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Abstract. With the purpose of supplying the demand
of faster and more reliable communication, multiple-input
multiple-output (MIMO) systems in conjunction with Or-
thogonal Frequency Division Multiplexing (OFDM) are sub-
ject of extensive research. Successful Decoding requires an
accurate channel estimate at the receiver, which is gained ei-
ther by evaluation of reference symbols which requires des-
ignated resources in the transmit signal or decision-directed
approaches. The latter offers a convenient way to maximize
bandwidth efficiency, but it suffers from error propagation
due to the dependency between the decoding of the current
data symbol and the calculation of the next channel estimate.
In our contribution we consider linear smoothing techniques
to mitigate error propagation by the introduction of backward
dependencies in the decision-based channel estimation. De-
signed as a post-processing step, frame repeat requests can
be lowered by applying this technique if the data is insensi-
tive to latency. The problem of high memory requirements
of FIR smoothing in the context of MIMO-OFDM is ad-
dressed with an recursive approach that acquires minimal re-
sources with virtual no performance loss. Channel estimate
normalized mean square error and bit error rate (BER) per-
formance evaluations are presented. For reference, a median
filtering technique is presented that operates on the MIMO
time-frequency grids of channel coefficients to reduce the
peak-like outliers produced by wrong decisions due to un-
successful decoding. Performance in terms of Bit Error Rate
is compared to the proposed smoothing techniques.
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1 Introduction

MIMO OFDM systems are strong candidates for upcom-
ing mobile networks. In Spatial Multiplexing transmission
modes the channel capacity increases linearly with the num-
ber of transmit and receive antennas primary at the expense
of higher SNR demands and algorithmic complexity in the
receiver and detection algorithms (Foschini and Gans, 1998).

However, there can be observed large gaps between an-
alytical derived capacity statements and realized data rates
with proposed receiver designs. This is particularly true for
mobile scenarios. Channel estimate errors tend to decrease
the achievable rates because of the limited performance of
the detection algorithms operating with channel estimates
(Dall’Anese et al., 2009).

To acquire channel estimates with low errors a large num-
ber of reference symbols or pilots would be necessary. Ex-
clusive bandwidth has to be dedicated to reference symbols
and is not available for data transmission, therefore the ef-
fective data rate is reduced by the amount of pilots which
is not desirable. In mobile receivers the channel estimate
is quickly outdated depending on the relative radial velocity
to the sender (Marzetta and Hochwald, 1999). After a time
duration, commonly known as the coherence timeTC, the
channel state must be assumed to be completely changed.

Cellular mobile networks in urban environment addition-
ally experience multipath signal propagation often referred to
street canyon scenarios and alike. So, Doppler shifts due to
mobility vary on different propagation paths. Fading due to
shadowing might occur suddenly and the channel estimation
has to keep track.

The mentioned aspects and problems of mobile multi-
antenna broadband communication and the consequences for
the channel estimation is addressed in this paper. To mitigate
influences we propose a post-processing – smoothing – algo-
rithm to refine the channel estimates acquired by a decision-
directed channel estimation (DDCE) and tracking algorithm.
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Fig. 1. MIMO-OFDM system model.

tion 2, followed by a brief review of the DDCE algorithm in
Section 3. An approach to introduce linear smoothing tech-
niques in the context of MIMO-OFDM channel estimation is
taken in Section 4.1 and a memory-reduced version shown
in Section 4.2. An alternative, non-linear filtering method is
discussed in Section 4.3. Illustrating simulation results are
given in Section 5 and finally a conclusion is drawn.

2 System Model and Structure

The vector of received values r at the time sample m of a
MIMO system is the superposition of L · nT previously sent
samples and the current nT samples, whereL+1 is the length
of the sampled channel impulse response and nT is the num-
ber of transmit antennas. It is given by

r[m] =

L∑
l=0

h[l,m] · s[m− l] + w̃[m], (1)

where s[m] denotes the current vector of symbols of each
transmit antenna, w is an identically, independently dis-
tributed (iid) additive white Gaussian noise term and h[l,m]
is the MIMO channel matrix in delay and time domain, in-
dexed with l respectively m. The past sent samples are de-
noted by s[m − l], for l 6= 0, l ≤ L. The data symbols of
the K subcarriers are modulated by an inverse Fast Fourier
Transform (IFFT). In simulations every value correspond-
ing to a transmit antenna of the resulting vectors is trans-
mitted using the formula above. The data symbols itself are
drawn from an M -order QAM modulation alphabet S. The
mapping, denoted by M{·}, modulates κ = log2M bits
to a QAM symbol. This is done consecutively for all nT

send streams/layers. The QAM constellations are considered
power-normalized to simplify notation.

