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Abstract. This paper focuses on the estimation of the bound have been intensively investigated. A good introduc-
direction-of-arrival (DOA) of signals impinging on a sensor tion to array signal processing and DOA estimation can be
array. A novel method of array geometry optimization is pre-found in (Krim and Viberg 1996 and the references therein.
sented that improves the DOA estimation performance comin this work, we focus on the deterministic Maximum Like-
pared to the standard uniform linear array (ULA) with half lihood (DML) DOA estimator, which is asymptotically con-
wavelength element spacing. Typically, array optimization sistent and statistically efficient under certain regularity con-
only affects the beam pattern of a specific steering directionditions (Stoica and Nehorail989. Nevertheless, any other

In this work, the proposed objective function incorporates, onestimator that works with an arbitrary array geometry can be
the one hand, a priori knowledge about the signal’s DOA inapplied to the results of this work, as well.

terms of a probability density function. By this means, the ar-  Given a fixed number of sensor elements, the question of
ray can be adjusted to external conditions. On the other handhn optimum sensor placement with respect to DOA estima-
amodified beam pattern expression that is valid for all possition performance naturally arises. In this context, it is intu-
ble signal directions is taken into account. By controlling the itively clear that no “globally optimal” geometry for DOA
side lobe level and the beam width of this new function, DOA estimation exists. Instead, an array geometry is always opti-
ambiguities, which lead to large DOA estimation errors, canmal with respect to certain presuppositions like the number
be avoided. In addition, the DOA fine error variance is min- of signals Gershman and &me 1997, the statistical prop-
imized. Using a globally convergent evolution strategy, theerties of the DOA or the probability of large DOA estimation
geometry optimization provides array geometries that signif-errors, etc.

icantly outperform the standard ULA with respect to DOA  Although there exist many different approaches to achiev-
estimation performance. To show the quality of the algo-ing an optimum geometry, basically all of them can be at-
rithm, four optimum geometries are presented. Their DOAtributed directly or indirectly to the array beam pattern in
mean squared error is evaluated using the well known determs of the side lobe level (SLL) and the shape of the main
terministic Maximum Likelihood estimator and compared to [obe. Because shape is a quantity that is difficult to charac-
the standard ULA and theoretical lower bounds. terize mathematically, the half power beam width (HPBW)
is often used as a feature instead. It corresponds to the ac-
curacy of the DOA estimates, i.e. the narrower the main
beam, the lower the variance of the DOA estimates. Thus,
the main beam width is directly related to the C&arRao
This paper deals with the problem of estimating the Iow<_ar bound,_ which represents the minimum variance of an
direction-of-arrival (DOA) of signals impinging on an array Unbiased estimatovgn Trees2009). Furthermore, a narrow

of spatially distributed sensors. There exists a vast amounpeam width increases the possibility of angular signal sepa-
of DOA estimators, whose performance and accuracy com!@bility in the multiple signal case.

pared to theoretical lower bounds like the CErRao lower Itis well known in DOA estimation, that the mean squared
error (MSE) departs from the Cr@&mnRao lower bound when

the signal-to-noise (SNR) ratio (or the sample size) falls be-
Correspondence taD. Lange low a specific limit. Beginning at this threshold, DOA es-
BY (oliver.lange@de.bosch.com) timates are dominated by large estimation errors, outliers
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Fig. 2. Array geometry withV elements on the x-axis with honuni-
Fig. 1. Typical MSE curve of DOA estimation with three different form inter element spacings and one far field source at azimuth an-
regions of operation. In addition, likelihood functions are plotted gle ®.
corresponding to the asymptotic, the threshold and the no informa-
tion region, respectively.

To take “real world” external conditions into account, we
further incorporate a probability density function (PDF), de-

whose probability of occurrence depends on the SLL of the_ _ i 7 ) .
beam patternAthley, 2005. fined for all valid steering directions. It is affected, for in-

oreove,in the e sgralcase, o SLL prevens iy ¥ ' LAY prior bt of et
high SNR signals from overlapping low SNR signals. ' ' '

By further reducing the SNR (or the sample size), the MSEpattern and'the effect of blinds or radomes: T.h'S a prior

. . ; "PDF is applied as an angular dependent weighting factor to
goes to saturation, which can be approximated by the varis . MBP. By this means. we expand an a roaciOhel
ance of a uniform distribution over the DOA search space - By ' P PP

