
Adv. Radio Sci., 8, 289–294, 2010
www.adv-radio-sci.net/8/289/2010/
doi:10.5194/ars-8-289-2010
© Author(s) 2010. CC Attribution 3.0 License.

Advances in
Radio Science

Sparse matrix-vector multiplication on network-on-chip

C.-C. Sun1, J. Götze1, H.-Y. Jheng2, and S.-J. Ruan2

1Dortmund University of Technology, Information Processing Lab, Otto-Hahn-Str. 4, 44227 Dortmund, Germany
2National Taiwan University of Science and Technology, Low-Power System Lab, Taipei 106, Taiwan

Abstract. In this paper, we present an idea for perform-
ing matrix-vector multiplication by using Network-on-Chip
(NoC) architecture. In traditional IC design on-chip commu-
nications have been designed with dedicated point-to-point
interconnections. Therefore, regular local data transfer is
the major concept of many parallel implementations. How-
ever, when dealing with the parallel implementation of sparse
matrix-vector multiplication (SMVM), which is the main
step of all iterative algorithms for solving systems of linear
equation, the required data transfers depend on the sparsity
structure of the matrix and can be extremely irregular. Using
the NoC architecture makes it possible to deal with arbitrary
structure of the data transfers; i.e. with the irregular struc-
ture of the sparse matrices. So far, we have already imple-
mented the proposed SMVM-NoC architecture with the size
4×4 and 5×5 in IEEE 754 single float point precision using
FPGA.

1 Introduction

Over the past 30 years, scientists have tried to mitigate the
poor performance of sparse matrix computations through
various approaches, such as reordering the data to reduce
wasted memory bandwidth, modifying the algorithms to
reuse the data, and even building specialized memory con-
trollers. Despite these efforts, sparse matrix performance on
GPPs (General Purpose Processors) still depends on the spar-
sity structure of the matrices (Morris and Prasanna, 2007).

Sparse matrix computations occur in various applications.
For example, the Finite Element Method (FEM) is a widely
used engineering analysis tool based on obtaining a numer-
ically approximate solution for a given mathematical model
of a structure. The resulting linear system is characterized

Correspondence to:C.-C. Sun
(chichia.sun@tu-dortmund.de)

by the system matrixA which is usually large and sparse
(Elkurdi et al., 2008). Iterative solvers, mainly the Conjugate
Gradient (CG) method, are almost dominated by SMVM op-
erations. The CG method is the best-known iterative method
for numerically solving linear equation,A ·x = b, whenever
A is a Symmetric Positive-Definite (SPD) sparse matrix. In
the past few years, many researchers have presented the hard-
ware solutions utilizing the feature of the pipeline ability and
the parallelism inherent from the SMVM computation (Sun
et al., 2007; Gregg et al., 2007; Gotze and Schwiegelshohn,
1988; Williams et al., 2007). On the other hand, Google’s
PageRank (PR) Eigenvalue problem is the world’s largest
sparse matrix calculation. This algorithm is almost domi-
nated by SMVM operations where the target matrix is ex-
tremely sparse, unsymmetrical and unstructured. This prob-
lem has also been investigated for acceleration with a FPGA
solution in (McGettrick et al., 2008; Zhuo and Prasanna,
2005).

Traditional architectures of SMVM implementations usu-
ally focused on a dedicated internal chip interconnection
to forward the vector components and nonzero matrix ele-
ments between multiple processors. For example, the fat-
tree style designs, which required presorting and preorder-
ing before input the data (Kapre and DeHon, 2007), will be-
come extremely difficult when the matrix is very large and
sparse. This challenge brings current applications and tech-
nology trends to motivate a paradigm shift in on-chip in-
terconnect architectures from bus-based point-to-point net-
work to packet-based switch network. This packet-based ar-
chitecture is called Network-on-Chip (NoC) (Bertozzi and
Benini, 2004; Wolf, 2004). The basic idea of the NoC is
that we regard a System-on-Chip (SoC) device as a micro
network of components. In this paper, in order to solve the
problems arising from large sparse matrices with their ex-
tremely irregular structures, we select a chip-internal NoC ar-
chitecture as the main transmission network bone for the data
transfers required for the SMVM (SMVM-NoC). Utilizing
the packets forwarding functionality is beneficial concerning

Published by Copernicus Publications on behalf of the URSI Landesausschuss in der Bundesrepublik Deutschland e.V.

http://creativecommons.org/licenses/by/3.0/


290 C.-C. Sun et al.: Sparse matrix-vector multiplication on network-on-chip

reconfiguration possibilities, flexibility and high resource uti-
lization.