In frequency domain the system model in Eq. (1) can be
described as

r[n, k] = H[n, k] · s[n, k] + w[n, k], (2)

where n denotes the time index of an OFDM symbol and
k its subcarrier index. The vectors r[n, k] and w[n, k] are of
dimension nR × 1, s[n, k] of nT × 1 and the matrix H[n, k]
of nR × nT , at which nR is the number of receive antennas.
In simulations the time domain MIMO channel coefficients
hr,t[l,m], r = 1, . . . , nR, t = 1, . . . , nT are modeled us-
ing the 3GPP spatial model which was developed to evalu-
ate receiver algorithms in MIMO scenarios (3rd Generation
Partnership Project , 3GPP). The superposed received signals
are transferred back into the frequency domain with the help
of a FFT, resulting in the vectors r[n, k] of Eq. (2). Perfect
synchronization is assumed and total avoidance of block in-
terference, i.e. the cyclic prefix is longer than the maximum
delay path. The system’s performance is evaluated in terms
of bit error rates determined from hard decided channel de-
coder output. The channel decoder operates on soft informa-
tion in form of channel log-likelihood ratios (LLRs), L. A
block diagram depicting the system model is given in Fig. 1.

3 Decision-Directed Recursive Least Squares (RLS)
Channel Estimation

MIMO-RLS algorithm estimates auto- and cross-correlation
matrices Φ resp. θ, time adaptive with forgetting factor ξ as
described by Kay (1993). The channel estimation is done on
each subcarrier k individually.

Φ[n, k] = ξ ·Φ[n− 1, k] + s[n, k] · sH[n, k] (3)

θ[n, k] = ξ · θ[n− 1, k] + s[n, k] · rH[n, k] (4)

An estimate of the channel matrix is obtained as follows:

H̃[n, k] =
(
Φ−1[n, k] · θ[n, k]

)H
. (5)

From the MIMO bit-wise log-likelihood ratio detection out-
put, that is soft information of channel output L, recon-
structed send vectors are available. After the pilot sequence

Fig. 1. MIMO-OFDM system model.

The DDCE based on Least Squares works well with a small
number of pilot symbols in quasi-static scenarios.

The paper is organized as follows. The underlying sys-
tem model in time and frequency-domain is presented in
Sect.2, followed by a brief review of the DDCE algorithm
in Sect.3. An approach to introduce linear smoothing tech-
niques in the context of MIMO-OFDM channel estimation is
taken in Sect.4.1 and a memory-reduced version shown in
Sect.4.2. An alternative, non-linear filtering method is dis-
cussed in Sect.4.3. Illustrating simulation results are given
in Sect.5 and finally a conclusion is drawn.

2 System model and structure

The vector of received valuesr at the time samplem of a
MIMO system is the superposition ofL ·nT previously sent
samples and the currentnT samples, whereL+1 is the length
of the sampled channel impulse response andnT is the num-
ber of transmit antennas. It is given by

r[m] =

L∑
l=0

h[l,m] ·s[m− l]+ w̃[m], (1)

wheres[m] denotes the current vector of symbols of each
transmit antenna,w is an identically, independently dis-
tributed (iid) additive white Gaussian noise term andh[l,m]

is the MIMO channel matrix in delay and time domain, in-
dexed withl respectivelym. The past sent samples are de-
noted bys[m−l], for l 6= 0,l ≤ L. The data symbols of theK
subcarriers are modulated by an inverse Fast Fourier Trans-
form (IFFT). In simulations every value corresponding to a
transmit antenna of the resulting vectors is transmitted using
the formula above. The data symbols itself are drawn from
anM-order QAM modulation alphabetS. The mapping, de-
noted byM{·}, modulatesκ = log2M bits to a QAM symbol.
This is done consecutively for allnT send streams/layers.
The QAM constellations are considered power-normalized
to simplify notation.

