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Abstract. To enhance extreme corrupted speech signals, an
Improved Psychoacoustically Motivated Spectral Weighting
Rule (IPMSWR) is proposed, that controls the predefined
residual noise level by a time-frequency dependent parame-
ter. Unlike conventional Psychoacoustically Motivated Spec-
tral Weighting Rules (PMSWR), the level of the residual
noise is here varied throughout the enhanced speech based on
the discrimination between the regions with speech presence
and speech absence by means of segmental SNR within criti-
cal bands. Controlling in such a way the level of the residual
noise in the noise only region avoids the unpleasant resid-
ual noise perceived at very low SNRs. To derive the gain
coefficients, the computation of the masking curve and the
estimation of the corrupting noise power are required. Since
the clean speech is generally not available for a single chan-
nel speech enhancement technique, the rough clean speech
components needed to compute the masking curve are here
obtained using advanced spectral subtraction techniques. To
estimate the corrupting noise, a new technique is employed,
that relies on the noise power estimation using rapid adapta-
tion and recursive smoothing principles. The performances
of the proposed approach are objectively and subjectively
compared to the conventional approaches to highlight the
aforementioned improvement.

1 Introduction

The enhancement of speech degraded by environmental or
background noise still remains an open topic, although many
significant approaches have been presented over years. The
enhancement becomes more complicated especially for sin-
gle channel noise reduction techniques, where no additional
information about the corrupting noise and the real clean
speech are available. Since the background noise is the fac-
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tor that degrades the most the quality and intelligibility of
the speech, it should therefore be estimated first using ad-
equate techniques such as (Doblinger, 1995; Martin, 2001;
Cohen, 2002, 2003; Rangachar, 2004; Stouten, 2006; Nsabi-
mana, 2009). Thereafter, the estimated noise power is used
in the derivation of the gain function for a desired noise re-
duction technique such as (Ephraim, 1985; Gustafsson, 1998;
Virag, 1999; Cohen, 2002; Nsabimana, 2009).

In (Tsoukalas, 1993; Gustafsson, 1998; Virag, 1999; Yi ,
2004; Hu, 2004; Nsabimana, 2009), Psychoacoustically Mo-
tivated Spectral Weighting Rules (PMSWR), which derive
a gain function based on the psychoacoustical properties
of the human hearing system, were proposed. Unlike
the techniques like the Log Spectral Amplitude (LSA) and
the Optimally Modified Log Spectral Amplitude (OMLSA)
(Ephraim, 1985; Cohen, 2002), the Psychoacoustically Mo-
tivated Spectral Weighting Rules (Gustafsson, 1998; Nsabi-
mana, 2009) do not try for a complete noise removal, they
preserve instead a predefined amount of the original cor-
rupting noise throughout the enhanced speech to account for
the loss of weak speech components. Based on the error
minimization of the distortions of speech and noise power
components compared to the masking curve of the rough
clean speech estimate, the gain function is thereafter de-
rived (Gustafsson, 1998; Nsabimana, 2009). While the PM-
SWR approach (Gustafsson, 1998) generally accounts for a
predefined constant amount of the original corrupting noise
throughout the enhanced speech, the IPMSWR approach
(Nsabimana, 2009) controls instead the level of the residual
noise based on the discrimination between the regions with
speech presence and speech absence by means of segmental
SNR within critical bands.

This paper presents for the noise reduction technique and
speech enhancement an algorithm relying on the IPMSWR
approach (Nsabimana, 2009), where the estimated corrupting
noise power is obtained using rapid adaptation and recursive
smoothing principles (RARS) (Nsabimana, 2009) instead of
OSMS approach (Martin, 2001; Nsabimana, 2009). The in-
vestigations in (Nsabimana, 2009) revealed that the RARS
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Fig. 1. Improved Psychoacoustically Motivated Spectral Weighting
Rule (IPMSWR approach).

approach adapts fast and provides accurate mean estimates
than OSMS approach (Martin, 2001) especially for very low
SNRs. To motivate further steps of improvements in the
IPMSWR approach, the importance of the phase is also here
emphasized during experimental results.

The outline of the paper is as follows: Sect.2 presents the
proposed technique, while experimental results and conclu-
sion are presented in Sects.3 and4 respectively.