The major contributions of this paper are:

– An idea of SMVM operations based on NoC architec-
ture.

– The SMVM-NoC provides a superior vision to handle
the large sparse matrix; especially it is able to deal with
the arbitrary structure from sparse matrix.

– Primitive implementation results of 4×4 and 5×5
SMVM-NoC in FPGA.

This paper is organized as follows: In Sect.2we clarify the
definition of the SMVM operations and the NoC concepts.
Furthermore, the basic idea of SMVM operations on NoC
is presented. In Sect.3 the design issues of the NoC will
be introduced, which lead to the SMVM-NoC architecture in
FPGA. Section4 shows the primitive implementation results.
Section5 concludes this paper.

2 SMVM on network-on-chip

2.1 Sparse matrix-vector multiplication

A typical SMVM operation is computed as follows:

A ·x = b, (1)

wherex andb are vectors of lengthn, A is an×n sparse ma-
trix. Since the matrixA can be very large and sparse, iterative
solvers are typically used to solve the system of linear equa-
tions due to their low storage requirements and good con-
vergence properties (Golub and Van Loan, 1996). Many re-
searchers have already utilized pipelining and parallelism to
improve the performance. However, the computational com-
plexity is usually determined by the sparsity of the matrix
A. As mentioned before, the CG method is one of the most
popular iterative methods used for solving large and sparse
systems. It is almost dominated by SMVM operations (de-
Lorimier and DeHon, 2005).

In this paper, the sparse matrix is stored in a Compressed
Sparse Row (CRS) format, in which only the nonzero matrix
elements will be stored in contiguous memory locations. In
CRS format, there are three vectors: val for nonzero matrix
elements; col for the column index of the nonzero matrix
elements; and ptr stores the locations in the val vector that
start a new row (Zhuo and Prasanna, 2005). As an example,
consider a simple SMVM operation with 5×5 sparse matrix
A as follows:


4 0 8 0 0
6 0 3 0 0
0 1 0 0 0
0 0 0 5 0
7 0 0 0 4

�


x1
x2
x3
x4
x5

 =


b1
b2
b3
b4
b5

. (2)

The CRS format of this matrix can be described by three
vectors given below:

val: 4 8 6 3 1 5 7 4

col: 1 3 1 3 2 4 1 5

ptr: 1 3 5 6 7 8

By subtracting consecutive entries in the ptr vector, a new
vector len can be generated, where len vector stores the
size of each row (i.e., the number of nonzero in each row).
Note that the last entry in len vector is calculated by using
nz − ptr(nptr − 1), wherenz represents the total number of
nonzero elements and ptr(nptr −1) is the next to last in ptr
vector. For our example, the len vector is:

len: 2 2 1 1 2

2.2 Network-on-chip

Recently, the growing complexity of embedded multi-
processor architectures for digital media processing will soon
require highly scalable communication infrastructure. Today
most of the current communication architectures in System-
on-Chip (SoC) are still based on dedicated wiring. However,
the dedicated wiring architecture has its limitation. For in-
stance, when the VLSI technology keeps shrinking down into
the nanoscale level, the synchronization issue of nanoscale
ASIC implementation with a single clock source will be ex-
tremely tough (Hemani et al., 2000; Benini and Micheli,
2002). Therefore, NoC architecture is proposed to replace
the traditional bus-based on-chip interconnections to packet-
based switch network architecture.