In frequency domain the system model in Eq. (1) can be
described as

r[n,k] = H[n,k] ·s[n,k]+w[n,k], (2)

wheren denotes the time index of an OFDM symbol andk

its subcarrier index. The vectorsr[n,k] andw[n,k] are of
dimensionnR ×1, s[n,k] of nT ×1 and the matrixH[n,k]

of nR × nT, at which nR is the number of receive anten-
nas. In simulations the time domain MIMO channel coeffi-
cientshr,t [l,m], r = 1,...,nR, t = 1,...,nT are modeled us-
ing the 3GPP spatial model which was developed to evalu-
ate receiver algorithms in MIMO scenarios (3rd Generation
Partnership Project, 3GPP). The superposed received signals
are transferred back into the frequency domain with the help
of a FFT, resulting in the vectorsr[n,k] of Eq. (2). Perfect
synchronization is assumed and total avoidance of block in-
terference, i.e. the cyclic prefix is longer than the maximum
delay path. The system’s performance is evaluated in terms
of bit error rates determined from hard decided channel de-
coder output. The channel decoder operates on soft informa-
tion in form of channel log-likelihood ratios (LLRs),L . A
block diagram depicting the system model is given in Fig.1.

3 Decision-directed Recursive Least Squares (RLS)
channel estimation

MIMO-RLS algorithm estimates auto- and cross-correlation
matrices8 resp.θ , time adaptive with forgetting factorξ as
described byKay (1993). The channel estimation is done on
each subcarrierk individually.

8[n,k] = ξ ·8[n−1,k]+s[n,k] ·sH
[n,k] (3)

θ [n,k] = ξ ·θ [n−1,k]+s[n,k] ·rH
[n,k] (4)

An estimate of the channel matrix is obtained as follows:

H̃[n,k] =

(
8−1

[n,k] ·θ [n,k]

)H
. (5)

From the MIMO bit-wise log-likelihood ratio detection out-
put, that is soft information of channel outputL , recon-
structed send vectors are available. After the pilot sequence
of lengthNP in the preamble of the frame is processed, the
reconstructed send vectors

s̃[n] =MnT{sgn{L}}, ∀n >NP. (6)

are used to further refine the estimate of the auto- and cross-
correlation matrices thus tracking the time-variable channel,
as indicated by the switch in Fig.2 (Akhtman and Hanzo,
2007). The coherence time of the channel determines the
usability of the collected samples. Old samples describing
an obsolete channel state should be omitted. This is accom-
plished by the introduction of the forgetting factorξ . For the
sake of notational simplicity the symbols is used for pilot
vectors as well as the reconstructed send vectors omitting the
tilde.
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Fig. 2. Signal Flow Diagram for Decision Directed RLS Channel Estimation and Tracking algorithm.

of length NP in the preamble of the frame is processed, the
reconstructed send vectors

s̃[n] =MnT {sgn{L}}, ∀n > NP . (6)

are used to further refine the estimate of the auto- and cross-
correlation matrices thus tracking the time-variable channel,
as indicated by the switch in Fig. 2 (Akhtman and Hanzo,
2007). The coherence time of the channel determines the
usability of the collected samples. Old samples describing
an obsolete channel state should be omitted. This is accom-
plished by the introduction of the forgetting factor ξ. For the
sake of notational simplicity the symbol s is used for pilot
vectors as well as the reconstructed send vectors omitting the
tilde.

4 Smoothing Techniques

4.1 RLS Un-rolling

Post-processing after the RLS requires access to the spatial
correlation samples for each OFDM symbol and subcarrier

Φ̌[n, k] = s[n, k] · sH[n, k], (7)

θ̌[n, k] = s[n, k] · rH[n, k]. (8)

Considering a nT × nR MIMO OFDM system with NS

OFDM symbols per frame and K subcarriers, the dimension
of the arrays is nT × nR ×K ×NS .

The weighted expectation value in Eq. (3) and (4) is then

Φ[n, k] = ξ ·Φ[n− 1, k] + Φ̌[n, k], (9)

θ[n, k] = ξ · θ[n− 1, k] + θ̌[n, k]. (10)

It can be re-formulated as a matrix vector-multiplication.
The weighting factors are exponentially decreasing with in-
creasing sample index n therefore they constitute a lower tri-
angular matrix

Ξ =


1 0 · · ·
ξ 1 0 · · ·
ξ2 ξ 1 0 · · ·
...

...
...