2 The proposed approach

Figure 1 depicts the complete system of the proposed ap-
proach. In the analysis stage, the corrupted speech is pro-
cessed frame by frame with an overlapping rate of 75%. The
estimated noise powerRñ(k,m) is computed using RARS
approach (Nsabimana, 2009), while the rough clean speech
estimateS̃1(k,m) needed for the computation of the masking
thresholdRT (k,m) is obtained using the OMLSA approach
(Cohen, 2002). The masking curveRT (k,m) is computed as
described in (Virag, 1999; Johnston, 1988; Zwicker, 1990;
Zölzer, 2005) and summarized in (Virag, 1999). In the fol-
lowing, the derivation of the gain function is detailed.

Let consider the spectrum of a corrupted speech signal
X(k,m) to be defined as

X(k,m) = S(k,m)+N(k,m), (1)

whereS(k,m) andN(k,m) are the short-time DFT coeffi-
cients at frequency bink and frame numberm for the clean
speech and additive noise respectively.S(k,m) andN(k,m)

are also assumed to be statistically independent and zero
mean. As a complete noise removal is not intended for psy-
choacoustically motivated spectral weighting rules, the de-
sired spectrum of the enhanced speech is therefore defined
as

Ŝ(k,m) = S(k,m)+ζ(k,m)N(k,m), (2)

whereζ(k,m)N(k,m) represents the estimated amount of the
residual noise. But the estimated magnitude spectrum of the
enhanced speech is given by (s. Fig.1)

S̃(k,m) = G(k,m)[S(k,m)+N(k,m)] . (3)

Fig. 2. Error minimization for the derivation ofG(k,m). PSD of
residual noise distortionREn

, PSD of speech distortionREs
, PSD

of estimation errorRE and masking thresholdRT .

The difference between Eqs. (2) and (3) yields the estimation
error

E(k,m) = S(k,m)[G−1] +N(k,m)[G−ζ ] , (4)

with the PSD of the error expressed as

RE(k,m) = Rs(k,m)[G−1]2+Rn(k,m)[G−ζ ]2, (5)

where the indexesk and m are omitted forG and ζ only
for the sake of simplicity. Rs(k,m) and Rn(k,m) repre-
sent here the PSD of the clean speechs(n) and the corrupt-
ing noisen(n) respectively. Equation (5) is thus composed
of the speech power distortionREs = Rs(k,m)[G−1]2 and
the residual noise power distortionREn = Rn(k,m)[G−ζ ]2.
The optimalG(k,m) can be obtained by computing the min-
imum of the solid red parabola (RE) of Fig. 2, whileG(k,m)

for the just noticeable distortion case is derived considering
the crossing point between the green curve with square (RT )
and the blue curve with triangle (REn ) of Fig. 2.

As a complete masking of both distortionsRE < RT is
practically not possible, only the masking of the residual
noise power distortions is taken into account. By masking
the residual noise power distortions, the speech power distor-
tions are also assumed to be minimized (Gustafsson, 1998).
So equating noise power distortionREn to masking curve of
the rough clean speechRT , the spectral weighting rule is de-
rived as

G(k,m) = min

(√
RT (k,m)

Rn(k,m)
+ζ(λ,m),1

)
, (6)

whereλ represents herein a frequency bandwidth andζ(λ,m)

is chosen based on the corresponding subband segmental
SNR:

SNRi(λ,m) = 10log10


ke∑

k=ks

RT (k,m)

ke∑
k=ks

Rñ(k,m)

, (7)
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Fig. 3. ζ(λ,m) vs. segmentalSNR in bandi with bandwidthλ.

as shown in Fig.3, that is computed from a shifted sigmoid
function. ks andke represent in Eq. (7) the starting and end-
ing bin of theith band.

To reduce the spectral outliers in specific frequency bands,
the gain function is manipulated based on the energy of the
coefficients within critical bands as follows:

G̃(k,m) =
G(k,m)

ke −ks +1
·

ke∑
k=ks

|G(k,m)|2. (8)

The results with this technique are shown in Figs.5 and6,
where it is clear that the corrupting noise has been properly
controlled and sibilant sounds preserved.

2.1 Noise estimation

As the computation of Eq. (6) requires the knowledge of the
corrupting noise power, only an estimated noise power can
be used for the single channel case. Therefore, the Rapid
Adaptation and Recursive Smoothing (RARS approach) (Ns-
abimana, 2009), that is depicted in Fig.4, is applied here.

In the RARS approach, first the noise power is esti-
mated first using Optimal Smoothing and Minimum Statis-
tics (OSMS) approach (Martin, 2001) with a very short win-
dow. This yields an overestimation of the estimated noise
power. Based on the smoothed posteriori SNR from the
OSMS noise power a VAD indexI is derived to compute
the speech presence probabilityP and a smoothing param-
eter η. This smoothing parameter is finally applied to the
unbiased estimated noise powerRu from OSMS approach to
account for the overestimation. In order to improve the adap-
tation time for the estimated noise power, a conditionBC is
used to track quickly the fast changes in the noise power. Re-
sults from (Nsabimana, 2009) reveal that the RARS approach
adapts fast and provides accurate mean estimates than OSMS
approach (Martin, 2001) especially for very low SNRs.

