing the dynamic behaviour
of the PLL.

While the PLL is out-of-lock (phase error|ϕe| > 2π ), the
linear model is no more valid. Therefore the pull-in process
has to be analyzed by means of the non-linear pulse width
modulated (PWM) model (see Eq.5). It is obvious, that the
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Fig. 5. Charge-pump current with slew-rate and delay propagation
from the inputs of the PFD to the output of the charge-pump.

state signalS(t) is a PWM signal (see Fig.4). The wider the
pulse width is, the bigger is the absolute phase error|ϕe| (de-
tected by the PFD). The detectable phase error is limited by
the PFD, even if any frequency can be theoretically reached.
Thus, a phase error of|ϕe| = 2π is equivalent to the occur-
rence of two successive falling edges of the reference signal
vref, respectively the output or divider signalvvco,div. Hence,
two important state sequences can be identified, where

S6↓ = {S−,S−} (8)

and

S6↑ = {S+,S+} (9)

are denoted as cycle slips of the down branch (S6↓) respec-
tively of the up branch (S6↑). The pull-in process is shown
in Fig. 4, where five ranges are emphasized and labeled with
li (i ∈ {0,1,2,3,4}). Evidently, if the last cycle slip occurs,
the PLL is locked and the absolute phase error remains less
than 2π . By considering the logical outputs of the PLL, the
transient behaviour can be monitored, without observing the
analogue outputs. Assuming that a cycle slip is identified and
an overshoot (undershoot) appears subsequently, the PLL is
locked. However, the occurrence of an overshoot or an un-
dershoot does not imply, that the PLL is locked. If there is
no knowledge in terms of a detected cycle slip, an overshoot
and an undershoot must be identified. To ensure that the PLL
is locked, one of the following state sequences must be de-
tected:

S◦ = {S↓,S↑}∨{S↑,S↓}∨{S6↓,S↓}∨{S6↑,S↑}. (10)

2.4 Dead-zone

Ideally, the PFD can be modelled as a finite state machine
(see Fig.2), consisting of three states and operating on the
triggering edges (falling or rising edges) of the input signal
vref and the divider output signalvdiv (or the VCO output
signal vvco when the feedback comprises no divider). Ev-
ery state machine can be realized by using flip-flop circuits.
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equation (5)). It is obvious, that the state signalS(t) is a
PWM signal (see. fig 4). The wider the pulse width is, the
bigger is the absolute phase error∣'e∣ (detected by the PFD).
The detectable phase error is limited by the PFD, even if any
frequency can be theoretically reached. Thus, a phase error
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Fig. 5. Charge-pump current with slew-rate and delay propagation
from the inputs of the PFD to the output of the charge-pump

Ideally, the PFD can be modelled as a finite state machine
(see fig. 2), consisting of three states and operating on the
triggering edges (falling or rising edges) of the input signal
vref and the divider output signalvdiv (or the VCO output
signalvvco when the feedback comprises no divider). Ev-
ery state machine can be realized by using flip-flop circuits.

Thus, the PFD operates by setting and resetting the flip-flops
with the incoming signalsvref andvdiv (vvco). While a trig-
gering edge is identified, the PFD is not able to change the
state (the current) instantaneously. Thus, the flip-flop is set
by the triggering edge. But, when the phase error is small,
the second triggering edge will reset the flip-flop before the
signal has been propagated to the output. Correspondingly,
the phase error between the incoming signals will not arise at
the PFD output (respectively the charge-pump output). Be-
side the presented delay propagation from the inputs to out-
puts of the PFD, the waveform cannot offer edges with an
infinite slope. Thus, a different charge is injected to the loop
filters capacitance compared to the ideal charge injection.A
schematic waveform is viewed in fig. 5, describing the delay
propagation and the charge injection. The aspect of the delay
propagation can be modelled introducing virtual states within
the state machine. If the chargesΔQset andΔQreset are
equal to zero, the new state machine (see fig. 6) can be used
for accurate simulations. IfΔQset ∕= 0 andΔQreset ∕= 0, the
discrepancy of the charge injection to the loop filter’s capaci-
tance can be interpreted as the decrease or the increase of the
current pulse integration and therefore this can be modelled
as a time delay.
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Fig. 6. Modified PFD model describing delay propagation from the
inputs to the output.

The modified PFD model described in fig. 6 represents a sim-
ple possibility to include the non-linear characteristic of the
dead-zone into the simulation model of equation (3) or into
the event-driven modelling techniques (see (Hedayat et al.,
1997, 1999; Van Paemel, 1994)).