. . . 0
ξNS−1 ξNS−2 ξNS−3 · · · 1

 . (11)

The weighting along the time dimension with the forget-
ting factor matrix can be applied independently on the other
dimensions

Φ̌
′
t,r,k = Ξ · Φ̌t,r,k ∀t, r, k (12)

and analogue
θ̌
′
t,r,k = Ξ · θ̌r,r,k. (13)

With matrices (12) and (13) the ordinary channel estimate
can be calculated as well

H̃[n, k] =
(
Φ̌
′−1

[n, k] · θ̌′[n, k]
)H

. (14)

The smoothing algorithm can be derived by minimizing
the modified cost function

J̌ [n, k] =

NS∑
ñ=1

ξ|NS−ñ| · eH[ñ, n, k] · e[ñ, n, k] (15)

with
e[ñ, n, k] = r[ñ, k]− H̃[n, k] · s[ñ, k]. (16)

As a consequence it follows a transition for the weighting
matrix to be fully occupied

Ξ′ =



1 ξ ξ2 ξ3 · · · ξNS−1

ξ 1 ξ ξ2 · · · ξNS−2

ξ2 ξ 1 ξ · · · ξNS−3

ξ3 ξ2 ξ 1 · · · ξNS−4

...
...

...
...

. . .
...

ξNS−1 ξNS−2 ξNS−3 ξNS−4 · · · 1


. (17)

Smoothing weighting reflecting mobility induced channel
time variance and effectively doubles the number of samples
available for estimating the auto- and crosscorrelation matri-
ces thus lowering the estimation error. Obviously, in this for-
mulation arbitrary window functions can be applied as well
instead of exponentially weighting factors in Ξ′. So smooth-
ing weighting is applied by evaluating

Φ̌
′′
t,r,k = Ξ′ · Φ̌t,r,k, (18)

θ̌
′′
t,r,k = Ξ′ · θ̌t,r,k, (19)

Fig. 2. Signal flow diagram for decision directed RLS channel estimation and tracking algorithm.
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correlation samples for each OFDM symbol and subcarrier

8̌[n,k] = s[n,k] ·sH
[n,k], (7)

θ̌ [n,k] = s[n,k] ·rH
[n,k]. (8)

Considering anT × nR MIMO OFDM system with NS
OFDM symbols per frame andK subcarriers, the dimension
of the arrays isnT ×nR×K ×NS.

The weighted expectation value in Eqs. (3) and (4) is then
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weighting factors are exponentially decreasing with increas-
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··· 1
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Smoothing weighting reflecting mobility induced channel
time variance and effectively doubles the number of sam-
ples available for estimating the auto- and crosscorrelation
matrices thus lowering the estimation error. Obviously, in
this formulation arbitrary window functions can be applied
as well instead of exponentially weighting factors in4′. So
smoothing weighting is applied by evaluating

8̌
′′

t,r,k = 4′
·8̌t,r,k, (18)

θ̌
′′

t,r,k = 4′
· θ̌ t,r,k, (19)

The smoothed channel estimate for the unrolling (U) is
yielded by

H̃U
S [n,k] =

(
8̌

′′−1
[n,k] · θ̌

′′

[n,k]

)H
. (20)

4.2 Recursive smoothing

The unrolling approach consumes a huge amount of mem-
ory impeding practical receiver implementations. Therefore
a reduction of memory requirements is desirable. It is possi-
ble to reformulate the algorithm again into a recursive form
(Kashima et al., 2006). Defining
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Fig. 3. Receiver structure with post processing of channel estimation with discussed Smoothing techniques.

The smoothed channel estimate for the unrolling (U) is
yielded by

H̃U
S [n, k] =

(
Φ̌
′′−1

[n, k] · θ̌′′[n, k]
)H

. (20)

4.2 Recursive Smoothing

The unrolling approach consumes a huge amount of mem-
ory impeding practical receiver implementations. Therefore
a reduction of memory requirements is desirable. It is possi-
ble to reformulate the algorithm again into a recursive form
(Kashima et al., 2006). Defining

ΦS [n, k] =

NS∑
ñ=1

ξ|NS−ñ| · s[ñ, k] · sH[ñ, k], (21)

θS [n, k] =

NS∑
ñ=1

ξ|NS−ñ| · s[ñ, k] · rH[ñ, k], (22)

it is possible to calculate the smoothed inverse autocorrela-
tion matrix PS = Φ−1

S recursive using the already estimated
inverse autocorrelation matrix Φ,

PS [n, k] = P[n, k] + ξ2 ·
[
PS [n+ 1, k]− ξ−1 ·P[n, k]

]
.