Fig. 4. RARS approach. Power Spectrum Smoothing (PSS), Bias
Correction (BC), Noise Update (NU), Smoothing Parameter (SP),
Speech Presence Probability (SPP), Voice Activity Detector (VAD),
Smoothed SNR (SSNR).

Fig. 5. Results from investigated speech enhancement techniques.
Corrupted speech at 10 dB(a), OMLSA aprroach(b), PMSWR ap-
proach(c) and IPMSWR approach(d).

3 Experimental results

This section presents the performance evaluation of the pro-
posed enhancement technique using the phase of the cor-
rupted speech on one hand (s. Figs.5 and6) and the phase
of the clean speech on the other hand (s. Fig.8). To get a
fair comparison, tests were carried out for different SNRs
using additive white gaussian noise. A window length of 512
samples with a hop size of 25% for analysis and synthesis
is applied for all approaches. Figures5 and6 present a sub-
jective comparison in terms of spectrogram. These results
show that the IPMSWR approach preserves sibilants (s-like
sounds) even for very low SNRs (5–10 dB).

Figure 7 presents again the results obtained during lis-
tening test with headphones (Nsabimana, 2009). The fif-
teen subjects recruited for this test were all working in our
lab. For this test, subjects had first to find the hidden ref-
erence signal and assign it 100%. The results from the

www.adv-radio-sci.net/8/95/2010/ Adv. Radio Sci., 8, 95–99, 2010



98 F. X. Nsabimana et al.: IPMSWR approach

Fig. 6. Results from investigated speech enhancement techniques.
Corrupted speech at 5 dB(a), OMLSA aprroach(b), PMSWR ap-
proach(c) and IPMSWR approach(d).

simulated algorithms are then compared to the reference sig-
nal grade. The Mean Opinion Score (ITU-T P.862) rep-
resents the grades of the three enhancement techniques for
three different kinds of noise. Figure7 reveal that the IPM-
SWR approach was graded best.

Fig. 7. Results from listening test using headphones. Bars denote
95% confidence interval.

3.1 Usefulness of phase information

The importance of the phase information in speech enhance-
ment is currently being investigated (Shannon, 2006; Shi,
2006; Aarabi, 2006; shi, 2007). To motivate further steps
of improvements in the IPMSWR approach, the role of the
phase is here emphasized using clean speech degraded with
artificial additive white gaussian noise at different SNRs
from 0 to 35 dB (s. Fig.8).

Figure 8 depicts the segmental SNR improvement with
IPMSWR approach using the phase of the disturbed speech
for the resynthesis on one hand and the phase of the clean
speech for the resynthesis on the other hand. The black
curve with square represents here the segmental SNR of the

Fig. 8. Segmental SNR improvement with PMSWR and IPMSWR
approaches. PCS means Phase of Clean Speech.

disturbed speech, which stands for the reference segmental
SNR. The red curve with circle, which depicts the results
with the IPMSWR using the phase of the disturbed speech,
clearly reveals an overall segmental SNR gain of∼= 5 dB. The
dashed blue curve with diamond, which depicts the results
with the PMSWR using the phase of the disturbed speech,
remains close to the results of the IPMSWR approach only
for SNRs higher than 15 dB as expected. The dashed green
curve with triangle, which depicts the results with the IPM-
SWR using the phase of the clean speech, reveals instead an
overall segmental SNR gain of∼=8 dB. This clearly outlines
the usefulness of the phase information.

4 Conclusions

A speech enhancement technique based on psychoacoustics
principles is proposed here. The key components of this ap-
proach are a time-frequency dependent control parameter for
the residual noise within critical bands and a better estimate
of the rough clean speech. As additional information on the
corrupting noise is not available, a technique to estimate the
corrupting noise power has been presented. Simulations re-
sults at different SNRs reveal that the proposed technique
performs best and preserves sibilant sounds even at very low
SNRs. To motivate further steps of improvements in the
IPMSWR approach, the importance of the phase informa-
tion has been emphasized here during experimental results.
The obtained results show that an increase of SNR gain is
achieved when the phase of the clean speech is used.

Future works should thus address the estimation of the
phase to increase the speech intelligibility. To avoid abrupt
jumps, the gain coefficients should also be properly con-
trolled. The Parameter optimization remains necessary.
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