(Richmond 2006. Figure 1 quantitatively illustrates this and Moseg2003, how previous knowlnge about the DOA
X ! and hardware characteristics can easily be transferred into
typical DOA MSE curve and presents three regions of op- ;
eration: the array design process.
' Using a globally convergent optimization routine, the
1. Theasymptotic regiorns influenced by the shape of the HPBW and the SLL of the weighted MBP can now be con-
main lobe, i.e. the HPBW; it can be approximated by thetrolled resulting in array geometries that outperform the stan-
Cranér-Rao lower bound or the equivalent asymptotic dard uniform linear array (ULA) with half wavelength ele-
variance of the estimator, respectively. ment spacing in terms of DOA estimation accuracy.
. _ _ This paper is organized as follows. The data model and
2. The threshold regionis dominated by outliers, whose the MBP are introduced in Sec?. We also derive the
probability of occurrence is proportional to the SLL. weighted MBP, which additionally uses a priori knowledge
in terms of a beta distributed PDF. Furthermore, we intro-
duce the deterministic Maximum Likelihood DOA estimator
and show, how prior knowledge can improve DOA estima-
tion. In Sect.3, the objective function for array geometry

All attempts of array geometry optimization that aim at DOA Optimization is defined. Some examples for optimum array
performance improvement have to take this MSE characterdeometries are presented and their DOA estimation perfor-
istic, which is based on a trade-off between SLL and beaniMance is compared to the standard ULA using Monte Carlo
width of the beam pattern, into account. In doing so, it shouldSimulations and the Craén-Rao lower bound.

also be noted, that the beam pattern has to be unambigu-

ous for all steering directions, where targets are to be ex-

pected. Ambiguities and high side lobes in this region should N

be avoided, as they lead to outliers in DOA estimation, ever? Data model and modified beam pattern

in high SNR regimes. As the usual beam pattern only rep-

resents the array response to a unit wave from a certain diwe consider a planar array geometry wifhidentical, omni-
rection, we introduce a modified beam pattern (MBP), usingdirectional sensors placed on a straight line, e.g. the x-axis
a simple parameter transformation. By this means, the MBRsee Fig2). Q far-field sources that are orientated coplanar
allows for control of the HPBW and the SLL simultaneously to the array are impinging on the array from azimuth direc-
for all valid steering directions. tions®g =[0Oq,1,...,00,0]. The narrow band assumption is

3. In the no information regionthe SNR (or the sample
size) is very low which leads to DOA estimates that are
uniformly distributed over the search space.
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Fig. 3. ULA beam patternR(«,uq) for varying target directions
ug=-1,...,
grating lobes in the beam pattern.

assumed to hold so that the complex baseband array outp

vector can be modeled bydn Trees2002

x (k) = A(ug)s (k) +n(k), k=1,...K 1)

where A(uo) = [a(uo,1).....a(uo )] is the (N x Q) ar-
ray steering matrix withig, =sin®g4, ¢ =1,...,0. The
complex baseband source signals are denoted (by=
[s1(k),.. SQ(k)]T where(-)” means transposa,k) is the

1. For|ug| > % DOA estimates are ambiguous due to

—10 }

(@) [dB]
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Fig. 4. Modified beam pattern (MBP) for an ULA with inter ele-
ment spacing oﬁk.

an 8-element ULA with element spaci@\. The steering
direction is varied fromug= —1,...,1. Due to violation of

alge spatial sampling theorema(n Treeszooa the region

for unambiguous DOA estimates is limited|tg| < 3 1asin-
dicated in Fig 3.
It can be clearly seen from Fi§, that knowledge of

2

1M o ;
7) — 7 — 7)) — | — — 5 x‘n2
r(it) = R(it,ug= u)—‘NZe % Pxn2il (5)
n=1
with —1 <u <1, which represents the diagonal= —u in

additive noise vector based on a Gaussian random procegsg. 3, allows for perfect reconstruction of all beam pattérns

with zero mean and varianeg”. The number of snapshots

is denoted byk. The SNR of they-th signal at each of the  R(u,u0) =r(@)l;_u-uo- (6)

sensors is defined as

1skK )12
KZk—(jl#, g=1..0. )

n

SNR, =

The steering matriXA(ug) consists ofQ steering vectors
a(up) whosen-th element is defined by

an(uo)zei%va"“o, n=1,...,N. 3)

Here, the element positions are denotedphy, anda is the
wavelength.

2.1 Derivation of the modified beam pattern

The normalized array beam pattekiu, ug) is defined as the
squared magnitude of the response to a unit wayk) &
1 Vk) from directionug in the case of no noise, i.e.