(23)
So a smoothed channel estimate can also be calculated using
the previously estimated channel estimate H̃ by evaluating

H̃R
S [n, k] = H̃[n, k] + ξ · [H̃S [n+ 1, k]− H̃[n, k]], (24)

where n = NS , . . . , 1 and it is initialized by setting
H̃S [NS , k] = H̃[NS , k] .

4.3 Time-Frequency Median Filtering

Decision-directed channel estimation is prone to error prop-
agation and wrong decisions may lead to impulse-like out-
liers in the channel estimate. As median filtering is especially
suited for impulse noise it is investigated in this context as an
alternative to the above discussed approaches to smoothing.

This non-linear filtering is applied on the nT · nR time-
frequency grids resp. time-variant channel transfer functions.
An important parameter is the filter kernel size. Often used
sizes in image processing are 3× 3, 5× 5 or 7× 7 samples.
The optimal kernel size depends on the coherence time and
coherence bandwidth respectively subcarriers.
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5 Simulation Results

The comparative simulations were conducted using a 4 × 4
MIMO-OFDM system configuration with K = 128 subcar-
riers and a cyclic prefix length L = 6 and two velocity set-
ups (3 m/s and 30 m/s). For a realistic channel the 3GPP
Spatial Channel Model was used with time-variant impulse
responses. Uniformly distributed bits were coded using an ir-
regular LDPC code with design code rate of 1/2, interleaved
and 4-QAM modulated. LDPC codes are chosen because
of high codeword distance and parallelisable decoder struc-

Fig. 3. Receiver structure with post processing of channel estimation with discussed smoothing techniques.
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This non-linear filtering is applied on the nT · nR time-
frequency grids resp. time-variant channel transfer functions.
An important parameter is the filter kernel size. Often used
sizes in image processing are 3× 3, 5× 5 or 7× 7 samples.
The optimal kernel size depends on the coherence time and
coherence bandwidth respectively subcarriers.
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MIMO-OFDM system configuration with K = 128 subcar-
riers and a cyclic prefix length L = 6 and two velocity set-
ups (3 m/s and 30 m/s). For a realistic channel the 3GPP
Spatial Channel Model was used with time-variant impulse
responses. Uniformly distributed bits were coded using an ir-
regular LDPC code with design code rate of 1/2, interleaved
and 4-QAM modulated. LDPC codes are chosen because
of high codeword distance and parallelisable decoder struc-
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it is possible to calculate the smoothed inverse autocorrela-
tion matrix PS = 8−1

S recursive using the already estimated
inverse autocorrelation matrix8,

PS[n,k] = P[n,k]+ξ2
·

[
PS[n+1,k]−ξ−1

·P[n,k]

]
. (23)

So a smoothed channel estimate can also be calculated using
the previously estimated channel estimateH̃ by evaluating

H̃R
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where n = NS,...,1 and it is initialized by setting
H̃S[NS,k] = H̃[NS,k].

4.3 Time-frequency median filtering

Decision-directed channel estimation is prone to error prop-
agation and wrong decisions may lead to impulse-like out-
liers in the channel estimate. As median filtering is especially
suited for impulse noise it is investigated in this context as an
alternative to the above discussed approaches to smoothing.
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The smoothed channel estimate for the unrolling (U) is
yielded by

H̃U
S [n, k] =

(
Φ̌
′′−1

[n, k] · θ̌′′[n, k]
)H

. (20)

4.2 Recursive Smoothing

The unrolling approach consumes a huge amount of mem-
ory impeding practical receiver implementations. Therefore
a reduction of memory requirements is desirable. It is possi-
ble to reformulate the algorithm again into a recursive form
(Kashima et al., 2006). Defining
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ñ=1

ξ|NS−ñ| · s[ñ, k] · sH[ñ, k], (21)

θS [n, k] =

NS∑
ñ=1

ξ|NS−ñ| · s[ñ, k] · rH[ñ, k], (22)

it is possible to calculate the smoothed inverse autocorrela-
tion matrix PS = Φ−1

S recursive using the already estimated
inverse autocorrelation matrix Φ,

PS [n, k] = P[n, k] + ξ2 ·
[
PS [n+ 1, k]− ξ−1 ·P[n, k]

]
.