The NoC was proposed to structure the top-level wires on
a chip and facilitate the implementation into a modular de-
sign. As shown in Fig.1, this multiprocessor platform con-
sists of a regular 4×4 array of Processing Elements (PEs)
where each PE could be a general-purpose processor, a DSP,
a memory or a subsystem, etc. A switch (router) is embed-
ded within each PE for connecting itself with its neighboring
PEs; the communication can be achieved by routing packets
as a switching network. This network is the abstraction of the
communication among components and must satisfy quality-
of-service requirements, such as reliability, performance, and
energy bounds.

2.3 Basic idea of the SMVM-NoC

Based on the Fig.1, we build up a 4×4 SMVM-NoC with
a simple NoC network, which is connected by a two dimen-
sional mesh style chip-internal network and uses the packet
forwarding function to transmit the data.

Adv. Radio Sci., 8, 289–294, 2010 www.adv-radio-sci.net/8/289/2010/



C.-C. Sun et al.: Sparse matrix-vector multiplication on network-on-chip 291

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

F
IF
O

Fig. 1. A 4×4 PE array with a mesh style network, includes three entries for matrix/vector elements and multiplication results.

A44

x3

x4

A55

x5

b3

b2

b1

x2

A32

A51A21

A13 A23

A11

x1

b5

b4

Fig. 2. A simple mapping of a parallel SMVM operations in NoC
architecture.

For example, a simple direct mapping of Eq. (2) on this
NoC platform is shown in Fig.2. First of all, the vector
componentsxj and nonzero matrix elementsAij will be dis-

tributed according to the column indexj through the mesh
network; i.e. vectorx1 arrives in the PEs withA11, A21 and
A51 elements (4, 6, 7), vectorx2 arrives in the PE withA32
element (1), vectorx3 arrives in the PEs withA13, A23 ele-
ments (8, 3) and vectorx4 arrives in the PE withA44 element
(5), vectorx5 arrives in the PE withA55 element (5) in the
network, respectively. Second, each local PE will perform
the multiply operationsAij ·xj in parallel. After the multipli-

cations, the results of the productsb
(j)
i = Aij ·xj are routed

to other PEs (as indicated by the dashed lines). Finally, the
b

(j)
i are added up according to the row indexi of matrixAij

to obtainbi .
Although the basic idea of the SMVM-NoC is very simple,

there are a lot of research topics, which must be addressed in
order to obtain an efficient realization of the general concept.
First, the investigation of the suitability of different topolo-
gies, routing schemes and congestion avoidance methods in
the SMVM-NoC architecture is important. Second, how can
different iterative methods (Jacobi, Gauss Seidel and Conju-
gate Gradient) be realized on the SMVM-NoC architecture
efficiently? Meanwhile, how do we use the fact that each it-
eration step of the iterative methods is actually identical and
what does that mean for the SMVM-NoC implementation.
Third, further design issues/strategies such as integration of
preconditioners, monitoring convergence and matrix parti-
tioning for large matrices should be taken into consideration
in the future.

www.adv-radio-sci.net/8/289/2010/ Adv. Radio Sci., 8, 289–294, 2010



292 C.-C. Sun et al.: Sparse matrix-vector multiplication on network-on-chip

M
ul

A
ddr

Vec_Reg

Mul_FIFO

Acc_FIFO

PE_A
rbiter

MUX

Sum_Reg

Controller 

FIFODataIn
DataOut

PE

0

1

Fig. 3. Schematic view of the PE.

3 Implementation

Our basic idea described in Sect.2.3 is now implemented
on the architecture of Fig.1. In Fig. 1, the vector compo-
nents and nonzero matrix elements will distribute from the
data entry points at the left side of the platform to each PE
through the mesh network. The transmissions are done by
packet-switched networks overlaid on top of commodity FP-
GAs. Finally, the PEs will add up all row index products
and send it to the result port in packet style at the right side
of the platform. Since the routing scheme for sending data
packets between PEs negotiates dynamically at run time, this
promises no additional memory for storing schedules and no
further off-line setup.

3.1 Processor element

Fig. 3 shows the schematic view of a PE, including one float-
ing point adder, one floating point multiplier, controllers and
FIFOs. The input packets will be first decomposed by the
“PE Arbiter” then forward to the ACC/MUL FIFOs or the
Vector Register. After that, PE will perform a multiplica-
tions and the accumulation in IEEE 754 single float point
precision. In the current configuration, each PE can hold at
most 32 nonzero matrix elements in the Mul FIFO, one vec-
tor component, 32 accumulation matrix elements in the ACC
FIFO and 32 packets in the output FIFO.