2 Application and Simulation

Conventional digital lock detection techniques are based on
counting methods. These methods are heuristic procedures
based on the maximum lock time and the maximum settling
time. Because of this, for every application a new counter
has to be designed. Additionally, the locking point and set-
tling point in time is increasing if the frequency step applied
to the system is increasing. Using an identification algorithm
of the presented state sequences (see equation (10)), a sim-
ple purely digital lock and settling detection circuitry can be

Fig. 6. Modified PFD model describing delay propagation from the
inputs to the output.

Thus, the PFD operates by setting and resetting the flip-flops
with the incoming signalsvref andvdiv (vvco). While a trig-
gering edge is identified, the PFD is not able to change the
state (the current) instantaneously. Thus, the flip-flop is set
by the triggering edge. But, when the phase error is small,
the second triggering edge will reset the flip-flop before the
signal has been propagated to the output. Correspondingly,
the phase error between the incoming signals will not arise at
the PFD output (respectively the charge-pump output). Be-
side the presented delay propagation from the inputs to out-
puts of the PFD, the waveform cannot offer edges with an
infinite slope. Thus, a different charge is injected to the loop
filters capacitance compared to the ideal charge injection. A
schematic waveform is viewed in Fig.5, describing the de-
lay propagation and the charge injection. The aspect of the
delay propagation can be modelled introducing virtual states
within the state machine. If the charges1Qset and1Qreset
are equal to zero, the new state machine (see Fig.6) can be
used for accurate simulations of the non-linear behaviour. If
1Qset 6= 0 and1Qreset 6= 0, the discrepancy of the charge
injection to the loop filter’s capacitance can be interpreted as
the decrease or the increase of the current pulse integration
and therefore this can be modelled as a time delay.

The modified PFD model described in Fig.6 represents a
simple possibility to include the non-linear characteristic of
the dead-zone into the simulation model of Eq. (3) or into the
event-driven modelling techniques (seeHedayat et al., 1997,
1999; Van Paemel, 1994).

3 Application and simulation

Conventional digital lock detection techniques are based on
counting methods. These methods are heuristic procedures
based on the maximum lock time and the maximum settling
time. Because of this, for every application a new counter
has to be designed. Additionally, the locking point and set-
tling point in time is increasing if the frequency step applied
to the system is increasing. Using an identification algorithm
of the presented state sequences (see Eq.10), a simple purely
digital lock and settling detection circuitry can be developed.
The circuit is divided into three subcircuits, identifying the
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Fig. 7. Schematic representation of the monitoring circuit based on
the state sequence identification

developed. The circuit is divided into three subcircuits, iden-
tifying the state sequences of equation (3). The cycle slip
(out-of-lock) detection circuit consists of two D-flip-flops
and an OR gate (see fig. 7). Assuming that the UP signal
vup (resp. the DN signalvdn) is true, the occurence of a ref-
erence (resp. output) triggering edge makes thevup′ (resp.
vdn′ ) to be set to one. This situation{vup = 1, vup′ = 1}
(resp. {vdn = 1, vdn′ = 1}) corresponds to a phase error
larger than2� and the PLL is considered as out-of-lock. The
zero crossing detection circuit is depicted in fig. 7. This cir-
cuit is like a conventional tri state PFD, where its outputs are
combined through an exclusive OR gate. It appears thatvup′

(resp.vdn′ ) can be understood as the envelope ofvup (resp.
vdn). More precisely, these envelopes are used as inputs of
the exclusive OR gate and thereby make it possible to detect a
digital overshoot or undershoot (zero crossing of the phase).
The lock detection monitoring circuit (see fig. 7) is driven
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Fig. 8. Course of events of the important lock detection signals and
the VCO control voltagevctl of a third order CP-PLL.

by the outputs of the cycle slip (out-of-lock) detection circuit
and the zero crossing detection circuit. This monitoring cir-
cuit consists of two D flip-flops, an RS flip-flop and an OR
gate and verifies equation (3). In fig. 8 a Cadence/Spectre
Simulation with90nm technology of ST-Microelectronics of
a third order CP-PLL is presented. By means of the proposed
lock detection circuit, the digital information delivers asim-

ple possibility to track the transient behaviour of the VCO
control voltagevctl (resp. the output frequencyfvco) and the
dynamics of the system. The control voltage and the impor-
tant logical outputs of the detection circuitry are depicted in
fig. 8. The lock detection circuit delivers three important sig-
nals: phase zero crossing detectionvzc, cycle slip detection
vcs and lock detectionvld.