(23)
So a smoothed channel estimate can also be calculated using
the previously estimated channel estimate H̃ by evaluating

H̃R
S [n, k] = H̃[n, k] + ξ · [H̃S [n+ 1, k]− H̃[n, k]], (24)

where n = NS , . . . , 1 and it is initialized by setting
H̃S [NS , k] = H̃[NS , k] .

4.3 Time-Frequency Median Filtering

Decision-directed channel estimation is prone to error prop-
agation and wrong decisions may lead to impulse-like out-
liers in the channel estimate. As median filtering is especially
suited for impulse noise it is investigated in this context as an
alternative to the above discussed approaches to smoothing.

This non-linear filtering is applied on the nT · nR time-
frequency grids resp. time-variant channel transfer functions.
An important parameter is the filter kernel size. Often used
sizes in image processing are 3× 3, 5× 5 or 7× 7 samples.
The optimal kernel size depends on the coherence time and
coherence bandwidth respectively subcarriers.
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This non-linear filtering is applied on thenT · nR time-
frequency grids resp. time-variant channel transfer functions.
An important parameter is the filter kernel size. Often used
sizes in image processing are 3×3, 5×5 or 7×7 samples.
The optimal kernel size depends on the coherence time and
coherence bandwidth respectively subcarriers.

5 Simulation results

The comparative simulations were conducted using a 4×4
MIMO-OFDM system configuration withK = 128 subcar-
riers and a cyclic prefix lengthL = 6 and two velocity set-
ups (3 m s−1 and 30 m s−1). For a realistic channel the 3GPP
Spatial Channel Model was used with time-variant impulse
responses. Uniformly distributed bits were coded using an ir-
regular LDPC code with design code rate of 1/2, interleaved
and 4-QAM modulated. LDPC codes are chosen because
of high codeword distance and parallelisable decoder struc-
ture (Richardson et al., 2001). They are also employed in the
IEEE 802.11n Standard for MIMO systems.
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ture (Richardson et al., 2001). They are also employed in the
IEEE 802.11n Standard for MIMO systems.

For different median kernel sizes simulations had been
conducted and the results in terms of NMSE are depicted
in Fig. 4. A kernel size of 5 × 5 resulted in lowest average
channel estimation errors which was then used in the overall
comparative simulations.

Results in terms of channel estimation error measured in
normalised mean squared error (NMSE) are presented in
Fig. 5. A turbo-like cliff region (ten Brink, 2000) around
9 dB was observed. For SNR below this threshold the de-
tector could not reproduce the send vectors reliable therefore
error propagation in the decision-directed channel estimation
algorithm started rendering complete frames useless and fi-
nally resulting in high channel estimation errors. Above the
identified threshold the NMSE dramatically decreased. In
this region performance differences for Median filtering are
visible, whereas for the unrolling and the recursive Smooth-
ing there were no significant differences in performance ob-
servable – the curves are almost identical, slightly better for
the unrolling approach.

The Bit Error Rate (BER) versus SNR are depicted in
Fig. 6. The results reflect the same tendency as the NMSE
results did. In comparison to the linear smoothing techniques
the performance of the Median filter is worse.

Reliable transmission is possible in the slowly time-variant
case above 10 dB SNR employing one of the linear smooth-
ing methods. It needs 12 dB or more with the Median filter-
ing method. However, for the higher velocity the difference
in minimum SNR is insignificant due to the high impact of
intercarrier interference.

6 Conclusions

In this paper we have discussed smoothing techniques in the
context of MIMO OFDM channel estimation. The output

of a bandwidth-efficient decision-directed channel estima-
tion and tracking algorithm is post-processed to improve the
estimate’s accuracy in mobile scenarios by effectively dou-
bling the number of samples available for correlation matrix
estimation. In a first approach, the modification of the RLS
algorithm leads to a smoothing with high memory require-
ments. A memory efficient recursive smoothing algorithm
has been presented having virtually no loss in NMSE or BER
performance compared to the first approach in the conducted
simulations with two velocity scenarios. As an alternative,
median filtering is compared to the above mentioned. While
it leads to comparable results for the high velocity case, a gap
for the lower one reveals the disadvantage of the static kernel
size in this method.

However, in future work these results has to be verified
with measurement setups. Nevertheless the simulations in-
dicate a potential to post-processing algorithms if the trans-
mitted data is not sensitive to delays caused by the increased
processing time and latency.
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