3.2 Switch structure

A basic switch component for the local PE to communicate
its neighboring PEs consists of a set of input/output ports, a
crossbar network, four input FIFO buffers and a controller
circuit as shown in Fig.4. The switch we used has five data

Fig. 4. Detailed switch interconnections of a PE for its neighboring
communication.

input ports and five data output ports. These ports are named
North, East, West, South and Local respectively. In order to
be able to prevent the deadlock hazard, Round-Robin strat-
egy is used when several packets arrive at a switch simulta-
neously.

3.3 Routing algorithm

For simplicity and flexibility, we select direct routing (a.k.a,
XY deterministic routing) algorithm for our NoC architec-
ture design. In direct routing, each switch in the network is
indexed by their XY coordinates. When a switch receives a
packet from the other switches, it will first extract the header

Adv. Radio Sci., 8, 289–294, 2010 www.adv-radio-sci.net/8/289/2010/



C.-C. Sun et al.: Sparse matrix-vector multiplication on network-on-chip 293

Table 1. Synthesis Results for SMVM Calculator based on NoC Architecture.

Family Device Model Logic utilization Used Available Utilization Max frequency

Virtex 5 xc5vlx110t 4×4 Slice Registers 24 734 69 120 35% 265 MHz

Slice LUTs 23 058 69 120 33%

DSP48E 32 64 50%

5×5 Slice Registers 39 121 69 120 56% 259 MHz

Slice LUTs 36 716 69 120 53%

DSP48E 50 64 78%

information of this packet and arbitrate the direction, then
transmit to next switch in the network. Each packet is first
routed along X coordinate and then along Y coordinate until
this packet reaches the destination.

4 Experimental result

We have first modeled our proposed architecture in Verilog
HDL and synthesized it with Xilinx ISE 10.1 SP3. Later,
we verified our implementation on the Xilinx XUPV505
(XC5VLX110T). The synthesized resource utilization re-
ports are shown in Table1. When the network size is 4×4,
it can achieve a peak performance 8.29 GFLOPS in theory.
Each PE can hold at most(32×3+2) = 98 packets and in to-
tal (4×4×98)+(24×2×32) = 3104 packets of the SMVM-
NoC architecture. A simple testing with a 16×16 dense ma-
trix vector multiplication in a 4×4 network has been veri-
fied. Note that so far we have only tested the dense ma-
trix multiplication. Although we have only experimented on
dense matrix multiplication, the only limiting is the number
of the nonzero elements in the sparse matrix. Therefore, no
matter these nonzero elements are from a sparse matrix or
a dense matrix the NoC network does not treat them dif-
ferently. On the other hand, since we used the Xilinx Mi-
croBlaze in FPGA to inject the packets, it is effortless to ex-
tend the current architecture to calculate the sparse matrix by
modifying the testing program later.

5 Conclusions

In this paper, we presented an idea of the SMVM-NoC archi-
tecture. In this architecture, we have tested a 16×16 dense
matrix vector multiplication in IEEE 754 single float point
precision in FPGA. Note that a sparse matrix with 16·16=256
nonzero elements requires the same resources. The advan-
tages of introducing the NoC structure into SMVM computa-
tion are given by high resource utilization, flexibility and the
ability to communicate among heterogeneous systems. Since
the NoC structure can receive data from and forwards results

to different entries simultaneously, this makes it able to deal
with very large sparse matrix and disrespect the structure of
the sparse matrix. The synthesis results showed that the ad-
vanced FPGA with the chip-internal NoC network provides
a solution for sparse matrix computation to further acceler-
ate many numerically problems in hardware, such as solving
linear equation (CG method), FEM problem and so on.

Future work will extend this architecture to be able to pro-
cess sparse matrices of arbitrary structure. A detailed per-
formance analysis of different routing algorithms, network
topologies and switch architecture will be done. At the end,
we will compare it with other sparse matrix computation
architectures in different design criteria (area, timing and
power).