H(u)a(uo)\

R0 = [§a (4)
‘i _J * Px,n(“_uo)
N

where the superscrigt)” denotes conjugate transpose. Fig-

This means, thak (u,ug) can be reduced to(iz) without any

loss of information. Note that (E®) is only valid for omni-
directional sensor elements. Non uniform element charac-
teristics are taken into account in the next subsection where
prior knowledge is considered.

The functionr (i2) from (Eq.5) is denoted as the modified
beam pattern (MBP), because it can be obtained from the
beam pattern by a simple rearrangement of the arguments
andug. Figure4 plots the MBP for the same parameters as in
Fig. 3. Note that the region of unambiguous DOA estimates
can be identified as-3 < ii = “=*° < 2 which leads to the

prior resultjuo| < 4 for —1<u <1.
2.2 Definition of the a priori PDF

In many array signal processing applications, restrictive as-

sumptions can be made concerning the statistical properties
of the target's DOA. Hence, the probability of appearance or

detection of a target at a certain directiogis not uniform

for all possible target directionsl < u < 1. Often, atargetis

110 distinguish betweerR (1, ug) andr(ir), we useu instead of

ure 3 exemplarily shows the beam patterns corresponding ta: for notational convenience.
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Fig. 5. Different beta probability densities, transformeditepace,  Fig. 6. Criterion functions for deterministic Maximum Likelihood
from (Eq.8) with b =« for several values af;, anda. (DML) and weighted deterministic Maximum Likelihood (WDML)
DOA estimation with the normalized beta distribution from (BY.

(up =1, a = 3), which represents a priori knowledge about the tar-
more likely to appear near the array boresight than laterallyget's DOA.

Or there might be a certain region, e.g. in surveillance appli-

cations, where the possibility of occurrence of a target is near

zero. In addition, incoming signals from certain DOA's can stochastic process with the PDF from (BJ. This is an im-

be damped by the use of hardware constraints like blinds oportant assumption if theoretical bounds like the CeasiRao

radomes or by the influence of the array element factor. Furiower bound on DOA estimation are considered.

thermore, there are applications like automotive radar, where

targets are actively illuminated by a transmit antenna. Ne2.3 Advantage of prior knowledge for DOA estimation:

glecting the influence of multi path scattering, the DOA an- weighted deterministic Maximum Likelihood

gular distribution directly corresponds to the beam shape of estimator

the transmit antenna. o o ) o
Thus, the mentioned characteristics directly or indirectly The derivation of the deterministic Maximum Likelihood

affect the statistical properties of the target's DOA. To ac- (PML) DOA estimator can be found, for instance, va(

count for the mentioned effects, we introduce the the PDF1T€€S 2002. In this work, we focus on the single signal

Puy (i) Which represents the angular a priori information. In €S 1-. the estimation 0. Hence, the DML estimate of

this work, we focus (without loss of generality) on the beta 0 IS given by

distribution . _ B
fio,.pML =arg mlrh{L(u)}zargma%[L 1(u)} 9)
_ ﬁv“‘l(l—v)bAOfvfl 7
P@I=1q" elsewise (") with the likelihood function
_t[pPLA
where B(a,b) = [y v*~1(1—v)?~1dv is the beta function. L(”)—tr[PARX]’ uel-1.1] (10)

The parameterg andb are real positive constants. A trans- ) , o

formation of the random variable< [0,1] to u space with where tf-] is the trace operator "i"‘mfi is the projection ma-

u € [—up,upl, 0<up <1, results in trix Px =1—A@)[A¥ w)Aw)] A (u) onto the orthogo-
nal complement of the column space of the steering matrix

2 2 a-1
1 | upu _ A(u). Furthermore,
puo(M) = { 2upB(a,a) [ 4u[2) :| Up =u =up (8)
elsewis . 1 E
© Re= x(ox (k) (1)
wherea = b is chosen to assure a symmetric distribution with k=1

— i 2 _ 1 i . . . . .
meanu,, =0 and variance;, = 77y FigureS plots the 5 the estimated spatial correlation matrix.