3 Conclusions

In this work the non-linear behaviour of a charge-pump
phase-locked loop was characterized and modelled. The fo-
cus was pointed upon the digital phase and frequency detec-
tor, i. e. the switching signature, the dead-zone of the PFD
and the charge-pump. An accurate model of the non-linear
PFD was presented for efficient simulations of mixed signal
systems within event-driven modelling techniques. In addi-
tion, a simple and robust lock detection circuit based on mon-
itoring overshoot/undershoot events and cycle slip identifica-
tion was presented, by using only the digital information of
the system (i. e. the input and output signals of the phase and
frequency detector).
Furthermore, the detection circuit can be used to implement
fast locking phase-locked loops with course and fine tuning
elements. Further work will focus on the optimization and an
the further developement of the event-driven and non-linear
modelling and simulation techniques for accurate and effi-
cient design methodologies.
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state sequences of Eq. (3). The cycle slip (out-of-lock) de-
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corresponds to a phase error larger than 2π and the PLL is
considered as out-of-lock. The zero crossing detection cir-
cuit is depicted in Fig.7. This circuit is like a conventional
tri state PFD, where its outputs are combined through an ex-
clusive OR gate. It appears thatvup′ (resp.vdn′ ) can be un-
derstood as the envelope ofvup (resp.vdn). More precisely,
these envelopes are used as inputs of the exclusive OR gate
and thereby make it possible to detect zero crossing of the
phase error (digital overshoot or undershoot).

The lock detection monitoring circuit (see Fig.7) is driven
by the outputs of the cycle slip (out-of-lock) detection circuit
and the zero crossing detection circuit. This monitoring cir-
cuit consists of two D flip-flops, an RS flip-flop and an OR
gate and verifies Eq. (3). In Fig. 8 a Cadence/Spectre Sim-
ulation with 90nm technology of ST-Microelectronics of a
third order CP-PLL is presented. By means of the proposed
lock detection circuit, the digital information delivers a sim-
ple possibility to track the transient behaviour of the VCO
control voltagevctl (resp. the output frequencyfvco) and the
dynamics of the system. The control voltage and the impor-
tant logical outputs of the detection circuitry are depicted in
Fig.8. The lock detection circuit delivers three important sig-
nals: phase zero crossing detectionvzc, cycle slip detection
vcs and lock detectionvld.

4 Conclusions
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combined through an exclusive OR gate. It appears thatvup′

(resp.vdn′ ) can be understood as the envelope ofvup (resp.
vdn). More precisely, these envelopes are used as inputs of
the exclusive OR gate and thereby make it possible to detect a
digital overshoot or undershoot (zero crossing of the phase).
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by the outputs of the cycle slip (out-of-lock) detection circuit
and the zero crossing detection circuit. This monitoring cir-
cuit consists of two D flip-flops, an RS flip-flop and an OR
gate and verifies equation (3). In fig. 8 a Cadence/Spectre
Simulation with90nm technology of ST-Microelectronics of
a third order CP-PLL is presented. By means of the proposed
lock detection circuit, the digital information delivers asim-

ple possibility to track the transient behaviour of the VCO
control voltagevctl (resp. the output frequencyfvco) and the
dynamics of the system. The control voltage and the impor-
tant logical outputs of the detection circuitry are depicted in
fig. 8. The lock detection circuit delivers three important sig-
nals: phase zero crossing detectionvzc, cycle slip detection
vcs and lock detectionvld.

3 Conclusions

In this work the non-linear behaviour of a charge-pump
phase-locked loop was characterized and modelled. The fo-
cus was pointed upon the digital phase and frequency detec-
tor, i. e. the switching signature, the dead-zone of the PFD
and the charge-pump. An accurate model of the non-linear
PFD was presented for efficient simulations of mixed signal
systems within event-driven modelling techniques. In addi-
tion, a simple and robust lock detection circuit based on mon-
itoring overshoot/undershoot events and cycle slip identifica-
tion was presented, by using only the digital information of
the system (i. e. the input and output signals of the phase and
frequency detector).
Furthermore, the detection circuit can be used to implement
fast locking phase-locked loops with course and fine tuning
elements. Further work will focus on the optimization and an
the further developement of the event-driven and non-linear
modelling and simulation techniques for accurate and effi-
cient design methodologies.
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Fig. 8. Course of events of the important lock detection signals and
the VCO control voltagevctl of a third order CP-PLL.

the charge-pump. An accurate model of the non-linear PFD
was presented for efficient simulations of mixed signal sys-
tems within event-driven modelling techniques. In addition,
a simple and robust lock detection circuit based on moni-
toring zero crossing (overshoot/undershoot) events and cycle
slip identification was presented, by using only the digital in-
formation of the system (i.e. the input and output signals of
the phase and frequency detector).

Furthermore, the detection circuit can be used to imple-
ment fast locking phase-locked loops with course and fine
tuning elements. Further work will focus in the optimization
and an the further developement of the event-driven and non-
linear modelling and simulation techniques for accurate and
efficient design methodologies.
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