References

Benini, L. and Micheli, G. D.: Networks on Chips: A New SoC
Paradigm, Computer, 35, 70–78, 2002.

Bertozzi, D. and Benini, L.: Xpipes: a network-on-chip architecture
for gigascale systems-on-chip, Circuits and Systems Magazine,
IEEE, 4, 18–31, 2004.

deLorimier, M. and DeHon, A.: Floating-point sparse matrix-
vector multiply for FPGAs, in: FPGA ’05: Proceedings of
the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, 75–85, ACM, New York, NY, USA,
doi:http://doi.acm.org/10.1145/1046192.1046203, 2005.

Elkurdi, Y., Ferńandez, D., Souleimanov, E., Giannacopoulos, D.,
and Gross, W. J.: FPGA architecture and implementation of
sparse matrix-vector multiplication for the finite element method,
Computer Physics Communications, 178, 558–570, 2008.

Gregg, D., Mc Sweeney, C., McElroy, C., Connor, F., McGettrick,
S., Moloney, D. and Geraghty, D.: FPGA Based Sparse Matrix
Vector Multiplication using Commodity DRAM Memory, in: In-
ternational Conference on Field Programmable Logic and Appli-
cations, 786–791, 2007.

Golub, G. H. and Van Loan, C. F.: Matrix computations (3rd ed.),
Johns Hopkins University Press, Baltimore, MD, USA,http://
portal.acm.org/citation.cfm?id=248979, 1996.

Gotze, J. and Schwiegelshohn, U.: Sparse matrix-vector multipli-
cation on a systolic array, 2061–2064 4, doi:10.1109/ICASSP.

www.adv-radio-sci.net/8/289/2010/ Adv. Radio Sci., 8, 289–294, 2010

http://portal.acm.org/citation.cfm?id=248979
http://portal.acm.org/citation.cfm?id=248979


294 C.-C. Sun et al.: Sparse matrix-vector multiplication on network-on-chip

1988.197034, 1988.
Hemani, A., Jantsch, A., Kumar, S., Postula, A., Oeberg, J., Mill-

berg, M., and Lindquist, D.: Network on a Chip: An Architecture
for Billion Transistor Era, in: Proceedings of IEEE NorChip, 24–
31, New York, 2000.

Kapre, N. and DeHon, A.: Optimistic Parallelization of Floating-
Point Accumulation, in: ARITH ’07: Proceedings of the 18th
IEEE Symposium on Computer Arithmetic, pp. 205–216, IEEE
Computer Society, Washington, DC, USA, 2007.

McGettrick, S., Geraghty, D., and McElroy, C.: An FPGA architec-
ture for the Pagerank eigenvector problem, Field Programmable
Logic and Applications, 2008. FPL 2008. International Confer-
ence on, 523–526, 2008.

Morris, G. R. and Prasanna, V. K.: Sparse Matrix Computations on
Reconfigurable Hardware, Computer, 40, 58–64, doi:http://doi.
ieeecomputersociety.org/10.1109/MC.2007.103, 2007.

Sun, J., Peterson, G., and Storaasli, O.: Sparse Matrix-Vector Mul-
tiplication Design on FPGAs, in: FCCM ’07: Proceedings of the
15th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, 349–352, 2007.

Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Dem-
mel, J.: Optimization of sparse matrix-vector multiplication on
emerging multicore platforms, in: SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, 1–12, ACM,
New York, NY, USA, doi:http://doi.acm.org/10.1145/1362622.
1362674, 2007.

Wolf, W.: The future of multiprocessor systems-on-chips, Annual
ACM IEEE Design Automation Conference, 681–685, 2004.

Zhuo, L. and Prasanna, V. K.: Sparse Matrix-Vector multi-
plication on FPGAs, in: FPGA ’05: Proceedings of the
2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, 63–74, ACM, New York, NY, USA,
doi:http://doi.acm.org/10.1145/1046192.1046202, 2005.

Adv. Radio Sci., 8, 289–294, 2010 www.adv-radio-sci.net/8/289/2010/