PDF from (Eq.8) for several values af, anda. Fora =1, Any prior knowledge about the target's DOA statistical
the PDF is uniform, e, the_re_ls no prior information about properties can improve the DML DOA estimation. By sim-
the DOAuo, except its restriction to the intervikup,upl.  ply weighting the likelihood function from (Ed.0) with the

As a increases, the PDF becomes narrower. ~ apriori PDF from (Eq8), we obtain the weighted determin-
To be consistent with the standard parameter estimatiofstic Maximum Likelihood (WDML) estimate

theory, we still consider the target's DQ4& as a determin-
istic parameter. Namely, we regard it as a realization of aiigwpmL = argmax {L*"‘(u) puo(u)}. (12)
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Here, the real valued parameter 0O is used to control the 0 ] o
ratio of the prior and the data: the larger the valuexpthe lapew — 1ot — — — PDF py (@)
lower the influence of the prior on the estimate. Note that _. o ! WMEBP g(ps,)
(EqQ. 12) is the Maximum a posteriori estimator, df repre- ©. SLLtn e | :
sents the amount of collected data, i.e. the product of snap-’é SLL| — = == — AT T T T T
shots and channets= K N (van Trees and BglR007?). = ol |

We will demonstrate this advantageous behavior with a £ —20 : ! [
guantitative example (see Fi§.for a graphical interpreta- : 1_' | -
tion). Again, we refer to the 8-element ULA with element . ool
spacing%)\ and assume one impinging source frag= % 730,] 05 G0l 0 N, 0.5 1
Due to the ambiguity ati = —g, the DML estimator (see i = Uguo

dashed curve in Fige) will probably provide a large esti-

mation error. If, in addition, we assume, that the target’s

DOA follows a beta distribution as in (E) with « =3, the ~ Fig. 7. Modified beam pattern (MBP)(p.. i), beta PDFpy, (it)
WDML estimator (see solid curves in Fif) reduces the ef- (5 = 0.5, a = 1), weighted modified beam pattemn (WMBP)

fect of the ambiguity and provides the correct DOA estimate$ (Px-#) With marked half-power beam width, which is used as ob-
fowomL = L jective functionf (py) for array geometry optimization.
, =53

WMBP below a threshold SLf;. Thus, the array geometry

3 Optimization of the array geometry optimization results in the constrained minimization problem

In array geometry optimization, the objective function in minf(py), st. SLL[g(px.,i)]<SLLnr (15)
general exhibits a multi modal character, i.e., local optimiza- ?*
tion routines might get stuck in local minima. Therefore, the Figure 7 exemplarily illustrates the calculation of the ob-
optimization of the array geometry in this work uses the evo-jective function for the already mentioned 8-element ULA
lution strategy. A good survey of global optimization can with sensor spacinék. At first, the product of the MBP
be found in Weise 2007. Evolution strategy belongs to and the PDF provides the WMBP, following (Et3). Here,
the family of evolutionary algorithms, which are based on we use the beta PDF from (E8) with u;, = 0.5 anda = 1.
biology-inspired methods like mutation, crossover, selectionNote that the SLL of the WMBP (SLE —12.8dB) is be-
and survival of the fittest. In contrast to bit-encoded geneticlow the threshold SL{ = —10dB. Therefore, the HPBW
algorithms, evolution strategies explore a real valued paramef the WMBP is calculated using equation (Etd) with
eter space. f(px)=tio,—ti0;.

The aim of this array geometry optimization is to identify S
a better array geometry concerning DOA estimation for one3-2  Optimization results
target, underlying a given a priori DOA PDF, compared to

the standard ULA with half wavelength element spacing. Three exemplary results of the geometry optimization will

now be presented in order to illustrate the accuracy of the
proposed objective function in conjunction with the evolu-
tion strategy. The DOA estimation performance for one sig-

In the array geometry optimization task, an objective func-nal in terms of the mean squared error (MSE) is evaluated
tion f(p.):RY — R has to be identified. For this pur- for each generated geometry and compared to the standard

pose, we refer to the MBP (E§) and the target's DOA PDF  ULA. The target's DOAuo is chosen to underlie the beta

3.1 Definition of the objective function

(Eq.8). We denote their product PDF, whose parameters are specified in the respective ex-
ample. For DOA estimation, we use the WDML estimator
g(px, i) =r(Px,) puy(it) (13) from (Eq.12) with « =5, i.e., a high influence of the prior

compared to the Maximum a posteriori estimator is consid-
as weighted modified beam pattern (WMBP). To reduce thegred. Each of the MSE curves is based eh Monte Carlo
fine error variance, i.e. the Cr&mRao lower bound, the runs per SNR simulation point. The number of snapshots is
main beam width has to be minimized. Therefore, the as-K — 10 and we consider array geometries WAth= 8 sensor
sociated objective functiorf (p,) calculates the HPBW of  elements. The respective optimized array geometries, includ-

the WMBP from (Eq13): ing the standard ULA, are shown in Fiy.
. In addition, the MSE performance plots also include the
f(px) =HPBW[g(px.d)], (14) asymptotic variance
which is evaluated numerically. To avoid an increased pos- , 1 1 11
sibility of gross errors, care is taken to keep the SLL of the°OML = 5 2y SNR T ‘N SNR (16)

www.adv-radio-sci.net/8/87/2010/ Adv. Radio Sci., 8, 82-2010
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Fig. 8. ULA (a) and optimized array geometries with respedtxp
example 1(c) and(d) example 2 ande) example 3.

of the DML estimation error with the signal-to-noise ratio
defined in (Eg2) and the variance of the element positions

1Y 1 ?
UZNZ px,n_ﬁsz,m> (17) 10-3
n=1 m=1

F| ——— ULA

———— opt. array up, =1

-15 -10 -5 0 5

SNR [dB]

(Athley, 2009 and (van Trees2002. Note that in the single

signal case, (Eql6) is identical to the Cra@r-Rao lower

bound for a stochastic signglk) (Stoica and Nehoral 990). Fig. 9. Top: WMBP for example 1 for the standard ULA and the
optimized array. Bottom: DOA MSE performance of the WDML
estimator for example 1 for a single signal. The D@é follows

3.2.1 Example 1 the PDF from (Eqg8) with u;, =1 anduj, = 0.9, respectively, and
a=1.

We choose the beta PDF with, =1 anda =1, i.e., the

DOA estimation should be unambiguous for the half space

—1<u <1.Inaddition, the SLL threshold is setto Shl=  u;, =0.5 anda = 1 (see Fig5). To avoid ambiguities inside

—10dB. The optimized geometry is shown in F&ip). Fig- this region, the SLL is bounded above to Skl= —12dB

ure 9 plots the WMBP of the standard ULA and the opti- and SLL = —8dB, respectively. The optimized geometries

mized array. It can be seen that the ULA provides (near)are shown in Fig8c) and d). FigurelO plots the WMBP's

ambiguous DOA estimates foii| > 0.9. The optimized ar-  for the ULA and the two optimized arrays. Due to the re-

ray, however, is unambiguous for the complete half spacejuced DOA region, ambiguities outside €0.5 < ug < 0.5

and exhibits a reduced HPBW at the expense of a slightly incan now be accepted, as they have no impact on DOA esti-

creased SLL. The associated DOA MSE curve is presenteghation. This allows for an increased array aperture which

in the bottom of Fig9. It can be clearly seen, that in the |eads to a smaller HPBW. The MSE curves in Fi§.show

case ofu, =1, i.e. a uniform distributed DOAg € [—1,1], an improvement in terms of the SNR in the asymptotic re-

the optimized array significantly outperforms the ULA due gion of 5dB and 10dB, respectively, compared to the ULA.

to the effect of outliers. If the ULA's ambiguous regions are

not taken into account, i.e, = 0.9, its asymptotic MSE im-

proves, but still does not reach the optimized array due t

the marginal difference of the beam widths. Furthermore(,)s'z'3 Example 3

Fig. 9 also shows, that the WDML estimator asymptotically

approaches the asymptotic variance of the DML estimator, a§!€re, We assume a non-flat PDF with=0.75 anda = 1.2,

it has been defined in (EG6). which has already been plotted in Fl@ Thus, in con-
trast to the other examples, the distribution of the DOA
3.2.2 Example 2 uo € [—up,up] is no longer uniform. Again, the optimized

array (see Fig8e) achieves a smaller HPBW at the expense
In this example, we assume that the signal’s DOA is limited of an increased SLL (see Fijl). Thus, the asymptotic MSE
to —0.5<ug < 0.5. Therefore, we choose the beta PDF with of the optimized array is reduced by58B.
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Fig. 10. Top: WMBP for example 2 for the standard ULA and the
optimized arrays. Bottom: DOA MSE performance of the WDML
estimator for example 2 for a single signal. The D@#follows
the PDF from (Eqg8) with u;, =0.5 anda = 1.

Fig. 11. Top: WMBP's for example 3 for the standard ULA and the
optimized array. Bottom: DOA MSE performance of the WDML
estimator for example 3 for a single signal. The D@#follows
the PDF from (Eg8) with up =0.75 anda =1.2.

4 Conclusion
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